1
|
Bi YW, Li LS, Ru N, Zhang B, Lei X. Nicotinamide adenine dinucleotide phosphate oxidase in pancreatic diseases: Mechanisms and future perspectives. World J Gastroenterol 2024; 30:429-439. [PMID: 38414585 PMCID: PMC10895600 DOI: 10.3748/wjg.v30.i5.429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/17/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
Pancreatitis and pancreatic cancer (PC) stand as the most worrisome ailments affecting the pancreas. Researchers have dedicated efforts to unraveling the mechanisms underlying these diseases, yet their true nature continues to elude their grasp. Within this realm, oxidative stress is often believed to play a causal and contributory role in the development of pancreatitis and PC. Excessive accumulation of reactive oxygen species (ROS) can cause oxidative stress, and the key enzyme responsible for inducing ROS production in cells is nicotinamide adenine dinucleotide phosphate hydrogen oxides (NOX). NOX contribute to pancreatic fibrosis and inflammation by generating ROS that injure acinar cells, activate pancreatic stellate cells, and mediate macrophage polarization. Excessive ROS production occurs during malignant transformation and pancreatic carcinogenesis, creating an oxidative microenvironment that can cause abnormal apoptosis, epithelial to mesenchymal transition and genomic instability. Therefore, understanding the role of NOX in pancreatic diseases contributes to a more in-depth exploration of the exact pathogenesis of these diseases. In this review, we aim to summarize the potential roles of NOX and its mechanism in pancreatic disorders, aiming to provide novel insights into understanding the mechanisms underlying these diseases.
Collapse
Affiliation(s)
- Ya-Wei Bi
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Long-Song Li
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Nan Ru
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Bo Zhang
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao Lei
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
2
|
McCarty MF, Assanga SI, Lujan LL. Age-adjusted mortality from pancreatic cancer increased NINE-FOLD in japan from 1950 to 1995 - Was a low-protein quasi-vegan diet a key factor in their former low risk? Med Hypotheses 2021; 149:110518. [PMID: 33582316 DOI: 10.1016/j.mehy.2021.110518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
During the last half of the twentieth century, age-adjusted mortality from pancreatic cancer in Japan rose about nine-fold in both sexes. Well-characterized risk factors such as smoking, obesity/metabolic syndrome, and heavy alcohol use appear to explain only a modest part of this rise. It is proposed that a diet relatively low in protein, and particularly low in animal protein, was a key determinant of the low risk for pancreatic cancer in mid-century Japan. It is further proposed that pancreatic acinar cells, owing to their extraordinarily high rate of protein synthesis, are at high risk for ER stress; that such stress plays a fundamental role in the induction of most pancreatic cancers; and that low-protein diets help to offset such stress by modulating activities of the kinases GCN2 and mTORC1 while increasing autocrine and systemic production of fibroblast growth factor 21. This model appears to clarify the role of various risk factors and protective factors in pancreatic cancer induction. A vegan or quasi-vegan low-protein diet may have broader potential for decreasing risk for a range of common "Western" cancers.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, San Diego, CA, United States.
| | | | | |
Collapse
|
3
|
Pitfalls in AR42J-model of cerulein-induced acute pancreatitis. PLoS One 2021; 16:e0242706. [PMID: 33493150 PMCID: PMC7833168 DOI: 10.1371/journal.pone.0242706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background AR42J are immortalized pancreatic adenocarcinoma cells that share similarities with pancreatic acinar cells. AR42J are often used as a cell-culture model of cerulein (CN)-induced acute pancreatitis (AP). Nevertheless, it is controversial how to treat AR42J for reliable induction of AP-like processes. Gene knockout and/or overexpression often remain challenging, as well. In this study, we demonstrate conditions for a reliable induction of proinflammatory markers upon CN treatment in AR42J and high transfection efficacy using Glyoxalase-I (Glo-I) as a target of interest. Methods Effects of dexamethasone (dexa) and CN on cell morphology and amylase secretion were analyzed via ELISA of supernatant. IL-6, TNF-α and NF-κB-p65 were measured via qRT-PCR, ELISA and Western Blot (WB). Transfection efficacy was determined by WB, qRT-PCR and immune fluorescence of pEGFP-N1-Glo-I-Vector and Glo-I-siRNA. Results Treatment of AR42J with 100 nm dexa is mandatory for differentiation to an acinar-cell-like phenotype and amylase production. CN resulted in secretion of amylase but did not influence amylase production. High levels of CN-induced amylase secretion were detected between 3 and 24 hours of incubation. Treatment with LPS alone or in combination with CN did not influence amylase release compared to control or CN. CN treatment resulted in increased TNF-α production but not secretion and did not influence IL-6 mRNA. CN-induced stimulation of NF-κB was found to be highest on protein levels after 6h of incubation. Transient transfection was able to induce overexpression on protein and mRNA levels, with highest effect after 12 to 24 hours. Gene-knockdown was achieved by using 30 pmol of siRNA leading to effective reduction of protein levels after 72 hours. CN did not induce amylase secretion in AR42J cell passages beyond 35. Conclusion AR42J cells demonstrate a reliable in-vitro model of CN-induced AP but specific conditions are mandatory to obtain reproducible data.
