1
|
Karakosta C, Samiotaki M, Panayotou G, Papakonstantinou D, Moschos MM. Role of actin-binding proteins in cataract formation. Cytoskeleton (Hoboken) 2025; 82:98-110. [PMID: 38958111 PMCID: PMC11904859 DOI: 10.1002/cm.21889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Actin has been implicated in lens opacification; however, the specific actin-related pathways involved in cataracts remain unelucidated. In this study, actin-related proteome changes and signaling pathways involved in the development of cataracts were evaluated. METHODS The anterior capsule and phacoemulsification (phaco) cassette contents were collected during cataract surgery from 11 patients with diabetic cataract (DC), 12 patients with age-related cataract (ARC), and seven patients with post-vitrectomy cataract (PVC). Untargeted, global identification and quantification of proteins was performed through liquid chromatography-mass spectrometry with the data-independent acquisition (DIA). RESULTS In phaco cassette samples, proteins with significantly lower expression in ARC than in DC and PVC were involved in various pathways, including actin binding, actin cytoskeleton reorganization, actin filament capping, cortical actin cytoskeleton organization, and small GTPase-mediated signal transduction pathways. In anterior capsules, proteins with significantly lower expression in ARC than in DC and PVC were involved in actin binding and actin cytoskeleton reorganization pathways. CONCLUSION Actin cytoskeleton and actin-binding proteins are involved in lens fiber elongation and differentiation. Rho GTPases contribute to actin cytoskeletal reorganization, and their inactivation is linked to abnormal lens fiber migration. These findings link actin binding to lens fiber integrity, lens opacification, and cataracts.
Collapse
Affiliation(s)
- Christina Karakosta
- School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | | | - George Panayotou
- Biomedical Sciences Research Center Alexander FlemingAtticaGreece
| | - Dimitrios Papakonstantinou
- 1st University Eye Clinic, G. Gennimatas General Hospital of AthensNational and Kapodistrian University of AthensAthensGreece
| | - Marilita M. Moschos
- Department of Electrophysiology of Vision1st University Eye Clinic of AthensAthensGreece
| |
Collapse
|
2
|
Zhang Y, Hu Y, Su D, Fu Y, Chen X, Zhang X, Zheng S, Ma X, Hu S. Downregulation of RORl via STAT3 and P300 Promotes P38 Pathway- Dependent Lens Epithelial Cells Apoptosis in Age-Related Cataract. Biochem Genet 2025:10.1007/s10528-025-11067-6. [PMID: 40019609 DOI: 10.1007/s10528-025-11067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
Lens Epithelial Cells (LECs) apoptosis is a critical driving factor of age-related cataract (ARC), but the specific molecular mechanisms remain undefined. Herein, a novel target of ROR1 regulation was identified, the mechanism was elucidated by which ROR1 and its associated pathway proteins influence hydrogen peroxide (H2O2)-induced apoptosis of LECs in ARC. We found decreased ROR1 expression in human cataract lens capsules compared to normal ones, the trend was also observed in young and old mice. Experiments including CCK8, Hoechst 33,342 staining, and Western blot analysis confirmed that reduced ROR1 levels were linked to H2O2-induced apoptosis in HLEB3 cells. To investigate its effects on cell viability and apoptosis, we created a ROR1 interference plasmid and an overexpression plasmid. The overexpression of ROR1 effectively inhibited H2O2-induced apoptosis of HLEB3 cells while ROR1 knockdown lowered the viability and increased the apoptosis of HLEB3 cells. Additionally, increased P38 phosphorylation was identified as a contributor to lens epithelial cell apoptosis and ARC, with ROR1 influencing this through the phosphorylation of the P38. Similarly, the relationships between P300 and STAT3, upstream of ROR1, in apoptosis of LECs and ARC were explored, and it was found that P300 and STAT3 were negatively correlated with apoptosis of LECs and ARC. In addition, the double luciferase report showed that P300 and STAT3 synergistically up-regulated the expression of ROR1. Overall, this study demonstrates that the STAT3/ROR1/P38 pathway mitigates apoptosis of LECs in ARC progression, offering a novel strategy for ARC prevention and treatment in clinical settings.
Collapse
Affiliation(s)
- Yue Zhang
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yuzhu Hu
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Dongmei Su
- Mudanjiang Medical University, Mudanjiang, 157011, China
- Department of Genetics, Health Department, National Research Institute for Family Planning, Beijing, 100081, China
- Graduate School, Peking Union Medical College, Beijing, 100081, China
| | - Yanjiang Fu
- Daqing Ophthalmology Hospital, Daqing, 163711, China
| | - Xiaoya Chen
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiao Zhang
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Shunfei Zheng
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xu Ma
- Department of Genetics, Health Department, National Research Institute for Family Planning, Beijing, 100081, China.
- Graduate School, Peking Union Medical College, Beijing, 100081, China.
| | - Shanshan Hu
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, 157011, China.
| |
Collapse
|
3
|
Qin Y, Liu H, Wu H. Cellular Senescence in Health, Disease, and Lens Aging. Pharmaceuticals (Basel) 2025; 18:244. [PMID: 40006057 PMCID: PMC11859104 DOI: 10.3390/ph18020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Cellular senescence is a state of irreversible cell cycle arrest that serves as a critical regulator of tissue homeostasis, aging, and disease. While transient senescence contributes to development, wound healing, and tumor suppression, chronic senescence drives inflammation, tissue dysfunction, and age-related pathologies, including cataracts. Lens epithelial cells (LECs), essential for maintaining lens transparency, are particularly vulnerable to oxidative stress-induced senescence, which accelerates lens aging and cataract formation. This review examines the dual role of senescence in LEC function and its implications for age-related cataractogenesis, alongside emerging senotherapeutic interventions. Methods: This review synthesizes findings on the molecular mechanisms of senescence, focusing on oxidative stress, mitochondrial dysfunction, and the senescence-associated secretory phenotype (SASP). It explores evidence linking LEC senescence to cataract formation, highlighting key studies on stress responses, DNA damage, and antioxidant defense. Recent advances in senotherapeutics, including senolytics and senomorphics, are analyzed for their potential to mitigate LEC senescence and delay cataract progression. Conclusions: LEC senescence is driven by oxidative damage, mitochondrial dysfunction, and impaired redox homeostasis. These factors activate senescence path-ways, including p53/p21 and p16/Rb, resulting in cell cycle arrest and SASP-mediated inflammation. The accumulation of senescent LECs reduces regenerative capacity, disrupts lens homeostasis, and contributes to cataractogenesis. Emerging senotherapeutics, such as dasatinib, quercetin, and metformin, show promise in reducing the senescent cell burden and modulating the SASP to preserve lens transparency.
