1
|
Falsaperla R, Sapuppo A, Pappalardo XG, Rizzo R, Rocca R, Fusto G, Marino S, Sortino V, Saccuzzo L, Ruggieri M, Fichera M. PPP5C pathogenic variant identified: a potential key to gaining insight into developmental and epileptic encephalopathy? Mol Cell Pediatr 2025; 12:3. [PMID: 40172746 PMCID: PMC11965066 DOI: 10.1186/s40348-025-00191-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/11/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Emerging evidence suggesting a possible link between the PPP5C gene (protein phosphatase 5 catalytic subunit; OMIM#600658) and developmental and epileptic encephalopathy (DEE, OMIM#308350), although the clinical significance of pathogenic variants in this gene remains unclear. PPP5C is a member of the protein phosphatase catalytic subunit family, which is involved in various signaling pathways governing cell growth, differentiation, and responses to hormonal signals or cellular stress. To date, only one case with a PPP5C variant has been reported, associated with a severe neurological phenotype, including microcephaly, failure to thrive, and early-onset seizures. RESULTS We report a 12-year-old girl affected by epilepsy and learning disorders. At the age of five, she presented convulsive status epilepticus with respiratory failure at onset and she started anticonvulsant therapy with Levetiracetam with a significant improvement. Genetic analysis revealed a de novo heterozygous missense variant of PPP5C gene (c.202 C > T: p.Arg68Cys), which had not been previously described in the literature. CONCLUSION This case expands the phenotypic spectrum associated with PPP5C variants, highlighting the potential role of this gene inneurological disorders. Our findings may provide some valuable insights into the spectrum of phenotypic manifestations linked to this gene less investigated in neuropediatrics.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Department of Medical Science-Pediatrics, University of Ferrara, Ferrara, 44124, Italy
| | - Annamaria Sapuppo
- Unit of Pediatrics and Pediatric Emergency Department, Azienda Ospedaliero-Universitaria Policlinico "Rodolico-San Marco", San Marco Hospital, Catania, 95121, Italy.
| | - Xena Giada Pappalardo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, 95123, Italy
- National Council of Research, Institute for Research and Biomedical Innovation (IRIB), Unit of Catania, Catania, 95126, Italy
| | - Roberta Rizzo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, 95123, Italy
| | - Roberta Rocca
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy
| | - Gaia Fusto
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, 95123, Italy
| | - Silvia Marino
- Unit of Pediatrics and Pediatric Emergency Department, Azienda Ospedaliero-Universitaria Policlinico "Rodolico-San Marco", San Marco Hospital, Catania, 95121, Italy
| | - Vincenzo Sortino
- Unit of Pediatrics and Pediatric Emergency Department, Azienda Ospedaliero-Universitaria Policlinico "Rodolico-San Marco", San Marco Hospital, Catania, 95121, Italy
| | - Lucia Saccuzzo
- Department of Biomedical and Biotechnological Sciences, Section of Clinical Biochemistry and Medical Genetics, University of Catania, via Santa Sofia, Catania, 95123, Italy
| | - Martino Ruggieri
- Unit of Pediatric Clinic, Department of Clinica and Experimental Medicine, University of Catania, Catania, Italy
| | - Marco Fichera
- Department of Biomedical and Biotechnological Sciences, Section of Clinical Biochemistry and Medical Genetics, University of Catania, via Santa Sofia, Catania, 95123, Italy
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, via Conte Ruggero 73, Troina, 94018, Italy
| |
Collapse
|
2
|
Pokhrel S, Devi S, Gestwicki JE. Chaperone-dependent and chaperone-independent functions of carboxylate clamp tetratricopeptide repeat (CC-TPR) proteins. Trends Biochem Sci 2025; 50:121-133. [PMID: 39706778 PMCID: PMC12066812 DOI: 10.1016/j.tibs.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/23/2024]
Abstract
The molecular chaperones HSP70 and HSP90 play key roles in proteostasis by acting as adapters; they bind to a 'client' protein, often with the assistance of cochaperones, and then recruit additional cochaperones that promote specific fates (e.g., folding or degradation). One family of cochaperones contains a region termed the tetratricopeptide repeat with carboxylate clamps (CC-TPRs) domain. These domains bind to an EEVD motif at the C-termini of cytoplasmic HSP70 and HSP90 proteins, bringing them into proximity to chaperone-bound clients. It has recently become clear that CC-TPR proteins also bind to 'EEVD-like' motifs in non-chaperone proteins, circumventing the need for HSP70s or HSP90s. We provide an overview of the chaperone-dependent and -independent roles of CC-TPR proteins and discuss how, together, they shape proteostasis.
Collapse
Affiliation(s)
- Saugat Pokhrel
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Shweta Devi
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco (UCSF), San Francisco, CA 94158, USA.
| |
Collapse
|
3
|
Ji W, Zheng B, Zhang A. Research progress of the relationship between phosphoprotein phosphatases (PPPs) and neurodevelopmental disorders. Clin Genet 2024; 106:679-692. [PMID: 39300798 DOI: 10.1111/cge.14617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024]
Abstract
Reversible protein phosphorylation is a ubiquitous phenomenon essential for eukaryotic cellular processes. Recent advancements in research about neurodevelopmental disorders have prompted investigations into the intricate relationship between protein phosphatases, particularly phosphoprotein phosphatases (PPPs), and neurodevelopment. Notably, variants in 10 coding genes spanning four PPP family members have been implicated in neurodevelopmental disorders. Here, we provide a comprehensive overview of the clinical phenotypes, genotypes, and pathogenic mechanisms observed in affected patients. Our analysis reveals challenges in subsequent statistical analyses due to inconsistent clinical phenotypic descriptions and a lack of large multicenter studies, hampering analysis about genotype-phenotype correlations. The scarcity of follow-up data poses a significant obstacle to prognostic counseling for nearly all rare diseases. Presently, symptomatic treatment strategies are employed for patients with variants, as definitive cures remain elusive. Future research may explore protein phosphatase regulators as potential therapeutic targets. Furthermore, it is imperative not to overlook other members of the protein phosphatase family or coding genes with undiscovered variants. Insights gleaned from the temporal and spatial distribution of proteins, along with observations from animal model phenotypes, may provide valuable directions for uncovering novel pathogenic genes.
Collapse
Affiliation(s)
- Wenya Ji
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Sager RA, Backe SJ, Dunn DM, Heritz JA, Ahanin E, Dushukyan N, Panaretou B, Bratslavsky G, Woodford MR, Bourboulia D, Mollapour M. SUMOylation of protein phosphatase 5 regulates phosphatase activity and substrate release. EMBO Rep 2024; 25:4636-4654. [PMID: 39304777 PMCID: PMC11549447 DOI: 10.1038/s44319-024-00250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
The serine/threonine protein phosphatase 5 (PP5) regulates hormone and stress-induced signaling networks. Unlike other phosphoprotein phosphatases, PP5 contains both regulatory and catalytic domains and is further regulated through post-translational modifications (PTMs). Here we identify that SUMOylation of K430 in the catalytic domain of PP5 regulates phosphatase activity. Additionally, phosphorylation of PP5-T362 is pre-requisite for SUMOylation, suggesting the ordered addition of PTMs regulates PP5 function in cells. Using the glucocorticoid receptor, a well known substrate for PP5, we demonstrate that SUMOylation results in substrate release from PP5. We harness this information to create a non-SUMOylatable K430R mutant as a 'substrate trap' and globally identified novel PP5 substrate candidates. Lastly, we generated a consensus dephosphorylation motif using known substrates, and verified its presence in the new candidate substrates. This study unravels the impact of cross talk of SUMOylation and phosphorylation on PP5 phosphatase activity and substrate release in cells.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Diana M Dunn
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Jennifer A Heritz
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Natela Dushukyan
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Barry Panaretou
- School of Cancer and Pharmaceutical Sciences, Institute of Pharmaceutical Science, King's College London, London, SE1 9NQ, UK
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
| |
Collapse
|
5
|
Wang Y, He Y, You Q, Wang L. Design of bifunctional molecules to accelerate post-translational modifications: achievements and challenges. Drug Discov Today 2024; 29:104194. [PMID: 39343161 DOI: 10.1016/j.drudis.2024.104194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Post-translational modifications (PTMs) of proteins are crucial for regulating biological processes and their dysregulation is linked to various diseases, highlighting PTM regulation as a significant target for drug development. Traditional drug targets often interact with multiple proteins, resulting in lower selectivity and inevitable adverse effects, which limits their clinical applicability. Recent advancements in bifunctional molecules, such as proteolysis-targeting chimeras (PROTACs), have shown promise in targeting PTMs precisely. However, regulatory mechanisms for many of the >600 known PTMs remain underexplored. This review examines current progress and challenges in designing bifunctional molecules for PTM regulation, focusing on effector selection and ligand design strategies, aiming to propel the utilization and advancement of bifunctional molecules to the forefront of PTM research.
Collapse
Affiliation(s)
- Yuxuan Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yanyi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Koll R, Theilen J, Hauten E, Woodhouse JN, Thiel R, Möllmann C, Fabrizius A. Network-based integration of omics, physiological and environmental data in real-world Elbe estuarine Zander. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173656. [PMID: 38830414 DOI: 10.1016/j.scitotenv.2024.173656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
Coastal and estuarine environments are under endogenic and exogenic pressures jeopardizing survival and diversity of inhabiting biota. Information of possible synergistic effects of multiple (a)biotic stressors and holobiont interaction are largely missing in estuaries like the Elbe but are of importance to estimate unforeseen effects on animals' physiology. Here, we seek to leverage host-transcriptional RNA-seq and gill mucus microbial 16S rRNA metabarcoding data coupled with physiological and abiotic measurements in a network analysis approach to decipher the impact of multiple stressors on the health of juvenile Sander lucioperca along one of the largest European estuaries. We find mesohaline areas characterized by gill tissue specific transcriptional responses matching osmosensing and tissue remodeling. Liver transcriptomes instead emphasized that zander from highly turbid areas were undergoing starvation which was supported by compromised body condition. Potential pathogenic bacteria, including Shewanella, Acinetobacter, Aeromonas and Chryseobacterium, dominated the gill microbiome along the freshwater transition and oxygen minimum zone. Their occurrence coincided with a strong adaptive and innate transcriptional immune response in host gill and enhanced energy demand in liver tissue supporting their potential pathogenicity. Taken together, we show physiological responses of a fish species and its microbiome to abiotic factors whose impact is expected to increase with consequences of climate change. We further present a method for the close-meshed detection of the main stressors and bacterial species with disease potential in a highly productive ecosystem.