Collapse
|
4
|
Xia D, Halder B, Godoy C, Chakraborty A, Singla B, Thomas E, Shuja JB, Kashif H, Miller L, Csanyi G, Sabbatini ME. NADPH oxidase 1 mediates caerulein-induced pancreatic fibrosis in chronic pancreatitis. Free Radic Biol Med 2020; 147:139-149. [PMID: 31837426 PMCID: PMC7227077 DOI: 10.1016/j.freeradbiomed.2019.11.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory disorders of the pancreas are divided into acute (AP) and chronic (CP) forms. Both states of pancreatitis are a result of pro-inflammatory mediators, including reactive oxygen species (ROS). One of the sources of ROS is NADPH oxidase (Nox). The rodent genome encodes Nox1-4, Duox1 and Duox2. Our purpose was to assess the extent to which Nox enzymes contribute to the pathogenesis of both AP and CP using Nox-deficient mice. Using RT-PCR, Nox1 was found in both isolated mouse pancreatic acini and pancreatic stellate cells (PaSCs). Subsequently, mice with genetically deleted Nox1 were further studied and showed that the histo-morphologic characteristics of caerulein-induced CP, but not caerulein-induced AP, was ameliorated in Nox1 KO mice. We also found that the lack of Nox1 impaired caerulein-induced ROS generation in PaSCs. Using Western blotting, we found that AKT mediates the fibrotic effect of Nox1 in a mouse model of CP. We also found a decrease in phospho-ERK and p38MAPK levels in Nox1 KO mice with CP, but not with AP. Both CP-induced TGF-β up-regulation and NF-ĸB activation were impaired in pancreas from Nox1 KO mice. Western blotting indicated increases in proteins involved in fibrosis and acinar-to-ductal metaplasia in WT mice with CP. No change in those proteins were observed in Nox1 KO mice. The lack of Nox1 lowered mRNA levels of CP-induced matrix metalloproteinase MMP-9 and E-cadherin repressor Twist in PaSCs. CONCLUSION: Nox1-derived ROS in PaSCs mediate the fibrotic process of CP by activating the downstream redox-sensitive signaling pathways AKT and NF-ĸB, up-regulating MMP-9 and Twist, and producing α-smooth muscle actin and collagen I and III.
Collapse
Affiliation(s)
- Di Xia
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Bithika Halder
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Catalina Godoy
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | | | - Bhupesh Singla
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Eyana Thomas
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Jasim B Shuja
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Hisham Kashif
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Laurence Miller
- Department of Psychological Sciences, Augusta University, Augusta, GA, USA
| | - Gabor Csanyi
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Maria E Sabbatini
- Department of Biological Sciences, Augusta University, Augusta, GA, USA.
| |
Collapse
|
5
|
Pharmacological stimulation of NQO1 decreases NADPH levels and ameliorates acute pancreatitis in mice. Cell Death Dis 2018; 10:5. [PMID: 30584237 PMCID: PMC6315021 DOI: 10.1038/s41419-018-1252-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) regulates the activation of inflammatory cascades and tissue damage in acute pancreatitis. NADPH oxidase (NOX) is upregulated in pancreatitis and is one of the major enzymes involved in ROS production using NADPH as a general rate-limiting substrate. Dunnione, a well-known substrate of NAD(P)H:quinone oxidoreductase 1 (NQO1), reduces the ratio of cellular NADPH/NADP+ through the enzymatic action of NQO1. This study assessed whether a reduction in cellular NADPH/NADP+ ratio can be used to regulate caerulein-induced pancreatic damage associated with NOX-induced ROS production in animal models. Dunnione treatment significantly reduced the cellular NADPH/NADP+ ratio and NOX activity through the enzymatic action of NQO1 in the pancreas of the caerulein-injection group. Similar to these results, total ROS production and expressions of mRNA and protein for NOX subunits Nox1, p27phox, p47phox, and p67phox also decreased in the dunnione-treated group. In addition, caerulein-induced pancreatic inflammation and acinar cell injury were significantly reduced by dunnione treatment. This study is the first to demonstrate that modulation of the cellular NADPH:NADP+ ratio by enzymatic action of NQO1 protects acute pancreatitis through the regulation of NOX activity. Furthermore, these results suggest that modulation of the NADPH:NADP+ ratio in cells by NQO1 may be a novel therapeutic strategy for acute pancreatitis.
Collapse
|
6
|
α-Lipoic acid inhibits Helicobacter pylori-induced oncogene expression and hyperproliferation by suppressing the activation of NADPH oxidase in gastric epithelial cells. Mediators Inflamm 2014; 2014:380830. [PMID: 25210229 PMCID: PMC4152957 DOI: 10.1155/2014/380830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/28/2014] [Accepted: 08/01/2014] [Indexed: 12/12/2022] Open
Abstract
Hyperproliferation and oncogene expression are observed in the mucosa of Helicobacter pylori- (H. pylori-) infected patients with gastritis or adenocarcinoma. Expression of oncogenes such as β-catenin and c-myc is related to oxidative stress. α-Lipoic acid (α-LA), a naturally occurring thiol compound, acts as an antioxidant and has an anticancer effect. The aim of this study is to investigate the effect of α-LA on H. pylori-induced hyperproliferation and oncogene expression in gastric epithelial AGS cells by determining cell proliferation (viable cell numbers, thymidine incorporation), levels of reactive oxygen species (ROS), NADPH oxidase activation (enzyme activity, subcellular levels of NADPH oxidase subunits), activation of redox-sensitive transcription factors (NF-κB, AP-1), expression of oncogenes (β-catenin, c-myc), and nuclear localization of β-catenin. Furthermore, we examined whether NADPH oxidase mediates oncogene expression and hyperproliferation in H. pylori-infected AGS cells using treatment of diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase. As a result, α-LA inhibited the activation of NADPH oxidase and, thus, reduced ROS production, resulting in inhibition on activation of NF-κB and AP-1, induction of oncogenes, nuclear translocation of β-catenin, and hyperproliferation in H. pylori-infected AGS cells. DPI inhibited H. pylori-induced activation of NF-κB and AP-1, oncogene expression and hyperproliferation by reducing ROS levels in AGS cells. In conclusion, we propose that inhibiting NADPH oxidase by α-LA could prevent oncogene expression and hyperproliferation occurring in H. pylori-infected gastric epithelial cells.