Collapse
Affiliation(s)
- Ying Qin
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (Y.Q.); (H.L.)
| | - Haoxin Liu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (Y.Q.); (H.L.)
| | - Hongli Wu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (Y.Q.); (H.L.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
4
|
Johnson GA, Krishnamoorthy RR, Nagaraj RH, Stankowska DL. A Neuroprotective Peptide Modulates Retinal cAMP Response Element-Binding Protein (CREB), Synapsin I (SYN1), and Growth-Associated Protein 43 (GAP43) in Rats with Silicone Oil-Induced Ocular Hypertension. Biomolecules 2025; 15:219. [PMID: 40001522 PMCID: PMC11852426 DOI: 10.3390/biom15020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/17/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
This study evaluated the neuroprotective potential of peptain-1 conjugated to a cell-penetrating peptide (CPP-P1) in an ocular hypertension model of glaucoma. Brown Norway (BN) rats were subjected to intraocular pressure (IOP) elevation via intracameral injection of silicone oil (SO), with concurrent intravitreal injections of either CPP-P1 or a vehicle. Retinal cross-sections were analyzed for markers of neuroprotection, including cAMP response element-binding protein (CREB), phosphorylated CREB (p-CREB), growth-associated protein-43 (GAP43), synapsin-1 (SYN1), and superoxide dismutase 2 (SOD2). Hematoxylin and eosin staining was used to assess retinal-layer thickness. SO-treated rats exhibited significant reductions in the thickness of the inner nuclear layer (INL, 41%, p = 0.016), inner plexiform layer (IPL, 52%, p = 0.0002), and ganglion cell layer (GCL, 57%, p = 0.001). CPP-P1 treatment mitigated these reductions, preserving INL thickness by 32% (p = 0.059), IPL by 19% (p = 0.119), and GCL by 31% (p = 0.057). Increased levels of CREB (p = 0.17) and p-CREB (p = 0.04) were observed in IOP-elevated, CPP-P1-treated retinas compared to IOP-elevated, vehicle-treated retinas. Although overall GAP43 levels were low, there was a modest increase in expression within the IPL and GCL in SO- and CPP-P1-treated retinas (p = 0.15 and p = 0.09, respectively) compared to SO- and vehicle-treated retinas. SO injection reduced SYN1 expression in both IPL and GCL (p = 0.01), whereas CPP-P1 treatment significantly increased SYN1 levels in the IPL (p = 0.03) and GCL (p = 0.002). While SOD2 expression in the GCL was minimal across all groups, a trend toward increased expression was observed in CPP-P1-treated animals (p = 0.16). The SO model was replicated with SO removal after 7 days and monitored for 21 days followed by retinal flat-mount preparation to assess retinal ganglion cell (RGC) survival. A 42% loss in RGCs (p = 0.009) was observed in SO-injected eyes, which were reduced by approximately 37% (p = 0.03) with CPP-P1 treatment. These findings suggest that CPP-P1 is a promising neuroprotective agent that promotes retinal ganglion cell survival and the preservation of other retinal neurons, potentially through enhanced CREB signaling in a rat model of SO-induced ocular hypertension.
Collapse
Affiliation(s)
- Gretchen A. Johnson
- North Texas Eye Research Institute, College of Biomedical and Translational Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA (R.R.K.)
- Department of Microbiology, Immunology, and Genetics, College of Biomedical and Translational Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Raghu R. Krishnamoorthy
- North Texas Eye Research Institute, College of Biomedical and Translational Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA (R.R.K.)
- Department of Pharmacology and Neuroscience, College of Biomedical and Translational Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ram H. Nagaraj
- Department of Ophthalmology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA;
| | - Dorota L. Stankowska
- North Texas Eye Research Institute, College of Biomedical and Translational Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA (R.R.K.)
- Department of Microbiology, Immunology, and Genetics, College of Biomedical and Translational Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
5
|
Guo Y, Xiong T, Yan H, Zhang RX. Correlation of precisely fabricated geometric characteristics of DNA-origami nanostructures with their cellular entry in human lens epithelial cells. DISCOVER NANO 2025; 20:13. [PMID: 39841331 PMCID: PMC11754578 DOI: 10.1186/s11671-025-04188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/10/2025] [Indexed: 01/23/2025]
Abstract
Human lens epithelial cells (hLECs) are critical for lens transparency, and their aberrant metabolic activity and gene expression can lead to cataract. Intracellular delivery to hLECs, especially to sub-cellular organelles (e.g., mitochondrion and nucleus), is a key step in engineering cells for cell- and gene- based therapies. Despite a broad variety of nano- and microparticles can enter cells, their spatial characteristics relevant to cellular uptake and localization remains elusive. To investigate cellular internalization of nanostructures in hLECs, herein, DNA nanotechnology was exploited to precisely fabricate four distinct, mass-controlled DNA-origami nanostructures (DONs) through computer-aided design. Ensembled DONs included the rods, ring, triangle, and octahedron with defined geometric parameters of accessible surface area, effective volume, compactness, aspect ratio, size and vertex number. Atomic force microscopy and agarose gel electrophoresis showed that four DONs self-assembled within 3.5h with up to 59% yield and exhibited structural intactness in cell culture medium for 4 h. Flow cytometry analysis of four Cy5-labelled DONs in hLECs HLE-B3 found time-dependent cellular uptake over 2 h, among which the octahedron and triangle had higher cellular accumulation than the rod and ring. More importantly, the vertex number among other geometric parameters was positively correlated with cellular entry. Confocal images further revealed that four DONs had preferential localization at mitochondria to nucleus at 2 h in HLE-B3 cells, and the degree of their biodistribution varied among DONs as evidenced by Manders' correlation coefficient. This study demonstrates the DONs dependent cellular uptake and intracellular compartment localization in hLECs, heralding the future design of structure-modulating delivery of nanomedicine for ocular therapy.