Collapse
Affiliation(s)
- Raphael Koll
- University of Hamburg, Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology, Germany.
| | - Jesse Theilen
- University of Hamburg, Department of Biology, Biodiversity Research, Germany
| | - Elena Hauten
- University of Hamburg, Institute of Marine Ecosystem and Fishery Science, Marine ecosystem dynamics, Germany
| | - Jason Nicholas Woodhouse
- University of Hamburg, Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology, Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Microbial and phytoplankton Ecology, Germany
| | - Ralf Thiel
- Leibniz Institute for the Analysis of Biodiversity Change (LIB) - Hamburg site, Centre for Taxonomy & Morphology, Zoological Museum, Germany; University of Hamburg, Department of Biology, Biodiversity Research, Germany
| | - Christian Möllmann
- University of Hamburg, Institute of Marine Ecosystem and Fishery Science, Marine ecosystem dynamics, Germany
| | - Andrej Fabrizius
- University of Hamburg, Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology, Germany
| |
Collapse
|
7
|
Kalafateli M, Aggeletopoulou I, Triantos C. Adrenal insufficiency in liver diseases - pathophysiology and underlying mechanisms. Rev Endocr Metab Disord 2024; 25:663-676. [PMID: 38305832 DOI: 10.1007/s11154-024-09874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Relative adrenal insufficiency (RAI) is common in critically ill patients with cirrhosis, but it has been also documented in non-critically ill patients. Its pathophysiology is complex and not well understood yet. In this review, we aimed to present potential mechanisms and causal pathways implicated in the pathogenesis of RAI in cirrhosis. There is accumulating evidence supporting a suboptimal baseline adrenal function in cirrhosis mainly due to decreased cortisol synthesis and metabolism rates from the adrenal gland. Apart from this peripheral impairment, more recent studies suggest that there is a greater defect in the central stimulation of the hypothalamic-pituitary-adrenal (HPA) axis (hypothalamus/pituitary gland). Pro-inflammatory mediators, which are elevated in cirrhosis, have been also implicated through suppression of the HPA axis, decrease in cortisol synthesis and tissue glucocorticoid resistance. All abovementioned support the hepatoadrenal syndrome hypothesis that during episodes of acute decompensation there is suboptimal adrenocortical response that leads to worse outcomes. In conclusion, the complex pathophysiology of adrenal dysfunction in cirrhosis has not been fully elucidated yet and further research is needed in order to better understand this rather common entity in cirrhosis.
Collapse
Affiliation(s)
- Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, 26332, Patras, Greece
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504, Patras, Greece
- Laboratory of Immunohematology, Department of Internal Medicine, Medical School, University of Patras, 26504, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504, Patras, Greece.
| |
Collapse
|
8
|
Hassan M, Yasir M, Shahzadi S, Chun W, Kloczkowski A. Molecular Role of Protein Phosphatases in Alzheimer's and Other Neurodegenerative Diseases. Biomedicines 2024; 12:1097. [PMID: 38791058 PMCID: PMC11117500 DOI: 10.3390/biomedicines12051097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Alzheimer's disease (AD) is distinguished by the gradual loss of cognitive function, which is associated with neuronal loss and death. Accumulating evidence supports that protein phosphatases (PPs; PP1, PP2A, PP2B, PP4, PP5, PP6, and PP7) are directly linked with amyloid beta (Aβ) as well as the formation of the neurofibrillary tangles (NFTs) causing AD. Published data reported lower PP1 and PP2A activity in both gray and white matters in AD brains than in the controls, which clearly shows that dysfunctional phosphatases play a significant role in AD. Moreover, PP2A is also a major causing factor of AD through the deregulation of the tau protein. Here, we review recent advances on the role of protein phosphatases in the pathology of AD and other neurodegenerative diseases. A better understanding of this problem may lead to the development of phosphatase-targeted therapies for neurodegenerative disorders in the near future.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
10
|
Wang L, Feng J, Feng X, Meng D, Zhao X, Wang J, Yu P, Xu GE, Hu M, Wang T, Lehmann HI, Li G, Sluijter JPG, Xiao J. Exercise-induced circular RNA circUtrn is required for cardiac physiological hypertrophy and prevents myocardial ischaemia-reperfusion injury. Cardiovasc Res 2023; 119:2638-2652. [PMID: 37897547 DOI: 10.1093/cvr/cvad161] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 10/30/2023] Open
Abstract
AIMS Regular exercise training benefits cardiovascular health and effectively reduces the risk for cardiovascular disease. Circular RNAs (circRNAs) play important roles in cardiac pathophysiology. However, the role of circRNAs in response to exercise training and biological mechanisms responsible for exercise-induced cardiac protection remain largely unknown. METHODS AND RESULTS RNA sequencing was used to profile circRNA expression in adult mouse cardiomyocytes that were isolated from mice with or without exercise training. Exercise-induced circRNA circUtrn was significantly increased in swimming-trained adult mouse cardiomyocytes. In vivo, circUtrn was found to be required for exercise-induced physiological cardiac hypertrophy. circUtrn inhibition abolished the protective effects of exercise on myocardial ischaemia-reperfusion remodelling. circUtrn overexpression prevented myocardial ischaemia-reperfusion-induced acute injury and pathological cardiac remodelling. In vitro, overexpression of circUtrn promoted H9 human embryonic stem cell-induced cardiomyocyte growth and survival via protein phosphatase 5 (PP5). Mechanistically, circUtrn directly bound to PP5 and regulated the stability of PP5 in a ubiquitin-proteasome-dependent manner. Hypoxia-inducible factor 1α-dependent splicing factor SF3B1 acted as an upstream regulator of circUtrn in cardiomyocytes. CONCLUSION The circRNA circUtrn is upregulated upon exercise training in the heart. Overexpression of circUtrn can prevent myocardial I/R-induced injury and pathological cardiac remodelling.
Collapse
Affiliation(s)
- Lijun Wang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, 881 Yonghe Road, Chongchuan District, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai 200444, China
| | - Jingyi Feng
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, 881 Yonghe Road, Chongchuan District, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai 200444, China
| | - Xing Feng
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, 881 Yonghe Road, Chongchuan District, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai 200444, China
| | - Danni Meng
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, 881 Yonghe Road, Chongchuan District, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai 200444, China
| | - Xuan Zhao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, 881 Yonghe Road, Chongchuan District, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai 200444, China
| | - Jiaqi Wang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, 881 Yonghe Road, Chongchuan District, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai 200444, China
| | - Pujiao Yu
- Department of Cardiology, Shanghai Tongji hospital, Tongji University School of Medicine, 389 Xincun Road, Putuo District, Shanghai 200065, China
| | - Gui-E Xu
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, 881 Yonghe Road, Chongchuan District, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai 200444, China
| | - Meiyu Hu
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, 881 Yonghe Road, Chongchuan District, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai 200444, China
| | - Tianhui Wang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, 881 Yonghe Road, Chongchuan District, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai 200444, China
| | - H Immo Lehmann
- Cardiovascular Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht 3508GA, The Netherlands
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht 3508GA, The Netherlands
| | - Junjie Xiao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, 881 Yonghe Road, Chongchuan District, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai 200444, China
| |
Collapse
|
11
|
Yu GR, Kim JE, Lim DW, Park WH. The combination of Ephedrae herba and coixol from Coicis semen attenuate adiposity via glucocorticoid receptor regulation. Sci Rep 2023; 13:20324. [PMID: 37990123 PMCID: PMC10663538 DOI: 10.1038/s41598-023-47553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023] Open
Abstract
The enhanced therapeutic effects and mechanisms of certain herbal combination in various herbal prescriptions are mostly unclear. A combination of two herbs, namely Ephedrae herba (EH) and Coicis semen (CS), has been commonly prescribed for obesity. In our previous work, the combination of EH and CS was studied using network pharmacological approach to predict its pharmacological targets and in vitro experiments to evaluate its efficacy on obesity. Although we demonstrated enhanced anti-adiposity effects of the combination on matured adipocytes, the molecular mechanisms and contributing compounds underlying the effects of EH-CS combination on adiposity or adipogenesis were not fully elucidated. The current study adopted integrated bioinformatics analysis to precisely validate potential targets of EH-CS by screening differentially expressed genes (DEGs) of morbid obesity patients from NCBI gene expression omnibus (GEO). Based on the functional cluster analysis of down-regulated DEGs, the anti-adipogenesis mechanism of EH-CS combination was speculated with KEGG enrichment analysis. Furthermore, we investigated the combinational effects of EH and coixol, or stigmasterol, the two compounds in CS which were expected to have main beneficial effects in metabolic diseases. Moreover, distinct effect of the combination on transcriptional activity of glucocorticoid receptor (GR) was investigated using electrophoretic mobility shift assay (EMSA). The EH-CS combination was predicted to modulate down-regulated genes which are involved in KEGG pathways crucial to metabolic disease in morbidly obese individuals. The combination of EH with CS compounds significantly increased the phosphorylation of acetyl-coA carboxylase (ACC), AMP-activated protein kinase (AMPK), and protein kinase B (AKT) in 3T3-L1 cells and decreased intracellular lipid accumulation. The two CS compounds significantly increased the anti-adipogenesis/lipogenesis effects of EH by inhibiting the gene expression levels. Finally, the combination of EH and coixol inhibited dexamethasone-induced GR translocation to the nucleus and transcriptional binding activity in adipocytes. The combination of EH and CS could be considered a therapeutic strategy for treating metabolic diseases, including obesity.
Collapse
Affiliation(s)
- Ga-Ram Yu
- Department of Diagnostic, College of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea
| | - Jai-Eun Kim
- Department of Pathology, College of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea
| | - Dong-Woo Lim
- Department of Diagnostic, College of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea.
- Institute of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea.
| | - Won-Hwan Park
- Department of Diagnostic, College of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea.
| |
Collapse
|
12
|
Mazaira GI, Erlejman AG, Zgajnar NR, Piwien-Pilipuk G, Galigniana MD. The transportosome system as a model for the retrotransport of soluble proteins. Mol Cell Endocrinol 2023; 577:112047. [PMID: 37604241 DOI: 10.1016/j.mce.2023.112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
The classic model of action of the glucocorticoid receptor (GR) sustains that its associated heat-shock protein of 90-kDa (HSP90) favours the cytoplasmic retention of the unliganded GR, whereas the binding of steroid triggers the dissociation of HSP90 allowing the passive nuclear accumulation of GR. In recent years, it was described a molecular machinery called transportosome that is responsible for the active retrograde transport of GR. The transportosome heterocomplex includes a dimer of HSP90, the stabilizer co-chaperone p23, and FKBP52 (FK506-binding protein of 52-kDa), an immunophilin that binds dynein/dynactin motor proteins. The model shows that upon steroid binding, FKBP52 is recruited to the GR allowing its active retrograde transport on cytoskeletal tracks. Then, the entire GR heterocomplex translocates through the nuclear pore complex. The HSP90-based heterocomplex is released in the nucleoplasm followed by receptor dimerization. Subsequent findings demonstrated that the transportosome is also responsible for the retrotransport of other soluble proteins. Importantly, the disruption of this molecular oligomer leads to several diseases. In this article, we discuss the relevance of this transport machinery in health and disease.