Collapse
|
7
|
Cao WL, Xiang XH, Chen K, Xu W, Xia SH. Potential role of NADPH oxidase in pathogenesis of pancreatitis. World J Gastrointest Pathophysiol 2014; 5:169-177. [PMID: 25133019 PMCID: PMC4133516 DOI: 10.4291/wjgp.v5.i3.169] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/25/2014] [Accepted: 06/16/2014] [Indexed: 02/06/2023] Open
Abstract
Studies have demonstrated that reactive oxygen species (ROS) are closely related to inflammatory disorders. Nicotinamide adenine dinucleotide phosphate oxidase (NOX), originally found in phagocytes, is the main source of ROS in nonphagocytic cells. Besides directly producing the detrimental highly reactive ROS to act on biomolecules (lipids, proteins, and nucleic acids), NOX can also activate multiple signal transduction pathways, which regulate cell growth, proliferation, differentiation and apoptosis by producing ROS. Recently, research on pancreatic NOX is no longer limited to inflammatory cells, but extends to the aspect of pancreatic acinar cells and pancreatic stellate cells, which are considered to be potentially associated with pancreatitis. In this review, we summarize the literature on NOX protein structure, activation, function and its role in the pathogenesis of pancreatitis.
Collapse
|
8
|
Borchi E, Bargelli V, Guidotti V, Berti A, Stefani M, Nediani C, Rigacci S. Mild exposure of RIN-5F β-cells to human islet amyloid polypeptide aggregates upregulates antioxidant enzymes via NADPH oxidase-RAGE: an hormetic stimulus. Redox Biol 2013; 2:114-22. [PMID: 24416718 PMCID: PMC3887275 DOI: 10.1016/j.redox.2013.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 12/06/2013] [Accepted: 12/07/2013] [Indexed: 01/09/2023] Open
Abstract
The presence of amyloid aggregates of human islet amyloid polypeptide (hIAPP), a hallmark of type 2 diabetes, contributes to pancreatic β-cell impairment, where oxidative stress plays a key role. A contribution of NADPH oxidase to reactive oxygen species (ROS) generation after cell exposure to micromolar concentrations of hIAPP aggregates has been suggested. However, little is known about β-cells exposure to lower amounts of hIAPP aggregates, similar to those found in human pancreas. Thus, we aimed to investigate the events resulting from RIN-5F cells exposure to nanomolar concentrations of toxic hIAPP aggregates. We found an early and transient rise of NADPH oxidase activity resulting from increased Nox1 expression following the engagement of receptor for advanced glycation end-products (RAGE) by hIAPP aggregates. Unexpectedly, NADPH oxidase activation was not accompanied by a significant ROS increase and the lipoperoxidation level was significantly reduced. Indeed, cell exposure to hIAPP aggregates affected the antioxidant defences, inducing a significant increase of the expression and activity of catalase and glutathione peroxidase. We conclude that exposure of pancreatic β-cells to nanomolar concentrations of hIAPP aggregates for a short time induces an hormetic response via the RAGE-Nox1 axis; the latter stimulates the enzymatic antioxidant defences that preserve the cells against oxidative stress damage. Short time exposure of pancreatic β-cells to low hIAPP aggregate amounts is studied. NADPH oxidase activity is increased after 3 h treatment with 60 nM hIAPP aggregates. RAGE engagement by aggregates increases Nox1 expression. Reduced lipoperoxidation and increased antioxidant enzymes were observed. A protective hormetic response via RAGE-Nox1 is proposed.
Collapse
Key Words
- AGE, advanced glycation end products
- ATZ, 3-amino-1,2,4-triazole
- Antioxidant enzyme
- CAT, catalase
- DPI, diphenyleneiodonium
- GPx, glutathione peroxidase
- Hormesis
- MDA, malonyldialdehyde
- MS, mercaptosuccinic acid
- NADPH oxidase
- RAGE
- RAGE, receptor for advanced glycation end-products
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- Type 2 diabetes
- hIAPP
- hIAPP, human islet amyloid polypeptide
- rIAPP, rat islet amyloid polypeptide
Collapse
Affiliation(s)
- Elisabetta Borchi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Valentina Bargelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Valentina Guidotti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Andrea Berti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy ; Research Centre on the Molecular Basis of Neurodegeneration (CIMN), Viale Morgagni 50, 50134 Florence, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy ; Research Centre on the Molecular Basis of Neurodegeneration (CIMN), Viale Morgagni 50, 50134 Florence, Italy ; National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro 305, Rome, Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Stefania Rigacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
9
|
ZHONG YI, LIU TINGRONG, LAI WENYAN, TAN YING, TIAN DI, GUO ZHIGANG. Heme oxygenase-1-mediated reactive oxygen species reduction is involved in the inhibitory effect of curcumin on lipopolysaccharide-induced monocyte chemoattractant protein-1 production in RAW264.7 macrophages. Mol Med Rep 2012; 7:242-6. [DOI: 10.3892/mmr.2012.1138] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/23/2012] [Indexed: 11/06/2022] Open
|
10
|
Wang J, Chen G, Gong H, Huang W, Long D, Tang W. Amelioration of experimental acute pancreatitis with Dachengqi Decoction via regulation of necrosis-apoptosis switch in the pancreatic acinar cell. PLoS One 2012; 7:e40160. [PMID: 22768339 PMCID: PMC3388070 DOI: 10.1371/journal.pone.0040160] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 06/01/2012] [Indexed: 02/05/2023] Open
Abstract
Severity of acute pancreatitis contributes to the modality of cell death. Pervious studies have demonstrated that the herb medicine formula “Dachengqi Decoction” (DCQD) could ameliorate the severity of acute pancreatitis. However, the biological mechanisms governing its action of most remain unclear. The role of apoptosis/necrosis switch within acute pancreatitis has attracted much interest, because the induction of apoptosis within injured cells might suppress inflammation and ameliorate the disease. In this study, we used cerulein (10−8 M)-stimulated AR42J cells as an in vitro model of acute pancreatitis and retrograde perfusion into the biliopancreatic duct of 3.5% sodium taurocholate as an in vivo rat model. After the treatment of DCQD, cell viability, levels of apoptosis and necrosis, reactive oxygen species positive cells, serum amylase, concentration of nitric oxide and inducible nitric oxide syntheses, pancreatic tissue pathological score and inflammatory cell infiltration were tested. Pretreatment with DCQD increased cell viability, induced apoptosis, decreased necrosis and reduced the severity of pancreatitis tissue. Moreover, treatment with DCQD reduced the generation of reactive oxygen species in AR42J cells but increased the concentration of nitric oxide of pancreatitis tissues. Therefore, the regulation of apoptosis/necrosis switch by DCQD might contribute to ameliorating the pancreatic inflammation and pathological damage. Further, the different effect on reactive oxygen species and nitric oxide may play an important role in DCQD-regulated apoptosis/necrosis switch in acute pancreatitis.