Collapse
Affiliation(s)
- Yexuan Guo
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China
| | - Tianze Xiong
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China
| | - Hong Yan
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China.
- Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, 21 Jiefang Road, Xi'an, 710004, Shaanxi, China.
| | - Rui Xue Zhang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China.
| |
Collapse
|
6
|
Chychko L, Son HS, Friedrich M, Khoramnia R, Auffarth GU, Augustin VA. Molecular Changes in Aqueous Humor Associated with Inflammation Following Cataract Surgery in Patients with Fuchs' Endothelial Corneal Dystrophy. Ophthalmol Ther 2025; 14:197-209. [PMID: 39581953 PMCID: PMC11724821 DOI: 10.1007/s40123-024-01072-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
INTRODUCTION To evaluate the anterior chamber (AC) inflammation in the early postoperative period after cataract surgery and before Descemet membrane endothelial keratoplasty (DMEK) by quantifying oxidative stress and inflammatory mediators in aqueous humor of patients with Fuchs' endothelial corneal dystrophy (FECD). METHODS In this prospective single-center study, 15 patients with FECD underwent cataract surgery and DMEK in a two-stage procedure. Aqueous humor was collected from the AC at the beginning of cataract surgery and 3 months later at the beginning of DMEK. In the control group, which consisted of 15 age-matched phakic patients without FECD, aqueous humor was only collected at the beginning of cataract surgery. Mediators of postoperative inflammation including TNF-α, VEGF, IL-2, IL-1 β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, GM-CSF, IFN-γ, CXCL5/ENA-78, FGF-basic, G-CSF, IL-1-α, IL-1-ra, IL-17, CCL2/MCP-1, CCL3/MIP-1a, CCL4/MIP-1b, TPO, TGF-β-1, TGF-β-2, and TGF-β-3 concentrations were measured using a Multiplex-Array-System. RESULTS The concentration of TNF-α (p = 0.021), IL-6 (p = 0.005), IL-8 (p = 0.001), CXCL5/ENA78 (p = 0.002), CCL2/MCP-1 (p = 0.001) and CCL4/MIP-1b (p = 0.037) were significantly higher 3 months after cataract surgery at the beginning of DMEK compared to control group at beginning of cataract surgery. The levels of IL-2, IL-5, IL-8, IL-10, and IL-1-α were significantly higher in phakic eyes in the control group (p < 0.05) before cataract surgery. CONCLUSIONS The present study indicates significantly increased proinflammatory cytokines 3 months after cataract surgery in eyes with FECD. Our findings suggest postoperative inflammation in the AC up to 3 months after cataract surgery. Therefore, it may be reasonable to combine cataract surgery with DMEK in cataract patients with FECD.
Collapse
Affiliation(s)
- Lizaveta Chychko
- David J. Apple International Laboratory for Ocular Pathology and International Vision Correction Research Centre (IVCRC), Department of Ophthalmology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Hyeck-Soo Son
- David J. Apple International Laboratory for Ocular Pathology and International Vision Correction Research Centre (IVCRC), Department of Ophthalmology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Maximilian Friedrich
- David J. Apple International Laboratory for Ocular Pathology and International Vision Correction Research Centre (IVCRC), Department of Ophthalmology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Ramin Khoramnia
- David J. Apple International Laboratory for Ocular Pathology and International Vision Correction Research Centre (IVCRC), Department of Ophthalmology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Gerd U Auffarth
- David J. Apple International Laboratory for Ocular Pathology and International Vision Correction Research Centre (IVCRC), Department of Ophthalmology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Victor A Augustin
- David J. Apple International Laboratory for Ocular Pathology and International Vision Correction Research Centre (IVCRC), Department of Ophthalmology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
7
|
Johnson GA, Kodati B, Nahomi RB, Pham JH, Krishnamoorthy VR, Phillips NR, Krishnamoorthy RR, Nagaraj RH, Stankowska DL. Mechanisms contributing to inhibition of retinal ganglion cell death by cell permeable peptain-1 under glaucomatous stress. Cell Death Discov 2024; 10:305. [PMID: 38942762 PMCID: PMC11213865 DOI: 10.1038/s41420-024-02070-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024] Open
Abstract
This study assesses the neuroprotective potential of CPP-P1, a conjugate of an anti-apoptotic peptain-1 (P1) and a cell-penetrating peptide (CPP) in in vitro, in vivo, and ex vivo glaucoma models. Primary retinal ganglion cells (RGCs) were subjected to either neurotrophic factor (NF) deprivation for 48 h or endothelin-3 (ET-3) treatment for 24 h and received either CPP-P1 or vehicle. RGC survival was analyzed using a Live/Dead assay. Axotomized human retinal explants were treated with CPP-P1 or vehicle for seven days, stained with RGC marker RBPMS, and RGC survival was analyzed. Brown Norway (BN) rats with elevated intraocular pressure (IOP) received weekly intravitreal injections of CPP-P1 or vehicle for six weeks. RGC function was evaluated using a pattern electroretinogram (PERG). RGC and axonal damage were also assessed. RGCs from ocular hypertensive rats treated with CPP-P1 or vehicle for seven days were isolated for transcriptomic analysis. RGCs subjected to 48 h of NF deprivation were used for qPCR target confirmation. NF deprivation led to a significant loss of RGCs, which was markedly reduced by CPP-P1 treatment. CPP-P1 also decreased ET-3-mediated RGC death. In ex vivo human retinal explants, CPP-P1 decreased RGC loss. IOP elevation resulted in significant RGC loss in mid-peripheral and peripheral retinas compared to that in naive rats, which was significantly reduced by CPP-P1 treatment. PERG amplitude decline in IOP-elevated rats was mitigated by CPP-P1 treatment. Following IOP elevation in BN rats, the transcriptomic analysis showed over 6,000 differentially expressed genes in the CPP-P1 group compared to the vehicle-treated group. Upregulated pathways included CREB signaling and synaptogenesis. A significant increase in Creb1 mRNA and elevated phosphorylated Creb were observed in CPP-P1-treated RGCs. Our study showed that CPP-P1 is neuroprotective through CREB signaling enhancement in several settings that mimic glaucomatous conditions. The findings from this study are significant as they address the pressing need for the development of efficacious therapeutic strategies to maintain RGC viability and functionality associated with glaucoma.