Collapse
Affiliation(s)
- Gisela I Mazaira
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Buenos Aires, 1428, Argentina; Instituto de Química Biológica de la, Facultad de Ciencias Exactas y Naturales, CONICET, Buenos Aires, 1428, Argentina
| | - Alejandra G Erlejman
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Buenos Aires, 1428, Argentina; Instituto de Química Biológica de la, Facultad de Ciencias Exactas y Naturales, CONICET, Buenos Aires, 1428, Argentina
| | - Nadia R Zgajnar
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, 1428, Argentina
| | | | - Mario D Galigniana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Buenos Aires, 1428, Argentina; Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, 1428, Argentina.
| |
Collapse
|
13
|
González-Alvarez ME, Keating AF. Hepatic and ovarian effects of perfluorooctanoic acid exposure differ in lean and obese adult female mice. Toxicol Appl Pharmacol 2023; 474:116614. [PMID: 37422089 DOI: 10.1016/j.taap.2023.116614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Obesity and overweight cause poor oocyte quality, miscarriage, infertility, polycystic ovarian syndrome, and offspring birth defects and affects 40% and 20% of US women and girls, respectively. Perfluorooctanoic acid (PFOA), a per- and poly-fluoroalkyl substance (PFAS), is environmentally persistent and has negative female reproductive effects including endocrine disruption, oxidative stress, altered menstrual cyclicity, and decreased fertility in humans and animal models. PFAS exposure is associated with non-alcoholic fatty liver disease which affects ∼24-26% of the US population. This study investigated the hypothesis that PFOA exposure impacts hepatic and ovarian chemical biotransformation and alters the serum metabolome. At 7 weeks of age, female lean, wild type (KK.Cg-a/a) or obese (KK.Cg-Ay/J) mice received saline (C) or PFOA (2.5 mg/Kg) per os for 15 d. Hepatic weight was increased by PFOA exposure in both lean and obese mice (P < 0.05) and obesity also increased liver weight (P < 0.05) compared to lean mice. The serum metabolome was also altered (P < 0.05) by PFOA exposure and differed between lean and obese mice. Exposure to PFOA altered (P < 0.05) the abundance of ovarian proteins with roles in xenobiotic biotransformation (lean - 6; obese - 17), metabolism of fatty acids (lean - 3; obese - 9), cholesterol (lean - 8; obese - 11), amino acids (lean - 18; obese - 19), glucose (lean - 7; obese - 10), apoptosis (lean - 18; obese - 13), and oxidative stress (lean - 3; obese - 2). Use of qRT-PCR determined that exposure to PFOA increased (P < 0.05) hepatic Ces1 and Chst1 in lean but Ephx1 and Gstm3 in obese mice. Also, obesity basally increased (P < 0.05) Nat2, Gpi and Hsd17b2 mRNA levels. These data identify molecular changes resultant from PFOA exposure that may cause liver injury and ovotoxicity in females. In addition, differences in toxicity induced by PFOA exposure occurs in lean and obese mice.
Collapse
Affiliation(s)
- M Estefanía González-Alvarez
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, IA 50011, United States of America
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
14
|
Zhang H, Zhang Q, Tu J, You Q, Wang L. Dual function of protein phosphatase 5 (PPP5C): An emerging therapeutic target for drug discovery. Eur J Med Chem 2023; 254:115350. [PMID: 37054560 DOI: 10.1016/j.ejmech.2023.115350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Phosphorylation of proteins is reversibly controlled by the kinases and phosphatases in many posttranslational regulation patterns. Protein phosphatase 5 (PPP5C) is a serine/threonine protein phosphatase showing dual function by simultaneously exerting dephosphorylation and co-chaperone functions. Due to this special role, PPP5C was found to participate in many signal transductions related to various diseases. Abnormal expression of PPP5C results in cancers, obesity, and Alzheimer's disease, making it a potential drug target. However, the design of small molecules targeting PPP5C is struggling due to its special monomeric enzyme form and low basal activity by a self-inhibition mechanism. Through realizing the PPP5C's dual function as phosphatase and co-chaperone, more and more small molecules were found to regulate PPP5C with a different mechanism. This review aims to provide insights into PPP5C's dual function from structure to function, which could provide efficient design strategies for small molecules targeting PPP5C as therapeutic candidates.
Collapse
Affiliation(s)
- Hengheng Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiaqi Tu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
15
|
Plk4 Is a Novel Substrate of Protein Phosphatase 5. Int J Mol Sci 2023; 24:ijms24032033. [PMID: 36768356 PMCID: PMC9917060 DOI: 10.3390/ijms24032033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The conserved Ser/Thr protein phosphatase 5 (PP5) is involved in the regulation of key cellular processes, including DNA damage repair and cell division in eukaryotes. As a co-chaperone of Hsp90, PP5 has been shown to modulate the maturation and activity of numerous oncogenic kinases. Here, we identify a novel substrate of PP5, the Polo-like kinase 4 (Plk4), which is the master regulator of centriole duplication in animal cells. We show that PP5 specifically interacts with Plk4, and is able to dephosphorylate the kinase in vitro and in vivo, which affects the interaction of Plk4 with its partner proteins. In addition, we provide evidence that PP5 and Plk4 co-localize to the centrosomes in Drosophila embryos and cultured cells. We demonstrate that PP5 is not essential; the null mutant flies are viable without a severe mitotic phenotype; however, its loss significantly reduces the fertility of the animals. Our results suggest that PP5 is a novel regulator of the Plk4 kinase in Drosophila.
Collapse
|
16
|
Pacifico R, Del Gaudio N, Bove G, Altucci L, Siragusa L, Cruciani G, Ruvo M, Bellavita R, Grieco P, Adamo MFA. Discovery of a new class of triazole based inhibitors of acetyl transferase KAT2A. J Enzyme Inhib Med Chem 2022; 37:1987-1994. [PMID: 35880250 PMCID: PMC9331200 DOI: 10.1080/14756366.2022.2097447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We have recently developed a new synthetic methodology that provided both N-aryl-5-hydroxytriazoles and N-pyridine-4-alkyl triazoles. A selection of these products was carried through virtual screening towards targets that are contemporary and validated for drug discovery and development. This study determined a number of potential structure target dyads of which N-pyridinium-4-carboxylic-5-alkyl triazole displayed the highest score specificity towards KAT2A. Binding affinity tests of abovementioned triazole and related analogs towards KAT2A confirmed the predictions of the in-silico assay. Finally, we have run in vitro inhibition assays of selected triazoles towards KAT2A; the ensemble of binding and inhibition assays delivered pyridyl-triazoles carboxylates as the prototype of a new class of inhibitors of KAT2A.
Collapse
Affiliation(s)
- Roberta Pacifico
- Centre for Synthesis and Chemical Biology (CSCB), Department of Chemistry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nunzio Del Gaudio
- Department of precision medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Guglielmo Bove
- Department of precision medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Lucia Altucci
- Department of precision medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Gabriele Cruciani
- Laboratory for Chemometrics and Molecular Modeling, Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Rosa Bellavita
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Naples, Italy
| | - Paolo Grieco
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Naples, Italy
| | - Mauro F A Adamo
- Centre for Synthesis and Chemical Biology (CSCB), Department of Chemistry, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
17
|
Kokot T, Köhn M. Emerging insights into serine/threonine-specific phosphoprotein phosphatase function and selectivity. J Cell Sci 2022; 135:277104. [DOI: 10.1242/jcs.259618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
ABSTRACT
Protein phosphorylation on serine and threonine residues is a widely distributed post-translational modification on proteins that acts to regulate their function. Phosphoprotein phosphatases (PPPs) contribute significantly to a plethora of cellular functions through the accurate dephosphorylation of phosphorylated residues. Most PPPs accomplish their purpose through the formation of complex holoenzymes composed of a catalytic subunit with various regulatory subunits. PPP holoenzymes then bind and dephosphorylate substrates in a highly specific manner. Despite the high prevalence of PPPs and their important role for cellular function, their mechanisms of action in the cell are still not well understood. Nevertheless, substantial experimental advancements in (phospho-)proteomics, structural and computational biology have contributed significantly to a better understanding of PPP biology in recent years. This Review focuses on recent approaches and provides an overview of substantial new insights into the complex mechanism of PPP holoenzyme regulation and substrate selectivity.
Collapse
Affiliation(s)
- Thomas Kokot
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg 1 , Freiburg 79104 , Germany
- University of Freiburg, 2 Faculty of Biology , Freiburg 79104 , Germany
| | - Maja Köhn
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg 1 , Freiburg 79104 , Germany
- University of Freiburg, 2 Faculty of Biology , Freiburg 79104 , Germany
| |
Collapse
|
18
|
Huang J, Huang J, Husien HM, Peng W, Liu M, Bo R, Li J. Comparison of endogenous development, invasion ability and apoptotic features between diclazuril resistant and sensitive strains of Eimeria tenella. Vet Parasitol 2022; 305:109719. [PMID: 35597690 DOI: 10.1016/j.vetpar.2022.109719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/30/2022]
Abstract
Diclazuril (DIC) is widely used in the poultry industry to control coccidiosis. However, drug resistance makes it less effective, and the underlying mechanism remains unclear. One DIC-resistant E. tenella (RE) isolate and one sensitive E. tenella (SE) isolate were used to compare the differences in their endogenous development, pathogenicity, invasion-related gene expression and apoptotic characteristics. Chickens were allocated into four groups to receive RE or SE strain and their corresponding DIC treatment or not. Caeca tissues were sampled at 96 h, 120 h and 144 h post-infection (PI) for pathological analysis. Meanwhile, second-generation merozoites (Mz2) were separated at 120 h PI to detect alterations in mitochondrial membrane potential (MMP), apoptotic rate and caspase-3 activity and mRNA expression of protein phosphatase 5 (PP5), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), actin depolymerizing factor (ADF) and microneme proteins (MICs). Haematoxylin and eosin staining revealed that DIC treatment strictly blocked the development of the SE strain but slightly affected the RE strain. Meanwhile, the number of SE Mz2 and their MMP decreased at the same time the apoptotic rate increased after DIC treatment. Real-time quantitative PCR and caspase-3 activity studies demonstrated that Mz2 from the RE strain had higher mRNA expression of ADF and MICs along with no significant changes in GAPDH and caspase-3 activity under DIC pressure compared to its control; in contrast, the mRNA expression of ADF, MICs and PP5 was markedly suppressed in Mz2 from SE with upregulated caspase-3 activity and GAPDH transcription. In addition, the mRNA expression of GAPDH and PP5 in Mz2 from RE was remarkably higher than that of SE. Taken together, the higher mRNA expression of invasion-related genes and almost unaffected endogenous development provide a better understanding of coccidian resistance to DIC.