Collapse
Affiliation(s)
- Jia Wang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Guangyuan Chen
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Wei Huang
- Physiological Laboratory, University of Liverpool, Liverpool, United Kingdom
| | - Dan Long
- Department of Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, PR China
- * E-mail:
| |
Collapse
|
11
|
Kim Y, Seo JH, Kim H. β-Carotene and lutein inhibit hydrogen peroxide-induced activation of NF-κB and IL-8 expression in gastric epithelial AGS cells. J Nutr Sci Vitaminol (Tokyo) 2012; 57:216-23. [PMID: 21908944 DOI: 10.3177/jnsv.57.216] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) including hydrogen peroxide (H(2)O(2)) are involved in the pathogenesis of gastric inflammation. Interleukin-8 (IL-8) is a potent mediator of the inflammatory response by activating and recruiting neutrophils to the site of infection. Oxidant-sensitive transcription factor NF-κB regulates the expression of IL-8 in the immune and inflammatory events. Carotenoids (carotenes and oxygenated carotenoids) show antioxidant and anti-inflammatory activities. Low intake of β-carotene leads to high risk of gastric cancer. Oxygenated carotenoid lutein inhibited NF-κB activation in experimental uveitis. The present study aims to investigate whether β-carotene and lutein inhibit H(2)O(2)-induced activation of NF-κB and expression of IL-8 in gastric epithelial AGS cells. The cells were treated with carotenoids 2 h prior to the treatment of H(2)O(2). mRNA expression was analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and real time RT-PCR analyses. IL-8 level in the medium was determined by enzyme-linked immunosorbent assay. NF-κB activation was assessed by electrophoretic mobility shift assay. ROS levels of the cells were detected by confocal microscopic analysis for fluorescent dichlorofluorescein. As a result, H(2)O(2 )induced the activation of NF-κB and expression of IL-8 in AGS cells time-dependently. β-Carotene and lutein showed inhibitory effects on H(2)O(2)-induced increase in intracellular ROS levels, activation of NF-κB, and IL-8 expression in AGS cells. In conclusion, supplementation of carotenoids such as β-carotene and lutein may be beneficial for the treatment of oxidative stress-mediated gastric inflammation.
Collapse
Affiliation(s)
- Youngha Kim
- Department of Food and Nutrition, Brain Korea 21 Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | | | | |
Collapse
|
12
|
Choi SY, Lim JW, Shimizu T, Kuwano K, Kim JM, Kim H. Reactive oxygen species mediate Jak2/Stat3 activation and IL-8 expression in pulmonary epithelial cells stimulated with lipid-associated membrane proteins from Mycoplasma pneumoniae. Inflamm Res 2012; 61:493-501. [PMID: 22270622 DOI: 10.1007/s00011-012-0437-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/29/2011] [Accepted: 01/05/2012] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To investigate the involvement of reactive oxygen species (ROS) in the activation of Janus kinase2 (Jak2)/signal transducers and activators of transcription3 (Stat3), and IL-8 expression in pulmonary epithelial cells stimulated with lipid-associated membrane proteins (LAMP) from Mycoplasma pneumoniae using a known antioxidant, N-acetylcysteine (NAC). METHODS Pulmonary epithelial A549 cells were treated with or without NAC in the presence or absence of LAMP. Intracellular ROS levels were detected by fluorescent analysis for fluorescent dichlorofluorescein. mRNA expression of IL-8 was analyzed by reverse transcription-polymerase chain reaction. IL-8 protein in the medium was determined by enzyme-linked immunosorbent assay. Activation of Jak2/Stat3 was determined by the increases in phospho-specific forms of Jak2/Stat3 compared to total forms of Jak2/Stat3 by western blotting. Stat3-DNA binding activity was assessed by electrophoretic mobility shift assay. RESULTS LAMP increased the level of ROS, phosphorylation of Jak2/Stat3, Stat3-DNA binding activity, and IL-8 expression in A549 cells, which were inhibited by NAC dose-dependently. CONCLUSION LAMP of M. pneumoniae induces the production of ROS, Jak2/Stat3 activation, and IL-8 induction in A549 cells. Antioxidants such as NAC may be beneficial for preventing pulmonary inflammation caused by M. pneumoniae.
Collapse
Affiliation(s)
- Sang Yong Choi
- Department of Food and Nutrition, Brain Korea 21 Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
13
|
Booth DM, Mukherjee R, Sutton R, Criddle DN. Calcium and reactive oxygen species in acute pancreatitis: friend or foe? Antioxid Redox Signal 2011; 15:2683-98. [PMID: 21861696 PMCID: PMC3183657 DOI: 10.1089/ars.2011.3983] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Acute pancreatitis (AP) is a debilitating and, at times, lethal inflammatory disease, the causes and progression of which are incompletely understood. Disruption of Ca(2+) homeostasis in response to precipitants of AP leads to loss of mitochondrial integrity and cellular necrosis. RECENT ADVANCES While oxidative stress has been implicated as a major player in the pathogenesis of this disease, its precise roles remain to be defined. Recent developments are challenging the perception of reactive oxygen species (ROS) as nonspecific cytotoxic agents, suggesting that ROS promote apoptosis that may play a vital protective role in cellular stress since necrosis is avoided. CRITICAL ISSUES Fresh clinical findings have indicated that antioxidant treatment does not ameliorate AP and may actually worsen the outcome. This review explores the complex links between cellular Ca(2+) signaling and the intracellular redox environment, with particular relevance to AP. FUTURE DIRECTIONS Recent publications have underlined the importance of both Ca(2+) and ROS within the pathogenesis of AP, particularly in the determination of cell fate. Future research should elucidate the subtle interplay between Ca(2+) and redox mechanisms that operate to modulate mitochondrial function, with a view to devising strategies for the preservation of organellar function.