Collapse
Affiliation(s)
- Gretchen A Johnson
- North Texas Eye Research Institute, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Bindu Kodati
- North Texas Eye Research Institute, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Pharmacology and Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Rooban B Nahomi
- Department of Ophthalmology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Jennifer H Pham
- North Texas Eye Research Institute, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - Nicole R Phillips
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Raghu R Krishnamoorthy
- North Texas Eye Research Institute, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Pharmacology and Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ram H Nagaraj
- Department of Ophthalmology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Dorota L Stankowska
- North Texas Eye Research Institute, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
8
|
Guo M, Su F, Chen Y, Su B. Methyltransferase METTL3-mediated maturation of miR-4654 facilitates high glucose-induced apoptosis and oxidative stress in lens epithelial cells via decreasing SOD2. Chem Biol Drug Des 2024; 103:e14491. [PMID: 38404215 DOI: 10.1111/cbdd.14491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/23/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
N6-methyladenosine (m6 A) modification has been reported to have roles in modulating the development of diabetic cataract (DC). Methyltransferase-like 3 (METTL3) is a critical m6 A methyltransferase involving in m6 A modification activation. Here, we aimed to explore the action and mechanism of METTL3-mediated maturation of miR-4654 in DC progression. Human lens epithelial cells (HLECs) were exposed to high glucose (HG) to imitate DC condition in vitro. Levels of genes and proteins were tested via qRT-PCR and western blotting assays. The proliferation and apoptosis of HLECs were evaluated by cell counting kit-8, 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays, respectively. Oxidative stress was analyzed by detecting the contents of reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA). The binding of miR-4654 and SOD2 was confirmed by dual-luciferase reporter assay. The m6 A-RNA immunoprecipitation (MeRIP) assay detected the m6 A modification profile. Thereafter, we found that miR-4654 expression was elevated in DC samples and HG-induced HLECs. MiR-4654 knockdown reversed HG-mediated apoptosis and oxidative stress in HLECs. Mechanistically, miR-4654 directly targeted SOD2, silencing of SOD2 abolished the protective effects of miR-4654 knockdown on HLECs under HG condition. In addition, METTL3 induced miR-4654 maturation through promoting pri-miR-4654 m6 A modification, thereby increasing miR-4654 content in HLECs. METTL3 was highly expressed in DC samples and HG-induced HLECs, METTL3 deficiency protected HLECs against HG-mediated apoptotic and oxidative injury via down-regulating miR-4654. In all, METTL3 induced miR-4654 maturation in a m6 A-dependent manner, which was then reduced SOD2 expression, thus promoting apoptosis and oxidative stress in HLECs, suggesting a novel path for DC therapy.
Collapse
Affiliation(s)
- Ming Guo
- Department of Ophthalmology, Jingzhou Hospital, Yangtze University, (Jingzhou Central Hospital), Jingzhou, Hubei, China
| | - Fanfan Su
- Department of Ophthalmology, Jingzhou Hospital, Yangtze University, (Jingzhou Central Hospital), Jingzhou, Hubei, China
| | - Yao Chen
- Department of Ophthalmology, Jingzhou Hospital, Yangtze University, (Jingzhou Central Hospital), Jingzhou, Hubei, China
| | - Bo Su
- Department of Pathology, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
9
|
Cai L, Han XY, Li D, Ma DM, Shi YM, Lu Y, Yang J. Analysis of N6-methyladenosine-modified mRNAs in diabetic cataract. World J Diabetes 2023; 14:1077-1090. [PMID: 37547588 PMCID: PMC10401451 DOI: 10.4239/wjd.v14.i7.1077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Cataracts remain a prime reason for visual disturbance and blindness all over the world, despite the capacity for successful surgical replacement with artificial lenses. Diabetic cataract (DC), a metabolic complication, usually occurs at an earlier age and progresses faster than age-related cataracts. Evidence has linked N6-methyladenosine (m6A) to DC progression. However, there exists a lack of understanding regarding RNA m6A modifications and the role of m6A in DC pathogenesis.
AIM To elucidate the role played by altered m6A and differentially expressed mRNAs (DEmRNAs) in DC.
METHODS Anterior lens capsules were collected from the control subjects and patients with DC. M6A epitranscriptomic microarray was performed to investigate the altered m6A modifications and determine the DEmRNAs. Through Gene Ontology and pathway enrichment (Kyoto Encyclopedia of Genes and Genomes) analyses, the potential role played by dysregulated m6A modification was predicted. Real-time polymerase chain reaction was further carried out to identify the dysregulated expression of RNA methyltransferases, demethylases, and readers.
RESULTS Increased m6A abundance levels were found in the total mRNA of DC samples. Bioinformatics analysis predicted that ferroptosis pathways could be associated with m6A-modified mRNAs. The levels of five methylation-related genes-RBM15, WTAP, ALKBH5, FTO, and YTHDF1-were upregulated in DC samples. Upregulation of RBM15 expression was verified in SRA01/04 cells with high-glucose medium and in samples from DC patients.
CONCLUSION M6a mRNA modifications may be involved in DC progression via the ferroptosis pathway, rendering novel insights into therapeutic strategies for DC.