Collapse
Affiliation(s)
- Junjie Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Jie Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Hosam Mohamed Husien
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China; College of veterinary medicine, Albutana University, Sudan
| | - Weilong Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Mingjiang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Ruonan Bo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - JinGui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
19
|
Fielder SM, Rosenfeld JA, Burrage LC, Emrick L, Lalani S, Attali R, Bembenek JN, Hoang H, Baldridge D, Silverman GA, Schedl T, Pak SC. Functional analysis of a novel de novo variant in PPP5C associated with microcephaly, seizures, and developmental delay. Mol Genet Metab 2022; 136:65-73. [PMID: 35361529 DOI: 10.1016/j.ymgme.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/13/2022] [Indexed: 11/27/2022]
Abstract
We describe a proband evaluated through the Undiagnosed Diseases Network (UDN) who presented with microcephaly, developmental delay, and refractory epilepsy with a de novo p.Ala47Thr missense variant in the protein phosphatase gene, PPP5C. This gene has not previously been associated with a Mendelian disease, and based on the population database, gnomAD, the gene has a low tolerance for loss-of-function variants (pLI = 1, o/e = 0.07). We functionally evaluated the PPP5C variant in C. elegans by knocking the variant into the orthologous gene, pph-5, at the corresponding residue, Ala48Thr. We employed assays in three different biological processes where pph-5 was known to function through opposing the activity of genes, mec-15 and sep-1. We demonstrated that, in contrast to control animals, the pph-5 Ala48Thr variant suppresses the neurite growth phenotype and the GABA signaling defects of mec-15 mutants, and the embryonic lethality of sep-1 mutants. The Ala48Thr variant did not display dominance and behaved similarly to the reference pph-5 null, indicating that the variant is likely a strong hypomorph or complete loss-of-function. We conclude that pph-5 Ala48Thr is damaging in C. elegans. By extension in the proband, PPP5C p.Ala47Thr is likely damaging, the de novo dominant presentation is consistent with haplo-insufficiency, and the PPP5C variant is likely responsible for one or more of the proband's phenotypes.
Collapse
Affiliation(s)
- Sara M Fielder
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Lisa Emrick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Seema Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Ruben Attali
- Genomic Research Department, Emedgene Technologies, 6744332 Tel Aviv, Israel
| | - Joshua N Bembenek
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Hieu Hoang
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Dustin Baldridge
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Gary A Silverman
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Tim Schedl
- Department of Genetics, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Stephen C Pak
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
20
|
Fréville A, Gnangnon B, Khelifa AS, Gissot M, Khalife J, Pierrot C. Deciphering the Role of Protein Phosphatases in Apicomplexa: The Future of Innovative Therapeutics? Microorganisms 2022; 10:microorganisms10030585. [PMID: 35336160 PMCID: PMC8949495 DOI: 10.3390/microorganisms10030585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/10/2022] Open
Abstract
Parasites belonging to the Apicomplexa phylum still represent a major public health and world-wide socioeconomic burden that is greatly amplified by the spread of resistances against known therapeutic drugs. Therefore, it is essential to provide the scientific and medical communities with innovative strategies specifically targeting these organisms. In this review, we present an overview of the diversity of the phosphatome as well as the variety of functions that phosphatases display throughout the Apicomplexan parasites’ life cycles. We also discuss how this diversity could be used for the design of innovative and specific new drugs/therapeutic strategies.
Collapse
Affiliation(s)
- Aline Fréville
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, Keppel Street, London WC1E 7HT, UK
- Correspondence: (A.F.); (C.P.)
| | - Bénédicte Gnangnon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Department of Epidemiology, Center for Communicable Diseases Dynamics, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Asma S. Khelifa
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Mathieu Gissot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Christine Pierrot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Correspondence: (A.F.); (C.P.)
| |
Collapse
|
21
|
Altunoglu U, Börklü E, Shukla A, Escande-Beillard N, Ledig S, Azaklı H, Nayak SS, Eraslan S, Girisha KM, Kennerknecht I, Kayserili H. Expanding the spectrum of syndromic PPP2R3C-related XY gonadal dysgenesis to XX gonadal dysgenesis. Clin Genet 2021; 101:221-232. [PMID: 34750818 DOI: 10.1111/cge.14086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 01/09/2023]
Abstract
Homozygous variants in PPP2R3C have been reported to cause a syndromic 46,XY complete gonadal dysgenesis phenotype with extragonadal manifestations (GDRM, MIM# 618419) in patients from four unrelated families, whereas heterozygous variants have been linked to reduced fertility with teratozoospermia (SPGF36, MIM# 618420) in male carriers. We present eight patients from four unrelated families of Turkish and Indian descent with three different germline homozygous PPP2R3C variants including a novel in-frame duplication (c.639_647dupTTTCTACTC, p.Ser216_Tyr218dup). All patients exhibit recognizable facial dysmorphisms allowing gestalt diagnosis. In two 46,XX patients with hypergonadotropic hypogonadism and nonvisualized gonads, primary amenorrhea along with absence of secondary sexual characteristics and/or unique facial gestalt led to the diagnosis. 46,XY affected individuals displayed a spectrum of external genital phenotypes from ambiguous genitalia to complete female. We expand the spectrum of syndromic PPP2R3C-related XY gonadal dysgenesis to both XY and XX gonadal dysgenesis. Our findings supported neither ocular nor muscular involvement as major criteria of the syndrome. We also did not encounter infertility problems in the carriers. Since both XX and XY individuals were affected, we hypothesize that PPP2R3C is essential in the early signaling cascades controlling sex determination in humans.
Collapse
Affiliation(s)
- Umut Altunoglu
- Medical Genetics Department, Koç University School of Medicine (KUSoM) and Hospital, Istanbul, Turkey.,Medical Genetics Department, Istanbul University Istanbul Medical School, Istanbul, Turkey
| | - Esra Börklü
- Medical Genetics Department, Koç University School of Medicine (KUSoM) and Hospital, Istanbul, Turkey
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nathalie Escande-Beillard
- Medical Genetics Department, Koç University School of Medicine (KUSoM) and Hospital, Istanbul, Turkey.,Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Susanne Ledig
- Institut für Humangenetik, Westfaelische Wilhelms-Universitaet Muenster, Muenster, Germany
| | - Hülya Azaklı
- Medical Genetics Department, Koç University School of Medicine (KUSoM) and Hospital, Istanbul, Turkey
| | - Shalini S Nayak
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Serpil Eraslan
- Medical Genetics Department, Koç University School of Medicine (KUSoM) and Hospital, Istanbul, Turkey
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ingo Kennerknecht
- Institut für Humangenetik, Westfaelische Wilhelms-Universitaet Muenster, Muenster, Germany
| | - Hülya Kayserili
- Medical Genetics Department, Koç University School of Medicine (KUSoM) and Hospital, Istanbul, Turkey.,Medical Genetics Department, Istanbul University Istanbul Medical School, Istanbul, Turkey
| |
Collapse
|
22
|
Pang JL, Huang FH, Zhang YH, Wu Y, Ge XM, Li S, Li X. Sodium cantharidate induces Apoptosis in breast cancer cells by regulating energy metabolism via the protein phosphatase 5-p53 axis. Toxicol Appl Pharmacol 2021; 430:115726. [PMID: 34537213 DOI: 10.1016/j.taap.2021.115726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer is the leading cause of cancer-related death in women worldwide, and despite multiple chemotherapeutic approaches, effective treatment strategies for advanced metastatic breast cancer are still lacking. Metabolic reprogramming is essential for tumor cell growth and propagation, and most cancers, including breast cancer, are accompanied by abnormalities in energy metabolism. Here, we confirmed that sodium cantharidate inhibited cell viability using the Cell Counting Kit-8, clonogenic assay, and Transwell assay. The cell cycle and apoptosis assays indicated that sodium cantharidate induced apoptosis and cell cycle arrest in breast cancer cells. Additionally, proteomic assays, western blots, and metabolic assays revealed that sodium cantharidate converted the metabolic phenotype of breast cancer cells from glycolysis to oxidative phosphorylation. Furthermore, bioinformatics analysis identified possible roles for p53 with respect to the effects of sodium cantharidate on breast cancer cells. Western blot, docking, and phosphatase assays revealed that the regulation of p53 activity by sodium cantharidate was related to its inhibition of protein phosphatase 5 activity. Moreover, sodium cantharidate significantly inhibited tumor growth in tumor-bearing nude mice. In summary, our study provides evidence for the use of sodium cantharidate as an effective and new therapeutic candidate for the treatment of human breast cancer in clinical trials.
Collapse
Affiliation(s)
- Jin-Long Pang
- School of Pharmacy, Bengbu Medical College, Bengbu City 236425, China
| | - Fu-Hao Huang
- School of Pharmacy, Bengbu Medical College, Bengbu City 236425, China
| | - Yu-Han Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu City 236425, China
| | - Yu Wu
- School of Pharmacy, Bengbu Medical College, Bengbu City 236425, China
| | - Xian-Ming Ge
- School of Pharmacy, Bengbu Medical College, Bengbu City 236425, China
| | - Shanshan Li
- School of Pharmacy, Bengbu Medical College, Bengbu City 236425, China.
| | - Xian Li
- School of Pharmacy, Bengbu Medical College, Bengbu City 236425, China; New Technologies for Chinese Medicine Drinker Manufacturing Anhui Provincial Key Laboratory, Hefei City 230012, China; Postdoctoral workstation of Anhui Xiehecheng Drinker Tablets Co., Ltd, Bozhou City 236800, China.
| |
Collapse
|
23
|
Smedlund KB, Sanchez ER, Hinds TD. FKBP51 and the molecular chaperoning of metabolism. Trends Endocrinol Metab 2021; 32:862-874. [PMID: 34481731 PMCID: PMC8516732 DOI: 10.1016/j.tem.2021.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 01/30/2023]
Abstract
The molecular chaperone FK506-binding protein 51 (FKBP51) is gaining attention as a meaningful biomarker of metabolic dysfunction. This review examines the emerging contributions of FKBP51 in adipogenesis and lipid metabolism, myogenesis and protein catabolism, and glucocorticoid-induced skin hypoplasia and dermal adipocytes. The FKBP51 signaling mechanisms that may explain these metabolic consequences are discussed. These mechanisms are diverse, with FKBP51 independently and directly regulating phosphorylation cascades and nuclear receptors. We provide a discussion of the newly developed compounds that antagonize FKBP51, which may offer therapeutic advantages for adiposity. These observations suggest we are only beginning to uncover the complex nature of FKBP51 and its molecular chaperoning of metabolism.