Collapse
Affiliation(s)
- David M Booth
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | | | |
Collapse
|
14
|
Fujimori N, Oono T, Igarashi H, Ito T, Nakamura T, Uchida M, Coy DH, Jensen RT, Takayanagi R. Vasoactive intestinal peptide reduces oxidative stress in pancreatic acinar cells through the inhibition of NADPH oxidase. Peptides 2011; 32:2067-2076. [PMID: 21924308 DOI: 10.1016/j.peptides.2011.08.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 08/31/2011] [Accepted: 08/31/2011] [Indexed: 12/16/2022]
Abstract
Vasoactive intestinal peptide (VIP) attenuates experimental acute pancreatitis (AP) by inhibition of cytokine production from inflammatory cells. It has been suggested that reactive oxygen species (ROS) as well as cytokines play pivotal roles in the early pathophysiology of AP. This study aimed to clarify the effect of VIP on the oxidative condition in pancreas, especially pancreatic acinar cells (acini). Hydrogen peroxide (H(2)O(2))-induced intracellular ROS, assessed with CM-H(2)DCFDA, increased time- and dose-dependently in acini isolated from rats. Cell viability due to ROS-induced cellular damage, evaluated by MTS assay, was decreased with ≥100 μmol/L H(2)O(2). VIP significantly inhibited ROS production from acini and increased cell viability in a dose-dependent manner. Expression of antioxidants including catalase, glutathione reductase, superoxide dismutase (SOD) 1 and glutathione peroxidase was not altered by VIP except for SOD2. Furthermore, Nox1 and Nox2, major components of NADPH oxidase, were expressed in pancreatic acini, and significantly increased after H(2)O(2) treatment. Also, NADPH oxidase activity was provoked by H(2)O(2). VIP decreased NADPH oxidase activity, which was abolished by PKA inhibitor H89. These results suggested that VIP affected the mechanism of ROS production including NADPH oxidase through induction of a cAMP/PKA pathway. In conclusion, VIP reduces oxidative stress in acini through the inhibition of NADPH oxidase. These results combined with findings of our previous study suggest that VIP exerts its protective effect in pancreatic damage, not only through an inhibition of cytokine production, but also through a reduction of the injury caused by oxidative stress.
Collapse
Affiliation(s)
- Nao Fujimori
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Booth DM, Murphy JA, Mukherjee R, Awais M, Neoptolemos JP, Gerasimenko OV, Tepikin AV, Petersen OH, Sutton R, Criddle DN. Reactive oxygen species induced by bile acid induce apoptosis and protect against necrosis in pancreatic acinar cells. Gastroenterology 2011; 140:2116-25. [PMID: 21354148 DOI: 10.1053/j.gastro.2011.02.054] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 01/14/2011] [Accepted: 02/14/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Oxidative stress is implicated in the pathogenesis of pancreatitis, but clinical trials of antioxidants have produced conflicting results. We examined the role of intracellular reactive oxygen species (ROS) in pancreatic acinar cell injury. METHODS Freshly isolated murine and human pancreatic acinar cells were studied using confocal microscopy to measure changes in intracellular and mitochondrial ROS concentrations ([ROS]I and [ROS]M), cytosolic and mitochondrial calcium concentrations ([Ca2+]C and [Ca2+]M), reduced nicotinamide adenine dinucleotide phosphate levels, and death pathways in response to taurolithocholate acid sulfate (TLC-S) or the oxidant menadione. Ca2+-activated Cl- currents were measured using whole-cell patch clamp, with or without adenosine triphosphate (ATP). RESULTS TLC-S induced prolonged increases in [Ca2+]C and [Ca2+]M, which led to dose-dependent increases in [ROS]I and [ROS]M, impaired production of ATP, apoptosis, and necrosis. Inhibition of the antioxidant reduced nicotinamide adenine dinucleotide phosphate quinine oxidoreductase by 2,4-dimethoxy-2-methylnaphthalene potentiated the increases in [ROS]I and apoptosis but reduced necrosis, whereas the antioxidant N-acetyl-L-cysteine reduced [ROS]I and apoptosis but increased necrosis. Inhibition of mitochondrial ROS production prevented apoptosis but did not alter necrosis; autophagy had no detectable role. Patched ATP prevented sustained increases in [Ca2+]C and necrosis. CONCLUSIONS Increases in [ROS]M and [ROS]I during bile acid injury of pancreatic acinar cells promote apoptosis but not necrosis. These results indicate that alternative strategies to antioxidants are required for oxidative stress in acute pancreatitis.
Collapse
Affiliation(s)
- David M Booth
- Physiological Laboratory, University of Liverpool, National Institute for Health Research Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Liverpool
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cho SO, Lim JW, Kim KH, Kim H. Diphenyleneiodonium inhibits the activation of mitogen-activated protein kinases and the expression of monocyte chemoattractant protein-1 in Helicobacter pylori-infected gastric epithelial AGS cells. Inflamm Res 2010; 60:501-7. [PMID: 21181544 DOI: 10.1007/s00011-010-0297-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/13/2010] [Accepted: 12/02/2010] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To investigate whether NADPH oxidase induces MCP-1 expression and the activation of mitogen-activated protein kinases (MAPKs) in H. pylori-infected gastric epithelial cells. MATERIAL H. pylori in Korean isolates, human gastric epithelial AGS cells TREATMENT AGS cells pretreated with or without an NADPH oxidase inhibitor diphenyleneiodonium (DPI) are cultured in the presence of H. pylori at a bacterium/cell ratio of 300:1. METHODS Reactive oxygen species (ROS) and MCP-1 were determined by confocal microscopy and enzyme-linked immonosorbent assay. NADPH oxidase activity was measured by lucigenin assay. mRNA expression of MCP-1 was analyzed by reverse transcription-polymerase chain reaction. Levels of MAPKs were assessed by Western blot analysis. RESULTS H. pylori induced increase in ROS, NADPH oxidase activity, MCP-1 expression, and the activation of MAPKs including extracellular signal-regulated kinases, p38, and jun N-terminal kinases in AGS cells, which was inhibited by DPI. CONCLUSION Inhibiting NADPH oxidase by DPI suppresses H. pylori-induced activation of MAPKs and MCP-1 expression in AGS cells.