Collapse
Affiliation(s)
- Lei Cai
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
- Visual Rehabilitation Professional Committee, Chinese Association of Rehabilitation Medicine, Shanghai 200031, China
| | - Xiao-Yan Han
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
- Visual Rehabilitation Professional Committee, Chinese Association of Rehabilitation Medicine, Shanghai 200031, China
| | - Dan Li
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
- Visual Rehabilitation Professional Committee, Chinese Association of Rehabilitation Medicine, Shanghai 200031, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200031, China
| | - Dong-Mei Ma
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
- Visual Rehabilitation Professional Committee, Chinese Association of Rehabilitation Medicine, Shanghai 200031, China
| | - Yu-Meng Shi
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
- Visual Rehabilitation Professional Committee, Chinese Association of Rehabilitation Medicine, Shanghai 200031, China
| | - Yi Lu
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
- Visual Rehabilitation Professional Committee, Chinese Association of Rehabilitation Medicine, Shanghai 200031, China
| | - Jin Yang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
- Visual Rehabilitation Professional Committee, Chinese Association of Rehabilitation Medicine, Shanghai 200031, China
| |
Collapse
|
10
|
Sakallioğlu AK, Alacamli G, Sattarpanah S, Guclu H. Evaluation of the structural changes of uveitis patients by optical biometry. Rom J Ophthalmol 2023; 67:238-243. [PMID: 37876515 PMCID: PMC10591429 DOI: 10.22336/rjo.2023.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/26/2023] Open
Abstract
Objective (Aim): To observe the ocular structural changes in active and inactive uveitis patients. Methods: This retrospective study involved 30 patients (32 eyes) with anterior and intermediate uveitis cases and 54 eyes of 54 cases in a control group, who were admitted to the Ophthalmology Department at Trakya University. In the study group, 14 patients were females, 16 patients were males and in the control group 26 volunteers were females, and 28 volunteers were male of the 54 volunteers. Anterior chamber depth, axial length, intraocular pressure, lens thickness, central corneal thickness, steep and flat values in keratometry, corrected visual acuity in both eyes, anterior chamber cells, and vitreous cells were measured and compared between three groups (two uveitis groups - active and inactive - and control group). Results: In the comparison of the median values of axial length, central corneal thickness, and steep and flat values of keratometry, the values of the patients with active uveitis were higher than the ones in the control group in each parameter, but no significant difference was observed. The anterior chamber depth parameter value was higher, the lens thickness value was lower in patients with active uveitis than the values in the control group and the differences were statistically significant (p<0,05). No significant structural differences in the values of the active and inactive group patients (p>0,05) were observed. Conclusions: Only lens thickness and anterior chamber depth parameters were statistically significant in patients with active uveitis, compared with the inactive uveitis group. Anterior chamber depth measurement values were higher and lens thickness measurement values were lower in patients with active uveitis when compared with the control group. Abbreviations: AAU = Acute anterior uveitis, CAU = Chronic Anterior Uveitis, AC = Anterior Chamber, IOP = Intraocular Pressure, IVCM = in vivo Confocal Microscopy, AS-OCT = Anterior Segment Optical Coherence Tomography, UBM = Ultrasound Biomicroscopy, LFP = Laser Flare Photometry, KP = Keratic Precipitates, OCT = Optical Coherence Tomography, AL = Axial Length, ACD = Anterior Chamber Depth, LT = Lens Thickness, CCT = Central Corneal Thickness, Ks = Steep Value of Keratometry, Kf = Flat Value of Keratometry, AUP = Active Uveitis Patients, IUP = Inactive Uveitis Patients, SUN = Standardization of Uveitis Nomenclature.
Collapse
Affiliation(s)
| | - Goksu Alacamli
- Department of Ophthalmology, Clinical County Emergency Hospital, Brăila, Romania
| | - Samira Sattarpanah
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
| | - Hande Guclu
- Department of Ophthalmology, Clinical County Emergency Hospital, Brăila, Romania
| |
Collapse
|
11
|
Huang Y, Ping X, Cui Y, Yang H, Bao J, Yin Q, Ailifeire H, Shentu X. Glycolysis Aids in Human Lens Epithelial Cells' Adaptation to Hypoxia. Antioxidants (Basel) 2023; 12:1304. [PMID: 37372033 PMCID: PMC10295312 DOI: 10.3390/antiox12061304] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Hypoxic environments are known to trigger pathological damage in multiple cellular subtypes. Interestingly, the lens is a naturally hypoxic tissue, with glycolysis serving as its main source of energy. Hypoxia is essential for maintaining the long-term transparency of the lens in addition to avoiding nuclear cataracts. Herein, we explore the complex mechanisms by which lens epithelial cells adapt to hypoxic conditions while maintaining their normal growth and metabolic activity. Our data show that the glycolysis pathway is significantly upregulated during human lens epithelial (HLE) cells exposure to hypoxia. The inhibition of glycolysis under hypoxic conditions incited endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) production in HLE cells, leading to cellular apoptosis. After ATP was replenished, the damage to the cells was not completely recovered, and ER stress, ROS production, and cell apoptosis still occurred. These results suggest that glycolysis not only performs energy metabolism in the process of HLE cells adapting to hypoxia, but also helps them continuously resist cell apoptosis caused by ER stress and ROS production. Furthermore, our proteomic atlas provides possible rescue mechanisms for cellular damage caused by hypoxia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xingchao Shentu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, China
| |
Collapse
|
12
|
Rauchman SH, Locke B, Albert J, De Leon J, Peltier MR, Reiss AB. Toxic External Exposure Leading to Ocular Surface Injury. Vision (Basel) 2023; 7:vision7020032. [PMID: 37092465 PMCID: PMC10123707 DOI: 10.3390/vision7020032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
The surface of the eye is directly exposed to the external environment, protected only by a thin tear film, and may therefore be damaged by contact with ambient particulate matter, liquids, aerosols, or vapors. In the workplace or home, the eye is subject to accidental or incidental exposure to cleaning products and pesticides. Organic matter may enter the eye and cause infection. Ocular surface damage can trigger a range of symptoms such as itch, discharge, hyperemia, photophobia, blurred vision, and foreign body sensation. Toxin exposure can be assessed clinically in multiple ways, including via measurement of tear production, slit-lamp examination, corneal staining, and conjunctival staining. At the cellular level, environmental toxins can cause oxidative damage, apoptosis of corneal and conjunctival cells, cell senescence, and impaired motility. Outcomes range from transient and reversible with complete healing to severe and sight-compromising structural changes. Classically, evaluation of tolerance and safety was carried out using live animal testing; however, new in vitro and computer-based, in silico modes are superseding the gold standard Draize test. This review examines how environmental features such as pollutants, temperature, and seasonality affect the ocular surface. Chemical burns to the eye are considered, and approaches to protect the ocular surface are detailed.