Collapse
Affiliation(s)
- Kathryn B Smedlund
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Edwin R Sanchez
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Terry D Hinds
- Barnstable Brown Diabetes Center, Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40508, USA.
| |
Collapse
|
24
|
Dörner MF, Boknik P, Köpp F, Buchwalow IB, Neumann J, Gergs U. Mechanisms of Systolic Cardiac Dysfunction in PP2A, PP5 and PP2AxPP5 Double Transgenic Mice. Int J Mol Sci 2021; 22:ijms22179448. [PMID: 34502355 PMCID: PMC8431312 DOI: 10.3390/ijms22179448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
As part of our ongoing studies on the potential pathophysiological role of serine/threonine phosphatases (PP) in the mammalian heart, we have generated transgenic mice with cardiac muscle cell-specific overexpression of PP2Acα (PP2A) and PP5 (PP5). For further studies we crossbred PP2A and PP5 mice to obtain PP2AxPP5 double transgenic mice (PP2AxPP5, DT) and compared them with littermate wild-type mice (WT) serving as a control. The mortality of DT mice was greatly enhanced vs. other genotypes. Cardiac fibrosis was noted histologically and mRNA levels of collagen 1α, collagen 3α and fibronectin 1 were augmented in DT. DT and PP2A mice exhibited an increase in relative heart weight. The ejection fraction (EF) was reduced in PP2A and DT but while the EF of PP2A was nearly normalized after β-adrenergic stimulation by isoproterenol, it was almost unchanged in DT. Moreover, left atrial preparations from DT were less sensitive to isoproterenol treatment both under normoxic conditions and after hypoxia. In addition, levels of the hypertrophy markers atrial natriuretic peptide and B-type natriuretic peptide as well as the inflammation markers interleukin 6 and nuclear factor kappa B were increased in DT. PP2A enzyme activity was enhanced in PP2A vs. WT but similar to DT. This was accompanied by a reduced phosphorylation state of phospholamban at serine-16. Fittingly, the relaxation times in left atria from DT were prolonged. In summary, cardiac co-overexpression of PP2A and PP5 were detrimental to animal survival and cardiac function, and the mechanism may involve dephosphorylation of important regulatory proteins but also fibrosis and inflammation.
Collapse
Affiliation(s)
- Mara-Francine Dörner
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
- Mibe GmbH Arzneimittel, D-06796 Brehna, Germany
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, D-48149 Münster, Germany;
| | - Friedrich Köpp
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
| | - Igor B. Buchwalow
- Institute for Hematopathology, Fangdieckstr. 75a, D-22547 Hamburg, Germany;
| | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
- Correspondence: ; Tel.: +49-345-557-4093
| |
Collapse
|
25
|
Neumann J, Boknik P, Kirchhefer U, Gergs U. The role of PP5 and PP2C in cardiac health and disease. Cell Signal 2021; 85:110035. [PMID: 33964402 DOI: 10.1016/j.cellsig.2021.110035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Protein phosphatases are important, for example, as functional antagonists of β-adrenergic stimulation of the mammalian heart. While β-adrenergic stimulations increase the phosphorylation state of regulatory proteins and therefore force of contraction in the heart, these phosphorylations are reversed and thus force is reduced by the activity of protein phosphatases. In this context the role of PP5 and PP2C is starting to unravel. They do not belong to the same family of phosphatases with regard to sequence homology, many similarities with regard to location, activation by lipids and putative substrates have been worked out over the years. We also suggest which pathways for regulation of PP5 and/or PP2C described in other tissues and not yet in the heart might be useful to look for in cardiac tissue. Both phosphatases might play a role in signal transduction of sarcolemmal receptors in the heart. Expression of PP5 and PP2C can be increased by extracellular stimuli in the heart. Because PP5 is overexpressed in failing animal and human hearts, and because overexpression of PP5 or PP2C leads to cardiac hypertrophy and KO of PP5 leads to cardiac hypotrophy, one might argue for a role of PP5 and PP2C in heart failure. Because PP5 and PP2C can reduce, at least in vitro, the phosphorylation state of proteins thought to be relevant for cardiac arrhythmias, a role of these phosphatases for cardiac arrhythmias is also probable. Thus, PP5 and PP2C might be druggable targets to treat important cardiac diseases like heart failure, cardiac hypertrophy and cardiac arrhythmias.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| |
Collapse
|
26
|
Struk S, De Cuyper C, Jacobs A, Braem L, Walton A, De Keyser A, Depuydt S, Vu LD, De Smet I, Boyer FD, Eeckhout D, Persiau G, Gevaert K, De Jaeger G, Goormachtig S. Unraveling the MAX2 Protein Network in Arabidopsis thaliana: Identification of the Protein Phosphatase PAPP5 as a Novel MAX2 Interactor. Mol Cell Proteomics 2021; 20:100040. [PMID: 33372050 PMCID: PMC7950214 DOI: 10.1074/mcp.ra119.001766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
The F-box protein MORE AXILLARY GROWTH 2 (MAX2) is a central component in the signaling cascade of strigolactones (SLs) as well as of the smoke-derived karrikins (KARs) and the so far unknown endogenous KAI2 ligand (KL). The two groups of molecules are involved in overlapping and unique developmental processes, and signal-specific outcomes are attributed to perception by the paralogous α/β-hydrolases DWARF14 (D14) for SL and KARRIKIN INSENSITIVE 2/HYPOSENSITIVE TO LIGHT (KAI2/HTL) for KAR/KL. In addition, depending on which receptor is activated, specific members of the SUPPRESSOR OF MAX2 1 (SMAX1)-LIKE (SMXL) family control KAR/KL and SL responses. As proteins that function in the same signal transduction pathway often occur in large protein complexes, we aimed at discovering new players of the MAX2, D14, and KAI2 protein network by tandem affinity purification in Arabidopsis cell cultures. When using MAX2 as a bait, various proteins were copurified, among which were general components of the Skp1-Cullin-F-box complex and members of the CONSTITUTIVE PHOTOMORPHOGENIC 9 signalosome. Here, we report the identification of a novel interactor of MAX2, a type 5 serine/threonine protein phosphatase, designated PHYTOCHROME-ASSOCIATED PROTEIN PHOSPHATASE 5 (PAPP5). Quantitative affinity purification pointed at PAPP5 as being more present in KAI2 rather than in D14 protein complexes. In agreement, mutant analysis suggests that PAPP5 modulates KAR/KL-dependent seed germination under suboptimal conditions and seedling development. In addition, a phosphopeptide enrichment experiment revealed that PAPP5 might dephosphorylate MAX2 in vivo independently of the synthetic SL analog, rac-GR24. Together, by analyzing the protein complexes to which MAX2, D14, and KAI2 belong, we revealed a new MAX2 interactor, PAPP5, that might act through dephosphorylation of MAX2 to control mainly KAR/KL-related phenotypes and, hence, provide another link with the light pathway.
Collapse
Affiliation(s)
- Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Carolien De Cuyper
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Anse Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium; Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Lukas Braem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium; Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Alan Walton
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium; Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Stephen Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium; Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - François-Didier Boyer
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Versailles, France; Institut de Chimie des Substances Naturelles, CNRS Unité Propre de Recherche 2301, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium; Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium.
| |
Collapse
|
27
|
Karkache IY, Damodaran JR, Molstad DHH, Bradley EW. Serine/threonine phosphatases in osteoclastogenesis and bone resorption. Gene 2020; 771:145362. [PMID: 33338510 DOI: 10.1016/j.gene.2020.145362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
Maintenance of optimal bone mass is controlled through the concerted functions of several cell types, including bone resorbing osteoclasts. Osteoclasts function to remove calcified tissue during developmental bone modeling, and degrade bone at sites of damage during bone remodeling. Changes to bone homeostasis can arise with alterations in osteoclastogenesis and/or catabolic activity that are not offset by anabolic activity; thus, factors that regulate osteoclastogenesis and bone resorption are of interest to further our understanding of basic bone biology, and as potential targets for therapeutic intervention. Several key cytokines, including RANKL and M-CSF, as well as co-stimulatory factors elicit kinase signaling cascades that promote osteoclastogenesis. These kinase cascades are offset by the action of protein phosphatases, including members of the serine/threonine phosphatase family. Here we review the functions of serine/threonine phosphatases and their control of osteoclast differentiation and function, while highlighting deficiencies in our understanding of this understudied class of proteins within the field.
Collapse
Affiliation(s)
- Ismael Y Karkache
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jeyaram R Damodaran
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - David H H Molstad
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
28
|
A Single Site Phosphorylation on Hsp82 Ensures Cell Survival during Starvation in Saccharomyces cerevisiae. J Mol Biol 2020; 432:5809-5824. [PMID: 32920053 DOI: 10.1016/j.jmb.2020.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 11/22/2022]
Abstract
Unicellular organisms live under diverse stressful conditions and must respond and adapt quickly to these stresses. When these stresses persist, cells favor a transition to quiescence. There are changes to many processes when cells begin their entry into quiescence. It has been reported that Hsp82 plays an important role in several such processes, and its distribution and activity change according to nutrient conditions. In this study, we found that the subcellular distribution of Hsp82 is regulated by its co-chaperone Ppt1. Under starvation conditions, Ppt1 expression was significantly reduced by a TOR-independent pathway. Furthermore, we found that Ppt1 regulates Hsp82 distribution in the cytoplasm and nucleus by dephosphorylating the S485 residue on Hsp82. The Hsp82S485A strain has impaired membrane-related protein transport, and its cell size did not become larger in quiescence compared to log phase, resulting in failure to survive during starvation.
Collapse
|
29
|
Over-expression of human PP5 gene in mice induces corneal hyperplasia and leads to ocular surface squamous neoplasia. Biochem Biophys Res Commun 2020; 529:487-493. [PMID: 32703456 DOI: 10.1016/j.bbrc.2020.06.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 01/23/2023]
Abstract
Protein phosphatase 5 (PP5) plays an important role in cell proliferation, differentiation, and development. Transgenic PP5 mice (Tg-hPP5 mice) overexpressing human PP5 gene were successfully generated by embryo injection. Tg-hPP5 mice spontaneously developed corneal hyperplasia and ocular surface squamous neoplasia (OSSN). To investigate the mechanism behind PP5-induced corneal hyperplasia, we performed immunohistochemistry, quantitative real-time PCR, and Western Blotting analyses on the corneas of Tg-hPP5 mice at 2 months and 9 months of age. We provide the first demonstration that Tg-hPP5 mice develop corneal hyperplasia at 9-months of age demonstrated via histological analysis and in vitro co-transfection investigation. We also present data that the expression of p53 is significantly reduced while the expression of FGF-7 is significantly increased in Tg-hPP5 mice with corneal hyperplasia. Co-transfection of PP5, p53, and FGF-7-promoter-driven luciferase revealed that PP5 promotes while p53 inhibits FGF-7 expression, which indicates PP5 overexpression inhibits p53 phosphorylation, thereby reducing its tumor suppressor function and increasing FGF-7 expression. In conclusion, PP5 plays a pivotal role in corneal hyperplasia development and its downregulation is a potential target for corneal hyperplasia and OSSN treatment.