Collapse
Affiliation(s)
- Soon Ok Cho
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, Korea
| | | | | | | |
Collapse
|
17
|
Kang M, Park KS, Seo JY, Kim H. Lycopene inhibits IL-6 expression in cerulein-stimulated pancreatic acinar cells. GENES AND NUTRITION 2010; 6:117-23. [PMID: 21484151 DOI: 10.1007/s12263-010-0195-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 11/20/2010] [Indexed: 12/29/2022]
Abstract
Reactive oxygen species (ROS) are known to be involved in the pathogenesis of acute and chronic pancreatitis. The cholecystokinin (CCK) analog cerulein causes pathophysiological, morphological, and biochemical events similar to those observed in human acute pancreatitis. The oxidant-sensitive transcription factor NF-κB plays a critical role in the development of cerulein pancreatitis by regulating the expression of pro-inflammatory cytokines in the pancreas. Lycopene has an anti-oxidant effect in various cells. In the present study, we investigated whether cerulein induces NF-κB activation and IL-6 expression in pancreatic acinar cells and whether lycopene inhibits these events. NF-κB-DNA-binding activity was determined by electrophoretic mobility shift assay, and mRNA expression was analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and real-time RT-PCR analyses. The IL-6 concentration in the medium was determined by enzyme-linked immunosorbent assay. Our results showed that cerulein induced IL-6 expression in a time-dependent manner. NF-κB-DNA-binding activity and intracellular levels of ROS in pancreatic acinar cells were increased by cerulein. Lycopene inhibited the cerulein-induced increase in intracellular ROS, NF-κB activation, and IL-6 expression in pancreatic acinar cells in a dose-dependent manner. In conclusion, lycopene may be beneficial in the prevention and/or treatment of acute pancreatitis by inhibiting the activation of NF-κB and the expression of inflammatory cytokines through reduction in intracellular levels of ROS in pancreatic acinar cells.
Collapse
Affiliation(s)
- Miran Kang
- Department of Food and Nutrition, Brain Korea 21 Project, College of Human Ecology, Yonsei University, Seoul, 120-749, Korea
| | | | | | | |
Collapse
|
18
|
Gonzalez C, Agapito MT, Rocher A, Gomez-Niño A, Rigual R, Castañeda J, Conde SV, Obeso A. A revisit to O2 sensing and transduction in the carotid body chemoreceptors in the context of reactive oxygen species biology. Respir Physiol Neurobiol 2010; 174:317-30. [PMID: 20833275 DOI: 10.1016/j.resp.2010.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 11/25/2022]
Abstract
Oxygen-sensing and transduction in purposeful responses in cells and organisms is of great physiological and medical interest. All animals, including humans, encounter in their lifespan many situations in which oxygen availability might be insufficient, whether acutely or chronically, physiologically or pathologically. Therefore to trace at the molecular level the sequence of events or steps connecting the oxygen deficit with the cell responses is of interest in itself as an achievement of science. In addition, it is also of great medical interest as such knowledge might facilitate the therapeutical approach to patients and to design strategies to minimize hypoxic damage. In our article we define the concepts of sensors and transducers, the steps of the hypoxic transduction cascade in the carotid body chemoreceptor cells and also discuss current models of oxygen- sensing (bioenergetic, biosynthetic and conformational) with their supportive and unsupportive data from updated literature. We envision oxygen-sensing in carotid body chemoreceptor cells as a process initiated at the level of plasma membrane and performed by a hemoprotein, which might be NOX4 or a hemoprotein not yet chemically identified. Upon oxygen-desaturation, the sensor would experience conformational changes allosterically transmitted to oxygen regulated K+ channels, the initial effectors in the transduction cascade. A decrease in their opening probability would produce cell depolarization, activation of voltage dependent calcium channels and release of neurotransmitters. Neurotransmitters would activate the nerve endings of the carotid body sensory nerve to convey the information of the hypoxic situation to the central nervous system that would command ventilation to fight hypoxia.
Collapse
Affiliation(s)
- C Gonzalez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular y CIBER de Enfermedades Respiratorias, Universidad de Valladolid, Consejo Superior de Investigaciones Científicas e Instituto Carlos III, Facultad de Medicina, 47005 Valladolid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lee J, Seo JH, Lim JW, Kim H. Membrane proteome analysis of cerulein-stimulated pancreatic acinar cells: implication for early event of acute pancreatitis. Gut Liver 2010; 4:84-93. [PMID: 20479917 DOI: 10.5009/gnl.2010.4.1.84] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 02/15/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIMS Cerulein pancreatitis is similar to human edematous pancreatitis with dysregulation of the production and secretion of digestive enzymes, edema formation, cytoplasmic vacuolization and the death of acinar cells. We hypothesized that membrane proteins may be altered as the early event during the induction of acute pancreatitis. Present study aims to determine the differentially expressed proteins in the membranes of cerulein-treated pancreatic acinar cells. METHODS Pancreatic acinar AR42J cells were treated with 10(-8) M cerulein for 1 hour. Membrane proteins were isolated from the cells and separated by two-dimensional electrophoresis using pH gradients of 5-8. Membrane proteins were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of the peptide digests. The differentially expressed proteins, whose expression levels were more or less than three-fold in cerulein-treated cells, were analyzed. RESULTS Two differentially expressed proteins (mannan-binding lectin-associated serine protease-2, heat shock protein 60) were up-regulated while four proteins (protein disulfide isomerase, gamma-actin, isocitrate dehydrogenase 3, seven in absentia homolog 1A) were down-regulated by cerulein treatment in pancreatic acinar cells. These proteins are related to cell signaling, oxidative stress, and cytoskeleton arrangement. CONCLUSIONS Oxidative stress may induce cerulein-induced cell injury and disturbances in defense mechanism in pancreatic acinar cells.