Collapse
Affiliation(s)
| | - Brandon Locke
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Jacqueline Albert
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Morgan R. Peltier
- Department of Psychiatry and Behavioral Health, Jersey Shore University Medical Center, Neptune, NJ 07753, USA
| | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| |
Collapse
|
13
|
Chen Y, Wang W, Liao H, Shi D, Tan Z, Shang X, Zhang X, Huang Y, Deng Q, Yu H, Yang X, He M, Zhu Z. Self-reported cataract surgery and 10-year all-cause and cause-specific mortality: findings from the National Health and Nutrition Examination Survey. Br J Ophthalmol 2023; 107:430-435. [PMID: 34697024 DOI: 10.1136/bjophthalmol-2021-319678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/14/2021] [Indexed: 11/04/2022]
Abstract
PURPOSE To investigate the association of self-reported cataract surgery with all-cause and cause-specific mortality using a large-scale population-based sample. METHODS Data from the 1999-2008 cycles of the National Health and Nutrition Examination Survey were used. A self-reported history of cataract surgery was considered a surrogate for the presence of clinically significant cataract surgery. Mortality data were ascertained from National Death Index records. Hazard ratios (HRs) and 95% confidence intervals (CIs) for survival were estimated using Cox proportional hazards regression models. RESULTS A total of 14 918 participants were included in the analysis. During a median follow-up of 10.8 (Interquartile range, IQR, 8.25-13.7) years, 3966 (19.1%) participants died. Participants with self-reported cataract surgery were more likely to die from all causes and specific causes (vascular disease, cancer, accident, Alzheimer's disease, respiratory disease, renal disease and others) compared with those without (all Ps <0.05). The association between self-reported cataract surgery and all-cause mortality remained significant after multiple adjustments (HR=1.13; 95% CI 1.01 to 1.26). For cause-specific mortality, multivariable Cox models showed that self-reported cataract surgery predicted a 36% higher risk of vascular-related mortality (HR=1.36; 95% CI 1.01 to 1.82). The association with other specific causes of mortality did not reach statistical significance after multiple adjustments. CONCLUSIONS This study found significant associations of self-reported cataract surgery with all-cause and vascular mortalities. Our findings provide potential insights into the pathogenic pathways underlying cataract.
Collapse
Affiliation(s)
- Yifan Chen
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China.,John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Huan Liao
- Neural Regeneration Group, Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | - Danli Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zachary Tan
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, East Melbourne, Victoria, Australia
| | - Xianwen Shang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China
| | - Xueli Zhang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China
| | - Yu Huang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China
| | | | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China
| | - Xiaohong Yang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China
| | - Mingguang He
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China .,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, East Melbourne, Victoria, Australia
| | - Zhuoting Zhu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Darian-Smith E, Safran SG, Coroneo MT. Zonular and capsular bag disorders: a hypothetical perspective based on recent pathophysiological insights. J Cataract Refract Surg 2023; 49:207-212. [PMID: 36700888 DOI: 10.1097/j.jcrs.0000000000001098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/13/2022] [Indexed: 01/27/2023]
Abstract
The purpose of this article was to look at the pathophysiology behind and devise a classification system for the causes of zonular apparatus-capsular bag (ZACB) insufficiency. Also discussed is dystrophic bag syndrome, including clinical cases and addressing where it lies on the ZACB spectrum. There has been interest in the emergence of in-the-bag intraocular lens (IOL) subluxation, the prevalence of which is increasing. There has also been a recent report of dead bag syndrome, which the authors believe is part of the same disease spectrum. The authors put these phenomena into perspective and provide a classification system based on the possible causes of what they have termed ZACB insufficiency. The basic aspects of capsular bag-IOL ocular pathophysiology are summarized with a focus on functional aspects and the consequences for IOL fastening. Within this framework, dystrophic bag syndrome is a form of primary capsular ZACB insufficiency. The contribution of factors such as intraocular drugs may suggest a reconsideration of agents used and their mode of application.
Collapse
Affiliation(s)
- Erica Darian-Smith
- From the Department of Ophthalmology, Prince of Wales Hospital at University of New South Wales, Sydney, Australia (Darian-Smith, Safran, Coroneo); Sydney University Medical School, Sydney, Australia (Darian-Smith); Capital Health System, New Jersey Surgery Centre, Pennington, New Jersey
| | | | | |
Collapse
|
15
|
Butein Inhibits the Glycation of α-Crystallin: An Approach in Prevention of Retinopathy. J Fluoresc 2023:10.1007/s10895-023-03147-w. [PMID: 36648626 DOI: 10.1007/s10895-023-03147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
The aggregation of lens proteins induced by glycation is one of the key drivers of diabetic retinopathy and development of diabetic cataracts. Moreover, glycation also causes numerous alterations not only to the tertiary structure of lens proteins but also to serum proteins. There are also evidences of covalent crosslinking among lens crystallins resulting in development of cataract. In this article, the inhibitory potential of butein was tested against the glucose induced glycation and the aggregation α-crystallin (α-cry). The results showed that there was inhibition of advanced glycation products (78.28%) and early glycation products (86.30%) following the treatment of butein. Additionally, the presence of butein caused a significant improvement in the tested biochemical markers of glycation. The treatment with butein reduced the free lysine modification to 23.67%. The secondary and tertiary structural distortions of α-cry were also protected. The mechanism of inhibition further investigated at the molecular level using biophysical and computational techniques. The interaction data showed the butein exhibited strong affinity towards the α-cry. The binding event was entropically driven and energetically favourable. The Gibb's free energy of the interaction was found to be -5.99 to -7.17 kcal mol-1. The binding site of butein in α-cry was deciphered by molecular docking and the dynamics was studied using molecular dynamics (MD) simulations. The simulation data showed that butein formed stable complex with α-cry under physiological conditions. Most of the tested parameters from molecular simulations, such as secondary structure, was found to be stable. The data clearly show the potential of butein in inhibiting the glycation induced aggregation of α-cry and hence can be developed as useful inhibitor in the management of diabetic cataract and retinopathy.