Collapse
|
30
|
Glucocorticoid receptor complexes form cooperatively with the Hsp90 co-chaperones Pp5 and FKBPs. Sci Rep 2020; 10:10733. [PMID: 32612187 PMCID: PMC7329908 DOI: 10.1038/s41598-020-67645-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/29/2020] [Indexed: 01/24/2023] Open
Abstract
The function of steroid receptors in the cell depends on the chaperone machinery of Hsp90, as Hsp90 primes steroid receptors for hormone binding and transcriptional activation. Several conserved proteins are known to additionally participate in receptor chaperone assemblies, but the regulation of the process is not understood in detail. Also, it is unknown to what extent the contribution of these cofactors is conserved in other eukaryotes. We here examine the reconstituted C. elegans and human chaperone assemblies. We find that the nematode phosphatase PPH-5 and the prolyl isomerase FKB-6 facilitate the formation of glucocorticoid receptor (GR) complexes with Hsp90. Within these complexes, Hsp90 can perform its closing reaction more efficiently. By combining chemical crosslinking and mass spectrometry, we define contact sites within these assemblies. Compared to the nematode Hsp90 system, the human system shows less cooperative client interaction and a stricter requirement for the co-chaperone p23 to complete the closing reaction of GR·Hsp90·Pp5/Fkbp51/Fkbp52 complexes. In both systems, hormone binding to GR is accelerated by Hsp90 alone and in the presence of its cofactors. Our results show that cooperative complex formation and hormone binding patterns are, in many aspects, conserved between the nematode and human systems.
Collapse
|
31
|
Sager RA, Dushukyan N, Woodford M, Mollapour M. Structure and function of the co-chaperone protein phosphatase 5 in cancer. Cell Stress Chaperones 2020; 25:383-394. [PMID: 32239474 PMCID: PMC7193036 DOI: 10.1007/s12192-020-01091-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Protein phosphatase 5 (PP5) is a serine/threonine protein phosphatase that regulates many cellular functions including steroid hormone signaling, stress response, proliferation, apoptosis, and DNA repair. PP5 is also a co-chaperone of the heat shock protein 90 molecular chaperone machinery that assists in regulation of cellular signaling pathways essential for cell survival and growth. PP5 plays a significant role in survival and propagation of multiple cancers, which makes it a promising target for cancer therapy. Though there are several naturally occurring PP5 inhibitors, none is specific for PP5. Here, we review the roles of PP5 in cancer progression and survival and discuss the unique features of the PP5 structure that differentiate it from other phosphoprotein phosphatase (PPP) family members and make it an attractive therapeutic target.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- College of Medicine, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Natela Dushukyan
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Mark Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
32
|
Cell Cycle and DNA Repair Regulation in the Damage Response: Protein Phosphatases Take Over the Reins. Int J Mol Sci 2020; 21:ijms21020446. [PMID: 31936707 PMCID: PMC7014277 DOI: 10.3390/ijms21020446] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cells are constantly suffering genotoxic stresses that affect the integrity of our genetic material. Genotoxic insults must be repaired to avoid the loss or inappropriate transmission of the genetic information, a situation that could lead to the appearance of developmental abnormalities and tumorigenesis. To combat this threat, eukaryotic cells have evolved a set of sophisticated molecular mechanisms that are collectively known as the DNA damage response (DDR). This surveillance system controls several aspects of the cellular response, including the detection of lesions, a temporary cell cycle arrest, and the repair of the broken DNA. While the regulation of the DDR by numerous kinases has been well documented over the last decade, the complex roles of protein dephosphorylation have only recently begun to be investigated. Here, we review recent progress in the characterization of DDR-related protein phosphatases during the response to a DNA lesion, focusing mainly on their ability to modulate the DNA damage checkpoint and the repair of the damaged DNA. We also discuss their protein composition and structure, target specificity, and biochemical regulation along the different stages encompassed in the DDR. The compilation of this information will allow us to better comprehend the physiological significance of protein dephosphorylation in the maintenance of genome integrity and cell viability in response to genotoxic stress.
Collapse
|
33
|
Weber B, Maier A, Buchner J. Peptides in proteins. J Pept Sci 2019; 26:e3235. [PMID: 31867828 DOI: 10.1002/psc.3235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022]
Abstract
During evolution C-terminal peptide extensions were added to proteins on the gene level. These convey additional functions such as interaction with partner proteins or oligomerisation. IgM antibodies and molecular chaperones are two prominent examples discussed.
Collapse
Affiliation(s)
- Benedikt Weber
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Andreas Maier
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| |
Collapse
|
34
|
Gergs U, Jahn T, Werner F, Köhler C, Köpp F, Großmann C, Neumann J. Overexpression of protein phosphatase 5 in the mouse heart: Reduced contractility but increased stress tolerance - Two sides of the same coin? PLoS One 2019; 14:e0221289. [PMID: 31425567 PMCID: PMC6699691 DOI: 10.1371/journal.pone.0221289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/02/2019] [Indexed: 11/18/2022] Open
Abstract
The pathophysiological mechanisms of sepsis-induced cardiac dysfunction are largely unknown. The Toll-like receptor 4 (TLR4) is expressed in cardiac myocytes and is involved in bacterial endotoxin-mediated inflammatory disorders. TLR4 signaling leads to activation of the nuclear factor kappa B followed by increased expression of cytokines. Several protein phosphatases including PP2Cβ, PP2A or PP1 are known to act as regulators of this signaling pathway. Here, we examined the role of PP5 for the inflammatory response to the bacterial endotoxin lipopolysaccharide in the heart using a transgenic mouse model with cardiac myocyte directed overexpression of PP5. In these transgenic mice, basal cardiac contractility was reduced, in vivo as well as in vitro, but LPS-induced cardiac dysfunction was less pronounced compared to wild type mice. Quantitative RT-PCR suggested an attenuated NF-κB signaling in the heart and cardiac expression of heat shock protein 25 (HSP25) was increased in PP5 transgenic mice. From our data we assume that PP5 increases stress tolerance of cardiac myocytes by downregulation of NF-κB signaling and upregulation of HSP25 expression.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- * E-mail:
| | - Tina Jahn
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Franziska Werner
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Carolin Köhler
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Friedrich Köpp
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Großmann
- Julius-Bernstein-Institut für Physiologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
35
|
Zhu X, Sun L, He Y, Wei H, Hong M, Liu F, Liu Q, Cao Y, Cui L. Plasmodium berghei serine/threonine protein phosphatase PP5 plays a critical role in male gamete fertility. Int J Parasitol 2019; 49:685-695. [DOI: 10.1016/j.ijpara.2019.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
|
36
|
Maduramicin induces apoptosis through ROS-PP5-JNK pathway in skeletal myoblast cells and muscle tissue. Toxicology 2019; 424:152239. [PMID: 31229567 DOI: 10.1016/j.tox.2019.152239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 01/30/2023]
Abstract
Our previous work has shown that maduramicin, an effective coccidiostat used in the poultry production, executed its toxicity by inducing apoptosis of skeletal myoblasts. However, the underlying mechanism is not well understood. Here we show that maduramicin induced apoptosis of skeletal muscle cells by activating c-Jun N-terminal kinase (JNK) pathway in murine C2C12 and L6 myoblasts as well as skeletal muscle tissue. This is supported by the findings that inhibition of JNK with SP600125 or ectopic expression of dominant negative c-Jun attenuated maduramicin-induced apoptosis in C2C12 cells. Furthermore, we found that treatment with maduramicin reduced the cellular protein level of protein phosphatase 5 (PP5). Overexpression of PP5 substantially mitigated maduramicin-activated JNK and apoptosis. Moreover, we noticed that treatment with maduramicin elevated intracellular reactive oxygen species (ROS) level. Pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger and antioxidant, suppressed maduramicin-induced inhibition of PP5 and activation of JNK as well as apoptosis. The results indicate that maduramicin induction of ROS inhibits PP5, which results in activation of JNK cascade, leading to apoptosis of skeletal muscle cells. Our finding suggests that manipulation of ROS-PP5-JNK pathway may be a potential approach to prevent maduramicin-induced apoptotic cell death in skeletal muscle.
Collapse
|
37
|
Javadpour P, Dargahi L, Ahmadiani A, Ghasemi R. To be or not to be: PP2A as a dual player in CNS functions, its role in neurodegeneration, and its interaction with brain insulin signaling. Cell Mol Life Sci 2019; 76:2277-2297. [PMID: 30874837 PMCID: PMC11105459 DOI: 10.1007/s00018-019-03063-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/16/2019] [Accepted: 03/07/2019] [Indexed: 12/26/2022]
Abstract
Accumulating evidence has reached the consensus that the balance of phosphorylation state of signaling molecules is a pivotal point in the regulation of cell signaling. Therefore, characterizing elements (kinases-phosphatases) in the phosphorylation balance are at great importance. However, the role of phosphatase enzymes is less investigated than kinase enzymes. PP2A is a member of serine/threonine protein phosphatase that its imbalance has been reported in neurodegenerative diseases. Therefore, we reviewed the superfamily of phosphatases and more specifically PP2A, its regulation, and physiological functions participate in CNS. Thereafter, we discussed the latest findings about PP2A dysregulation in Alzheimer and Parkinson diseases and possible interplay between this phosphatase and insulin signaling pathways. Finally, activating/inhibitory modulators for PP2A activity as well as experimental methods for PP2A study have been reviewed.