Collapse
Affiliation(s)
- Jangwon Lee
- Department of Biotechnology, Brain Korea 21 Project, The Catholic University of Korea, Bucheon, Korea
| | | | | | | |
Collapse
|
20
|
Abstract
Severe acute pancreatitis (SAP) is a systemic disease that can induce many complications such as multiple organ dysfunction syndrome and cause a high mortality rate. Because of the complicated pathogenesis of SAP, a comprehensive treatment program involving internal medicine, surgery, endoscopic intervention, Chinese traditional medicine and biological treatment, is needed. This article reviews the recent advances in management of SAP.
Collapse
|
21
|
Influence of membrane fatty acid composition on cell viability and lipid peroxidation in a cell model (AR42J) of cerulein-induced acute pancreatitis. Proc Nutr Soc 2010. [DOI: 10.1017/s0029665110001023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Abstract
Reactive oxygen species (ROS) were seen as destructive molecules, but recently, they have been shown also to act as second messengers in varying intracellular signaling pathways. This review concentrates on hydrogen peroxide (H2O2), as it is a more stable ROS, and delineates its role as a survival molecule. In the first part, the production of H2O2 through the NADPH oxidase (Nox) family is investigated. Through careful examination of Nox proteins and their regulation, it is determined how they respond to stress and how this can be prosurvival rather than prodeath. The pathways on which H2O2 acts to enable its prosurvival function are then examined in greater detail. The main survival pathways are kinase driven, and oxidation of cysteines in the active sites of various phosphatases can thus regulate those survival pathways. Regulation of transcription factors such as p53, NF-kappaB, and AP-1 also are reviewed. Finally, prodeath proteins such as caspases could be directly inhibited through their cysteine residues. A better understanding of the prosurvival role of H2O2 in cells, from the why and how it is generated to the various molecules it can affect, will allow more precise targeting of therapeutics to this pathway.
Collapse
Affiliation(s)
- Gillian Groeger
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork , Cork, Ireland
| | | | | |
Collapse
|
23
|
Chan YC, Leung PS. Involvement of redox-sensitive extracellular-regulated kinases in angiotensin II-induced interleukin-6 expression in pancreatic acinar cells. J Pharmacol Exp Ther 2009; 329:450-8. [PMID: 19211919 DOI: 10.1124/jpet.108.148353] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Angiotensin II has been shown to play a role in the pathogenesis of acute pancreatitis (AP). The present investigation aimed at elucidating redox-sensitive mechanistic pathway involved in proinflammatory actions of angiotensin II during an episode of AP; in particular, the regulation of expression of cytokine interleukin (IL)-6. Exogenous angiotensin II induced IL-6 expression, activation of extracellular-regulated kinase (ERK) 1/2, and superoxide generation in pancreatic acinar cell line AR42J, which were reversed by the angiotensin II type 1 (AT(1)) receptor antagonist, losartan (2-butyl-4-chloro-1-[p-(o-1H-tetrazol-5-ylphenyl) benzyl] imidazole-5-methanol monopotassium salt, C(22)H(23)ClN(6)O). Pharmacological blockade of ERK1/2 improved angiotensin II-induced IL-6 expression. Moreover, angiotensin II-induced ERK1/2 activation was suppressed by antioxidant, indicating that redox-regulated ERK1/2 mediates the cytokine expression. cAMP-responsive element-binding protein (CREB) might be involved in ERK1/2-induced IL-6 expression because phosphorylation of CREB was observed after angiotensin II treatment, which was reversed by losartan and the ERK1/2 inhibitor. These results were in close agreement with the in vivo findings using an obstructive model of AP. Obstruction of the common biliopancreatic duct time-dependently enhanced angiotensinogen levels, which correlated well with superoxide generation, ERK1/2 and CREB phosphorylation, and subsequent IL-6 expression. It is more important that changes in these parameters were antagonized by prophylactic administration of losartan. These in vitro and in vivo results indicate that angiotensin II induces redox-regulated ERK1/2 and CREB activation, thus leading to IL-6 expression in an AT(1) receptor-mediated manner in pancreatic acinar cells during the pathogenesis of AP.
Collapse
Affiliation(s)
- Yuk Cheung Chan
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | | |
Collapse
|
24
|
Shi XL, Chen K, Wang H, Long YM. Advance in acute pancreatitis apoptosis mechanisms. Shijie Huaren Xiaohua Zazhi 2009; 17:594-597. [DOI: 10.11569/wcjd.v17.i6.594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is a common critical illness in clinic. Its pathogenesis is complex. Previous studies concentrated on inflammatory factors, oxidative stress, microcirculation disturbance, etc. Recently, apoptosis has been found to play an important role in emergence and development of acute pancreatitis. Apoptosis is involved in tissue injury in acute pancreatitis, but is also an important self-protection mechanism. This review briefed the relation between apoptosis and acute pancreatitis, investigated the influence of apoptosis on acute pancreatitic organ damage, and analyzed the relation between apoptosis and inflammatory cytokines, oxidative stress, endoplasmic reticulum stress, Notch factor, aiming at revealing the mechanism of apoptosis in acute pancreatitis.
Collapse
|
25
|
Abstract
Reactive oxygen and reactive nitrogen species (ROS/RNS) have been implicated in the pathogenesis of acute and chronic pancreatitis. Clinical and basic science studies have indicated that ROS/RNS formation processes are intimately linked to the development of the inflammatory disorders. The detrimental effects of highly reactive ROS/RNS are mediated by their direct actions on biomolecules (lipids, proteins, and nucleic acids) and activation of proinflammatory signal cascades, which subsequently lead to activation of immune responses. The present article summarizes the possible sources of ROS/RNS formation and the detailed signaling cascades implicated in the pathogenesis of pancreatic inflammation, as observed in acute and chronic pancreatitis. A therapeutic ROS/RNS-scavenging strategy has been advocated for decades; however, clinical studies examining such approaches have been inconsistent in their results. Emerging evidence indicates that pancreatitis-inducing ROS/RNS generation may be attenuated by targeting ROS/RNS-generating enzymes and upstream mediators.