Collapse
|
16
|
Wei Z, Hao C, Chen JK, Gan L, Fan X. A tamoxifen-inducible Cre knock-in mouse for lens-specific gene manipulation. Exp Eye Res 2023; 226:109306. [PMID: 36372215 PMCID: PMC9839650 DOI: 10.1016/j.exer.2022.109306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Mouse models are valuable tools in studying lens biology and biochemistry, and the Cre-loxP system is the most used technology for gene targeting in the lens. However, numerous genes are indispensable in lens development. The conventional knockout method either prevents lens formation or causes simultaneous cataract formation, hindering the studies of their roles in lens structure, growth, metabolism, and cataractogenesis during lens aging. An inducible Cre-loxP mouse line is an excellent way to achieve such a purpose. We established a lens-specific Cre ERT2 knock-in mouse (LCEK), an inducible mouse model for lens-specific gene targeting in a spatiotemporal manner. LCEK mice were created by in-frame infusion of a P2A-CreERT2 at the C-terminus of the last coding exon of the gene alpha A crystallin (Cryaa). LCEK mice express tamoxifen-inducible Cre recombinase uniquely in the lens. Through ROSAmT/mG and two endogenous genes (Gclc and Rbpj) targeting, we found no Cre recombinase leakage in the lens epithelium, but 50-80% leakage was observed in the lens cortex and nucleus. Administration of tamoxifen almost completely abolished target gene expression in both lens epithelium and cortex but only mildly enhanced gene deletion in the lens nucleus. Notably, no overt leakage of Cre activity was detected in developing LCEK lens when bred with mice carrying loxP floxed genes that are essential for lens development. This newly generated LCEK line will be a powerful tool to target genes in the lens for gene functions study in lens aging, posterior capsule opacification (PCO), and other areas requiring precision gene targeting.
Collapse
Affiliation(s)
- Zongbo Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Caili Hao
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Lin Gan
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Xingjun Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
17
|
Reyes LP, Reyes TC, Dueñas Z, Duran D, Perdomo S, Avila MY. Expression of oxysterols in human lenses: Implications of the sterol pathway in age-related cataracts. J Steroid Biochem Mol Biol 2023; 225:106200. [PMID: 36272497 DOI: 10.1016/j.jsbmb.2022.106200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Lanosterol, an oxysterol molecule, has been proposed to help maintain lens transparency by inhibiting the formation of protein aggregates. This sterol is produced by the enzyme lanosterol synthase and is part of a metabolic pathway that forms cholesterol as a final step. Abnormalities in lanosterol synthase are responsible for congenital cataracts. The αA-crystallin protein, which acts as a molecular chaperone to lanosterol synthase, has been reported to have anti-protein aggregation, anti-inflammatory and anti-apoptotic properties. In this work, we evaluated the correlation of lanosterol synthase and αA-crystallin in human cataractous lenses with the grade of opacity, as well as the expression of lanosterol synthase, farnesyl DPP, geranyl synthase and squalene epoxidase genes. Lanosterol synthase and αA-crystallin were overexpressed in cataractous lenses as well as farnesyl-DP synthase, squalene epoxidase, lanosterol synthase and geranyl synthase genes in cataratous lenses in comparison with normal lenses. Our data confirm that lanosterol synthase and the sterol pathway are upregulated in cataractous lenses. This argues for a functional role of the oxysterol pathway and its products as an important mediator in the pathogenesis of human cataracts.
Collapse
Affiliation(s)
- Laura P Reyes
- Department of Ophthalmology, School of Medicine, Universidad Nacional de Colombia, Colombia
| | - Tatiana C Reyes
- Department of Ophthalmology, School of Medicine, Universidad Nacional de Colombia, Colombia; Department of Physiology, School of Medicine, Universidad Nacional de Colombia, Colombia
| | - Zulma Dueñas
- Department of Physiology, School of Medicine, Universidad Nacional de Colombia, Colombia
| | - Diego Duran
- Department of Ophthalmology, School of Medicine, Universidad Nacional de Colombia, Colombia
| | | | - Marcel Y Avila
- Department of Ophthalmology, School of Medicine, Universidad Nacional de Colombia, Colombia.
| |
Collapse
|
18
|
The Role of Small Heat Shock Proteins in Protein Misfolding Associated Motoneuron Diseases. Int J Mol Sci 2022; 23:ijms231911759. [PMID: 36233058 PMCID: PMC9569637 DOI: 10.3390/ijms231911759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Motoneuron diseases (MNDs) are neurodegenerative conditions associated with death of upper and/or lower motoneurons (MNs). Proteostasis alteration is a pathogenic mechanism involved in many MNDs and is due to the excessive presence of misfolded and aggregated proteins. Protein misfolding may be the product of gene mutations, or due to defects in the translation process, or to stress agents; all these conditions may alter the native conformation of proteins making them prone to aggregate. Alternatively, mutations in members of the protein quality control (PQC) system may determine a loss of function of the proteostasis network. This causes an impairment in the capability to handle and remove aberrant or damaged proteins. The PQC system consists of the degradative pathways, which are the autophagy and the proteasome, and a network of chaperones and co-chaperones. Among these components, Heat Shock Protein 70 represents the main factor in substrate triage to folding, refolding, or degradation, and it is assisted in this task by a subclass of the chaperone network, the small heat shock protein (sHSPs/HSPBs) family. HSPBs take part in proteostasis by bridging misfolded and aggregated proteins to the HSP70 machinery and to the degradative pathways, facilitating refolding or clearance of the potentially toxic proteins. Because of its activity against proteostasis alteration, the chaperone system plays a relevant role in the protection against proteotoxicity in MNDs. Here, we discuss the role of HSPBs in MNDs and which HSPBs may represent a valid target for therapeutic purposes.