Collapse
Affiliation(s)
- Pegah Javadpour
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Wang L, Yan F. Exploring the role of active site Mn2+ ions in the binding of protein phosphatase 5 with its substrate using molecular dynamics simulations. Biochem Biophys Res Commun 2019; 511:612-618. [DOI: 10.1016/j.bbrc.2019.02.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 12/14/2022]
|
39
|
Protein Phosphatases-A Touchy Enemy in the Battle Against Glioblastomas: A Review. Cancers (Basel) 2019; 11:cancers11020241. [PMID: 30791455 PMCID: PMC6406705 DOI: 10.3390/cancers11020241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant tumor arising from brain parenchyma. Although many efforts have been made to develop therapies for GBM, the prognosis still remains poor, mainly because of the difficulty in total resection of the tumor mass from brain tissue and the resistance of the residual tumor against standard chemoradiotherapy. Therefore, novel adjuvant therapies are urgently needed. Recent genome-wide analyses of GBM cases have clarified molecular signaling mechanisms underlying GBM biology. However, results of clinical trials targeting phosphorylation-mediated signaling have been unsatisfactory to date. Protein phosphatases are enzymes that antagonize phosphorylation signaling by dephosphorylating phosphorylated signaling molecules. Recently, the critical roles of phosphatases in the regulation of oncogenic signaling in malignant tumor cells have been reported, and tumorigenic roles of deregulated phosphatases have been demonstrated in GBM. However, a detailed mechanism underlying phosphatase-mediated signaling transduction in the regulation of GBM has not been elucidated, and such information is necessary to apply phosphatases as a therapeutic target for GBM. This review highlights and summarizes the phosphatases that have crucial roles in the regulation of oncogenic signaling in GBM cells.
Collapse
|
40
|
Assis LC, de Castro AA, Prandi IG, Mancini DT, de Giacoppo JOS, Savedra RML, de Assis TM, Carregal JB, da Cunha EFF, Ramalho TC. Interactions of cantharidin-like inhibitors with human protein phosphatase-5 in a Mg 2+ system: molecular dynamics and quantum calculations. J Mol Model 2018; 24:303. [PMID: 30280322 DOI: 10.1007/s00894-018-3837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/18/2018] [Indexed: 11/29/2022]
Abstract
The serine/threonine protein phosphatase type 5 (PP5) is a promising target for designing new antitumor drugs. This enzyme is a member of the PPP phosphatases gene family, which catalyzes a dephosphorylation reaction: a regulatory process in the signal transduction pathway that controls various biological processes. The aim of this work is to study and compare the inhibition of PP5 by ten cantharidin-like inhibitors in order to bring about contributions relevant to the better comprehension of their inhibitory activity. In this theoretical investigation, we used molecular dynamics techniques to understand the role of key interactions that occur in the protein active site; QM calculations were employed to study the interaction mode of these inhibitors in the enzyme. In addition, atoms in molecules (AIM) calculations were carried out to characterize the chemical bonds among the atoms involved and investigate the orbital interactions with their respective energy values. The obtained results suggest that the Arg275, Asn303, His304, His352, Arg400, His427, Glu428, Val429, Tyr451, and Phe446 residues favorably contribute to the interactions between inhibitors and PP5. However, the Asp271 and Asp244 amino acid residues do not favor such interactions for some inhibitors. Through the QM calculations, we can suggest that the reactional energy of the coordination mechanism of these inhibitors in the PP5 active site is quite important and is responsible for the inhibitory activity. The AIM technique employed in this work was essential to get a better comprehension of the transition states acquired from the mechanism simulation. This work offers insights of how cantharidin-like inhibitors interact with human PP5, potentially allowing the design of more specific and even less cytotoxic drugs for cancer treatments. Graphical Abstract Interactions of cantharidin-like inhibitors with human protein phosphatase-5 in a Mg2+ system.
Collapse
Affiliation(s)
- Letícia C Assis
- Laboratory of Computational Chemistry, Department of Chemistry, Federal University of Lavras (UFLA), 3027, Campus Universitario, Lavras, 37200000, Minas Gerais, Brazil
| | - Alexandre A de Castro
- Laboratory of Computational Chemistry, Department of Chemistry, Federal University of Lavras (UFLA), 3027, Campus Universitario, Lavras, 37200000, Minas Gerais, Brazil
| | - Ingrid G Prandi
- Laboratory of Computational Chemistry, Department of Chemistry, Federal University of Lavras (UFLA), 3027, Campus Universitario, Lavras, 37200000, Minas Gerais, Brazil
| | - Daiana T Mancini
- Laboratory of Computational Chemistry, Department of Chemistry, Federal University of Lavras (UFLA), 3027, Campus Universitario, Lavras, 37200000, Minas Gerais, Brazil
| | - Juliana O S de Giacoppo
- Laboratory of Computational Chemistry, Department of Chemistry, Federal University of Lavras (UFLA), 3027, Campus Universitario, Lavras, 37200000, Minas Gerais, Brazil
| | - Ranylson M L Savedra
- Laboratory of Molecular Simulation of Material, Department of Physics, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto, MG, CEP 35400-000, Brazil
| | - Tamiris M de Assis
- Laboratory of Computational Chemistry, Department of Chemistry, Federal University of Lavras (UFLA), 3027, Campus Universitario, Lavras, 37200000, Minas Gerais, Brazil
| | - Juliano B Carregal
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of São João del Rei (UFSJ), Rua Sebastião Gonçalves Coelho 400, Divinópolis, MG, 35501-296, Brazil
| | - Elaine F F da Cunha
- Laboratory of Computational Chemistry, Department of Chemistry, Federal University of Lavras (UFLA), 3027, Campus Universitario, Lavras, 37200000, Minas Gerais, Brazil
| | - Teodorico Castro Ramalho
- Laboratory of Computational Chemistry, Department of Chemistry, Federal University of Lavras (UFLA), 3027, Campus Universitario, Lavras, 37200000, Minas Gerais, Brazil. .,Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
41
|
Abstract
Glucocorticoids are steroid hormones that play a key role in metabolic adaptations during stress, such as fasting and starvation, in order to maintain plasma glucose levels. Excess and chronic glucocorticoid exposure, however, causes metabolic syndrome including insulin resistance, dyslipidemia, and hyperglycemia. Studies in animal models of metabolic disorders frequently demonstrate that suppressing glucocorticoid signaling improves insulin sensitivity and metabolic profiles. Glucocorticoids convey their signals through an intracellular glucocorticoid receptor (GR), which is a transcriptional regulator. The adipocyte is one cell type that contributes to whole body metabolic homeostasis under the influence of GR. Glucocorticoids' functions on adipose tissues are complex. Depending on various physiological or pathophysiological states as well as distinct fat depots, glucocorticoids can either increase or decrease lipid storage in adipose tissues. In rodents, glucocorticoids have been shown to reduce the thermogenic activity of brown adipocytes. However, in human acute glucocorticoid exposure, glucocorticoids act to promote thermogenesis. In this article, we will review the recent studies on the mechanisms underlying the complex metabolic functions of GR in adipocytes. These include studies of the metabolic outcomes of adipocyte specific GR knockout mice and identification of novel GR primary target genes that mediate glucocorticoid action in adipocytes.
Collapse
Affiliation(s)
- Rebecca A Lee
- Endocrinology Graduate Program and Department of Nutritional Science & Toxicology, University of California Berkeley, Berkeley, CA 94720-3104, USA
| | - Charles A Harris
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Jen-Chywan Wang
- Endocrinology Graduate Program and Department of Nutritional Science & Toxicology, University of California Berkeley, Berkeley, CA 94720-3104, USA
| |
Collapse
|
42
|
Zhu J, Ji Y, Yu Y, Jin Y, Zhang X, Zhou J, Chen Y. Knockdown of serine/threonine protein phosphatase 5 enhances gemcitabine sensitivity by promoting apoptosis in pancreatic cancer cells in vitro. Oncol Lett 2018; 15:8761-8769. [PMID: 29805615 PMCID: PMC5950513 DOI: 10.3892/ol.2018.8363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/22/2017] [Indexed: 12/28/2022] Open
Abstract
The targeting protein of serine/threonine protein phosphatase 5 (PPP5C) has been reported to be present in various malignancies. However, its functional role in pancreatic cancer (PC) remains unknown. In the present study, the function of PPP5C in PC cells treated with the first-line drug gemcitabine (GEM) was investigated. Short hairpin (sh)RNA targeting PPP5C was constructed to knockdown PPP5C in PANC-1 cells. Cell cycle and apoptosis analyses were performed in order to investigate the mechanisms underlying the effects induced by PPP5C silencing combined with GEM treatment. Western blot analysis was applied to detect the expression of certain key regulators of cell apoptosis in PANC-1 cells treated with GEM. shRNA against PPP5C effectively suppressed the proliferation of PANC-1 cells treated with GEM. Additionally, cell cycle analysis indicated that PPP5C knockdown resulted in a higher number of PANC-1 cells treated with GEM in G0/G1 phase arrest. Knockdown of PPP5C increased the expression of associated apoptotic markers, including cleaved caspase 3, poly (ADP-ribose) polymerase and phosphorylated (p)-p53. In addition, the combination of treatment with GEM and PPP5C silencing significantly increased the apoptosis of PANC-1 cells by affecting the expression levels of p-c-Jun N-terminal kinases and p-p38. The present study suggests that PPP5C may be a potential target for the treatment of PC and that it may enhance the gemcitabine sensitivity of PC cells.
Collapse
Affiliation(s)
- Jinhui Zhu
- Department of General Surgery and Laparoscopic Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yun Ji
- Department of General Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yuanquan Yu
- Department of General Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yun Jin
- Department of General Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaoxiao Zhang
- Department of General Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jiale Zhou
- Department of General Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yan Chen
- Department of General Surgery and Laparoscopic Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW The goal of this review is to summarize recent findings on marrow adipose tissue (MAT) function and to discuss the possibility of targeting MAT for therapeutic purposes. RECENT FINDINGS MAT is characterized with high heterogeneity which may suggest both that marrow adipocytes originate from multiple different progenitors and/or their phenotype is determined by skeletal location and environmental cues. Close relationship to osteoblasts and heterogeneity suggests that MAT consists of cells representing spectrum of phenotypes ranging from lipid-filled adipocytes to pre-osteoblasts. We propose a term of adiposteoblast for describing phenotypic spectrum of MAT. Manipulating with MAT activity in diseases where impairment in energy metabolism correlates with bone functional deficit, such as aging and diabetes, may be beneficial for both. Paracrine activities of MAT might be considered for treatment of bone diseases. MAT has unrecognized potential, either beneficial or detrimental, to regulate bone homeostasis in physiological and pathological conditions. More research is required to harness this potential for therapeutic purposes.