Collapse
Affiliation(s)
- Po Sing Leung
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | | |
Collapse
|
26
|
Imoto H, Sasaki N, Iwase M, Nakamura U, Oku M, Sonoki K, Uchizono Y, Iida M. Impaired insulin secretion by diphenyleneiodium associated with perturbation of cytosolic Ca2+ dynamics in pancreatic beta-cells. Endocrinology 2008; 149:5391-400. [PMID: 18617620 DOI: 10.1210/en.2008-0186] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pancreatic islets express the superoxide-producing nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system, but its role remains unknown. To address this, we studied the mechanisms of impaired insulin secretion induced by diphenyleneiodium (DPI), an NADPH oxidase inhibitor. We investigated the effects of DPI on glucose- and nonfuel-stimulated insulin secretion, islet glucose metabolism, and intracellular Ca2+ concentration ([Ca2+]i) dynamics in rat islets and beta-cell line RINm5F cells. DPI did not affect insulin secretion at 3.3 mm glucose but totally suppressed insulin secretion stimulated by 16.7 mm glucose (percentage of control, 9.2 +/- 1.2%; P <0.001). DPI also inhibited insulin release by high K+-induced membrane depolarization (percentage of control, 36.0 +/- 5.3%; P <0.01) and protein kinase C activation (percentage of control, 30.2 +/- 10.6% in the presence of extracellular Ca2+, P <0.01; percentage of control, 42.0 +/- 4.7% in the absence of extracellular Ca2+, P <0.01). However, DPI had no effect on mastoparan-induced insulin secretion at 3.3 and 16.7 mm glucose under Ca2+-free conditions. DPI significantly suppressed islet glucose oxidation and ATP content through its known inhibitory action on complex I in the mitochondrial respiratory chain. On the other hand, DPI altered [Ca2+]i dynamics in response to high glucose and membrane depolarization, and DPI per se dose-dependently increased [Ca2+]i. The DPI-induced [Ca2+]i rise was associated with a transient increase in insulin secretion and was attenuated by removal of extracellular Ca2+, by L-type voltage-dependent Ca2+ channel blockers, by mitochondrial inhibitors, or by addition of 0.1 or 1.0 microm H2O2 exogenously. Our results showed that DPI impairment of insulin secretion involved altered Ca2+ signaling, suggesting that NADPH oxidase may modulate Ca2+ signaling in beta-cells.
Collapse
Affiliation(s)
- Hirofumi Imoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lambeth JD, Krause KH, Clark RA. NOX enzymes as novel targets for drug development. Semin Immunopathol 2008; 30:339-63. [PMID: 18509646 DOI: 10.1007/s00281-008-0123-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 04/25/2008] [Indexed: 02/07/2023]
Abstract
The members of the NOX/DUOX family of NADPH oxidases mediate such physiologic functions as host defense, cell signaling, and thyroid hormone biosynthesis through the generation of reactive oxygen species (ROS), including superoxide anion and hydrogen peroxide. Moreover, ROS are involved in a broad range of fundamental biochemical and cellular processes, and data accumulated in recent years indicate that the NOX enzymes comprise one of the most important biological sources of ROS. Given the high biochemical reactivity of ROS, it is not surprising that they have been implicated in a wide variety of pathologies and diseases. Prominent among the settings that feature ROS-mediated tissue injury are disorders associated with inflammation, aging, and progressive degenerative changes in cells and organ systems, and it appears that essentially no organ system is exempt. Among the disorders currently believed to be mediated at least in part by NOX-derived ROS are hypertension, aortic aneurysm, myocardial infarction (and other ischemia-reperfusion disorders), pulmonary fibrosis and hypertension, amyotropic lateral sclerosis, Alzheimer's disease, Parkinson's disease, ischemic stroke, diabetic nephropathy, and renal cell carcinoma. Several small-molecule and peptide inhibitors of the NOX enzymes have been useful in experimental studies, but issues of specificity, potency, and toxicity militate against any of the existing published compounds as candidates for drug development. Given the broad array of disease targets documented in recent work, the time is here for vigorous efforts to develop clinically useful inhibitors of the NOX enzymes. As most (though not all) NOX-related diseases appear to be mediated by a single member of the NOX family, agents with isoform specificity will be preferred, although broadly active NOX inhibitors may prove to be useful in some settings.
Collapse
|
28
|
Sirker A, Zhang M, Murdoch C, Shah AM. Involvement of NADPH oxidases in cardiac remodelling and heart failure. Am J Nephrol 2007; 27:649-60. [PMID: 17901689 DOI: 10.1159/000109148] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 08/17/2007] [Indexed: 01/08/2023]
Abstract
Cardiac remodelling occurs in response to stress, such as chronic hypertension or myocardial infarction, and forms the substrate for subsequent development of heart failure. Key pathophysiological features include ventricular hypertrophy, interstitial fibrosis, contractile dysfunction, and chamber dilatation. Although the molecular mechanisms are complex and not fully defined, substantial evidence now implicates increased oxidative stress as being important. The NADPH oxidase ('Nox') enzymes are a particularly important source of reactive oxygen species that are implicated in redox signalling. This article reviews the evidence for an involvement of NADPH oxidases in different aspects of adverse cardiac remodelling. A better understanding of the roles of this complex enzyme family may define novel therapeutic targets for the prevention of heart failure.
Collapse
Affiliation(s)
- Alexander Sirker
- Cardiovascular Division, Department of Cardiology, King's College London School of Medicine, London, UK
| | | | | | | |
Collapse
|