Collapse
Affiliation(s)
- Beata Lecka-Czernik
- Department of Orthopaedic Research, Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| | - Sudipta Baroi
- Department of Orthopaedic Research, Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Lance A Stechschulte
- Department of Orthopaedic Research, Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Amit Sopan Chougule
- Department of Orthopaedic Research, Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| |
Collapse
|
44
|
Wang J, Cao Y, Qiu B, Du J, Wang T, Wang C, Deng R, Shi X, Gao K, Xie Z, Yong W. Ablation of protein phosphatase 5 (PP5) leads to enhanced both bone and cartilage development in mice. Cell Death Dis 2018; 9:214. [PMID: 29434189 PMCID: PMC5833428 DOI: 10.1038/s41419-017-0254-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/16/2017] [Accepted: 12/20/2017] [Indexed: 12/31/2022]
Abstract
This study aimed to investigate the role of protein phosphatase 5 (PP5) on bone and cartilage development using both in vivo and in vitro approaches. Six- to 8-week- old male PP5 knockout mice (KO) and their wild-type (WT) littermate controls were randomly selected for this study, and their body weights and bone (femur) lengths were measured. Micro-computed tomography scanning (Micro-CT) was performed to determine femoral bone density and micro-architecture. Mesenchymal stem cells (MSCs) isolated from bone marrow were used to examine the effects of PP5 on osteogenesis in vitro. Whole-mount Alcian blue and Alizarin red staining were used to detect cartilage formation in newborn vertebrae, limbs, and feet. Hematoxylin and eosin (H&E) staining was performed to determine growth plate thickness. Real-time PCR analysis, western blotting, and immunohistochemistry were used to detect the expression of genes and proteins in bone marrow-derived MSCs as well as in bone and cartilage tissues. The results showed PP5 KO mice exhibited significantly reduced body weight and shorter femur length compared to WT controls. The KO mice also had significantly higher volumetric bone mineral density (BMD), trabecular bone volume, and cortical thickness in the femur. The deficiency of PP5 significantly enhanced the formation of cartilage in vertebrae, limbs, and feet. In addition, KO mice possessed a wider distal femur growth plates containing significantly more chondrocytes than WT mice. Furthermore, higher expressions of several cartilage-specific genes were observed in the articular cartilage of PP5 KO mice. Immunohistochemical labeling of growth plates demonstrated that phospho-PPARγ, Runx1, and Runx2 levels were considerably higher in the KO mice. In conclusion, PP5 is a significant negative regulator on the regulation of bone and cartilage development.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China.,Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yong Cao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.,Experimental Medicine Center, The First Affiliated Hospital of Sichuan Medical University, Luzhou, Sichuan, 646000, China
| | - Bin Qiu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Jianyong Du
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Tingting Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Chao Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Ran Deng
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Xudong Shi
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Kai Gao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China.
| | - Weidong Yong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
45
|
Xie J, Han M, Zhang M, Deng H, Wu W. PP5 (PPP5C) is a phosphatase of Dvl2. Sci Rep 2018; 8:2715. [PMID: 29426949 PMCID: PMC5807433 DOI: 10.1038/s41598-018-21124-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/30/2018] [Indexed: 11/09/2022] Open
Abstract
Dishevelled (Dvl) family proteins are key mediators of Wnt signalling and function in both canonical and noncanonical branches. Dvl2, the most studied Dvl protein, is extensively regulated by phosphorylation. Several kinases were found to be critical for Dvl2 localisation, stability control and functional segregation. For example, S143-phosphorylated Dvl2 was detected, together with CK1δ/ε, at the centrosome and basal body of primary cilia and plays pivotal roles during ciliogenesis. However, relatively less is known about Dvl dephosphorylation and the phosphatases involved. Here, we identified PP5 (PPP5C) as a phosphatase of Dvl2. PP5 interacts with and can directly dephosphorylate Dvl2. Knockdown of PP5 caused elevated Dvl2 phosphorylation both at the basal level and upon Wnt stimulation. In the Dvl2 protein, S143, the 10B5 cluster and other sites were dephosphorylated by PP5. Interestingly, comparison of PP5 with PP2A, another known Dvl2 phosphatase, revealed that PP5 and PP2A are not fully redundant in the regulation of Dvl2 phosphorylation status. In hTERT-RPE1 cells, PP5 was found at the basal body of cilia, where S143-phosphorylated Dvl2 also resides. Functional assays revealed modest effects on ciliogenesis after PP5 depletion or over-expression. Taken together, our results provided evidence to suggest PP5 as a new phosphatase for Dvl2.
Collapse
Affiliation(s)
- Jianlei Xie
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Meng Han
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Miaojun Zhang
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Wu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
46
|
Bodero M, Hoogenboom RL, Bovee TF, Portier L, de Haan L, Peijnenburg A, Hendriksen PJ. Whole genome mRNA transcriptomics analysis reveals different modes of action of the diarrheic shellfish poisons okadaic acid and dinophysis toxin-1 versus azaspiracid-1 in Caco-2 cells. Toxicol In Vitro 2018; 46:102-112. [DOI: 10.1016/j.tiv.2017.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 01/09/2023]
|
47
|
Protein phosphatase 5 regulates titin phosphorylation and function at a sarcomere-associated mechanosensor complex in cardiomyocytes. Nat Commun 2018; 9:262. [PMID: 29343782 PMCID: PMC5772059 DOI: 10.1038/s41467-017-02483-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022] Open
Abstract
Serine/threonine protein phosphatase 5 (PP5) is ubiquitously expressed in eukaryotic cells; however, its function in cardiomyocytes is unknown. Under basal conditions, PP5 is autoinhibited, but enzymatic activity rises upon binding of specific factors, such as the chaperone Hsp90. Here we show that PP5 binds and dephosphorylates the elastic N2B-unique sequence (N2Bus) of titin in cardiomyocytes. Using various binding and phosphorylation tests, cell-culture manipulation, and transgenic mouse hearts, we demonstrate that PP5 associates with N2Bus in vitro and in sarcomeres and is antagonistic to several protein kinases, which phosphorylate N2Bus and lower titin-based passive tension. PP5 is pathologically elevated and likely contributes to hypo-phosphorylation of N2Bus in failing human hearts. Furthermore, Hsp90-activated PP5 interacts with components of a sarcomeric, N2Bus-associated, mechanosensor complex, and blocks mitogen-activated protein-kinase signaling in this complex. Our work establishes PP5 as a compartmentalized, well-controlled phosphatase in cardiomyocytes, which regulates titin properties and kinase signaling at the myofilaments. Protein phosphatase 5 (PP5) is expressed in many cell types but its role in cardiomyocytes is unknown. Here the authors show that PP5 binds and dephosphorylates elastic titin in cardiac sarcomeres, and that PP5 is increased in heart failure, reducing cardiomyocyte compliance.
Collapse
|
48
|
Cox MB, Johnson JL. Evidence for Hsp90 Co-chaperones in Regulating Hsp90 Function and Promoting Client Protein Folding. Methods Mol Biol 2018; 1709:397-422. [PMID: 29177674 DOI: 10.1007/978-1-4939-7477-1_28] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular chaperones are a diverse group of highly conserved proteins that transiently interact with partially folded polypeptide chains during normal cellular processes such as protein translation, translocation, and disassembly of protein complexes. Prior to folding or after denaturation, hydrophobic residues that are normally sequestered within a folded protein are exposed to the aqueous environment and are prone to aggregation or misfolding. Multiple classes of molecular chaperones, such as Hsp70s and Hsp40s, recognize and transiently bind polypeptides with exposed hydrophobic stretches in order to prevent misfolding. Other types of chaperones, such as Hsp90, have more specialized functions in that they appear to interact with only a subset of cellular proteins. This chapter focuses on the role of Hsp90 and partner co-chaperones in promoting the folding and activation of a diverse group of proteins with critical roles in cellular signaling and function.
Collapse
Affiliation(s)
- Marc B Cox
- Department of Biological Sciences, University of Texas at El Paso and the Border Biomedical Research Center, El Paso, TX, 79968, USA
| | - Jill L Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844-3051, USA.
| |
Collapse
|
49
|
Gene expression regulation by heat-shock proteins: the cardinal roles of HSF1 and Hsp90. Biochem Soc Trans 2017; 46:51-65. [PMID: 29273620 DOI: 10.1042/bst20170335] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/21/2017] [Accepted: 10/27/2017] [Indexed: 12/31/2022]
Abstract
The ability to permit gene expression is managed by a set of relatively well known regulatory mechanisms. Nonetheless, this property can also be acquired during a life span as a consequence of environmental stimuli. Interestingly, some acquired information can be passed to the next generation of individuals without modifying gene information, but instead by the manner in which cells read and process such information. Molecular chaperones are classically related to the proper preservation of protein folding and anti-aggregation properties, but one of them, heat-shock protein 90 (Hsp90), is a refined sensor of protein function facilitating the biological activity of properly folded client proteins that already have a preserved tertiary structure. Interestingly, Hsp90 can also function as a critical switch able to regulate biological responses due to its association with key client proteins such as histone deacetylases or DNA methylases. Thus, a growing amount of evidence has connected the action of Hsp90 to post-translational modifications of soluble nuclear factors, DNA, and histones, which epigenetically affect gene expression upon the onset of an unfriendly environment. This response is commanded by the activation of the transcription factor heat-shock factor 1 (HSF1). Even though numerous stresses of diverse nature are known to trigger the stress response by activation of HSF1, it is still unknown whether there are different types of molecular sensors for each type of stimulus. In the present review, we will discuss various aspects of the regulatory action of HSF1 and Hsp90 on transcriptional regulation, and how this regulation may affect genetic assimilation mechanisms and the health of individuals.
Collapse
|
50
|
Chen X, Jiang S, Huang S. Maduramicin-activated protein phosphatase 2A results in extracellular signal-regulated kinase 1/2 inhibition, leading to cytotoxicity in myocardial H9c2 cells. Toxicol Lett 2017; 284:96-102. [PMID: 29241734 DOI: 10.1016/j.toxlet.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 11/26/2022]
Abstract
Maduramicin, a polyether ionophore antibiotic used as an anticoccidial agent in poultry industry, has been reported to be toxic to animals and humans if improperly used or by accident, resulting in heart failure, skeletal muscle degeneration and even death. However, the molecular mechanism underlying its cardiotoxicity remains elusive. Mitogen activated protein kinases (MAPKs) and protein phosphatases signaling pathways have been documented to be involved in the cell survival regulation. The present study was set to investigate the role of above pathways in maduramicin-induced myocardial cytotoxicity. Here we observed that maduramicin inhibited cell proliferation and reduced cell viability in H9c2 cells. Furthermore, we found that maduramicin suppressed extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in a concentration-dependent manner. Ectopic expression of constitutively active MKK1 partially prevented the cytotoxicity of maduramicin. Moreover, we showed that maduramicin concentration-dependently activated protein phosphatase 2A (PP2A) by decreasing its phosphorylation and increasing its methylation. Inhibition of PP2A with okadaic acid attenuated maduramicin's toxicity. Overexpression of dominant negative PP2A partially rescued cells from maduramicin-inhibited ERK1/2 contributing to its cytotoxicity. The results indicate that maduramicin activates PP2A and consequently inhibits ERK1/2, leading to cytotoxicity in H9c2 cells. Our data suggest that manipulation of PP2A-ERK1/2 pathway may be a potential approach to prevent maduramicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xin Chen
- Postdoctoral Mobile Station of Biology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, PR China; Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China.
| | - Shanxiang Jiang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China.
| | | |
Collapse
|