Collapse
|
19
|
Xie Q, Cai J, Shao Z, Xue L, Song Y. 17 β-Estradiol Inhibits Oxidative Damage in Cataracts Rats via NOTCH1 Signaling. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study assesses the effect of 17β-estradiol on oxidative damage and NOTCH1 levels in cataract rats. 45 SD rats, aged 8–12 weeks old and weighted 225–312 g were assigned into healthy group, cataract group, and treatment group with n = 15 in each group
followed by analysis of the pathological morphology of rat lens by HE staining, cell apoptosis by flow cytometry, and the degree of turbidity under a microscope. Meanwhile, MDA and SOD levels were measured and NOTCH1, p53 and BAX expressions was detected by PT-PCR. The Healthy group rats showed
complete and orderly lens structure, whereas, the cataract group showed disorganized and distributed loosely lens, with the formation of vacuoles and the rupture and degradation of fibrocells. In the treatment group, the lens epithelial cells were orderly and evenly distributed, and the vacuoles
were significantly reduced. The apoptotic rate of lens epithelial cells in healthy group (1.79±0.11)% was significantly lower than that in cataract group (15.22±1.17)% (P < 0.05), which showed significantly higher apoptotic rate than treatment group (6.31±1.12)%
(P < 0.05). The degree of eye turbidity was increased in cataract group and reduced in treatment group compared with that in healthy group (P < 0.05). In addition, cataract group showed significantly reduced SOD and increased MDA level groups along with upregulated Notch1,
p53 and Bax (P < 0.05). However, treatment group showed significantly increased SOD, decreased MDA and downregulated Notch1, p53 and Bax. In conclusion, 17β-estradiol reduces the apoptosis rate of lens epithelial cells in cataract rats by reducing NOTCH1 level, thereby
enhancing the ability to resist oxidative damage.
Collapse
Affiliation(s)
- Qing Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China
| | - Jianru Cai
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China
| | - Zicheng Shao
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China
| | - Lidan Xue
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China
| | - Yu Song
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China
| |
Collapse
|
20
|
A Novel Mutation in the FYCO1 Gene Causing Congenital Cataract: Case Study of a Chinese Family. DISEASE MARKERS 2022; 2022:5838104. [PMID: 36061348 PMCID: PMC9439885 DOI: 10.1155/2022/5838104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022]
Abstract
Congenital cataract is the most important global cause of visual impairment in children. Autosomal dominant and autosomal recessive inheritance account for the majority of the hereditary nonsyndromic congenital cataract. The function of FYCO1 gene is to guide the transport of the microtubule-directed vesicles. Mutations in the FYCO1 gene may cause cataracts. We reported a novel nonsense mutation in FYCO1 (c.1411C > T, P. R471 ∗), which could cause nonsyndrome autosomal recessive congenital cataract. We underwent an ophthalmology examination of all participants and collected blood samples from all participants and extracted genomic DNAs. By whole exome sequencing, we found that this family carried an unreported mutation in the FYCO1 gene: c.1411C > T, P. R471 ∗. Sanger sequencing was performed to verify the mutation. We used ITASSER and PYMOL to predict and compare the structure and function of the mutated proteins. Using SIFT software and referring to the relevant guidelines of ACMG, the mutation was determined to be pathogenic. The models suggested that the nonsense mutation p.R471∗ resulted in a profound disruption of the FYCO1 protein structure. This report expands the locus information of the FYCO1 mutations.
Collapse
|
21
|
Xiong L, Sun Y, Huang J, Ma P, Wang X, Wang J, Chen B, Chen J, Huang M, Huang S, Liu Y. Long Non-Coding RNA H19 Prevents Lens Fibrosis through Maintaining Lens Epithelial Cell Phenotypes. Cells 2022; 11:cells11162559. [PMID: 36010635 PMCID: PMC9406623 DOI: 10.3390/cells11162559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
The integrity of lens epithelial cells (LECs) lays the foundation for lens function and transparency. By contrast, epithelial-mesenchymal transition (EMT) of LECs leads to lens fibrosis, such as anterior subcapsular cataracts (ASC) and fibrotic forms of posterior capsule opacification (PCO). However, the underlying mechanisms remain unclear. Here, we aimed to explore the role of long non-coding RNA (lncRNA) H19 in regulating TGF-β2-induced EMT during lens fibrosis, revealing a novel lncRNA-based regulatory mechanism. In this work, we identified that lncRNA H19 was highly expressed in LECs, but downregulated by exposure to TGF-β2. In both human lens epithelial explants and SRA01/04 cells, knockdown of H19 aggravated TGF-β2-induced EMT, while overexpressing H19 partially reversed EMT and restored lens epithelial phenotypes. Semi-in vivo whole lens culture and H19 knockout mice demonstrated the indispensable role of H19 in sustaining lens clarity through maintaining LEC features. Bioinformatic analyses further implied a potential H19-centered regulatory mechanism via Smad-dependent pathways, confirmed by in vitro experiments. In conclusion, we uncovered a novel role of H19 in inhibiting TGF-β2-induced EMT of the lens by suppressing Smad-dependent signaling, providing potential therapeutic targets for treating lens fibrosis.
Collapse
|
22
|
Kuwata C, Maejima T, Hakamata S, Yahagi S, Matsuoka T, Tsuchiya Y. Disruption of Fetal Eye Development Caused by Insulin-induced Maternal Hypoglycemia in Rats. Reprod Toxicol 2022; 112:68-76. [PMID: 35738499 DOI: 10.1016/j.reprotox.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/01/2022]
Abstract
We previously revealed that insulin-induced severe and long-lasting maternal hypoglycemia in rats caused anophthalmia and microphthalmia in fetuses; however, it remained unclear whether hypoglycemia-induced eye anomalies were developmental retardation or disruption, and when and how they developed. Hence, we induced hypoglycemia in pregnant Sprague-Dawley rats by injecting insulin from Days 6 to 11 of pregnancy and performed periodical histopathological examination of fetal eyes from embryonic days (E)10 to 20. On E10, optic vesicle had developed normally both in the control and insulin-treated group; however, on E11, optic cup (OC) had developed in the control group but not in the insulin-treated group. On E12, neural retina (NR), retinal pigmented epithelium (RPE), lens, and presumptive cornea had been observed in the control group. In contrast, lens pit and OC with remaining space between RPE and NR had developed in the insulin-treated group. From E13 to E15, developmental disruption characterized by defects, hypoplasia, and degeneration in the retina, lens, and cornea was observed in the insulin-treated group, resulting in anophthalmia or microphthalmia on E20. Moreover, the expression of MITF and chx10, which are essential for early eye development by expressing in the presumptive retina and lens and regulating each other's expression level, was ectopic and suppressed on E11. In conclusion, insulin-induced maternal hypoglycemia caused developmental disruption, but not simple developmental retardation of fetal eyes, and its trigger might be a failure of presumptive retina and lens to interact on E11.
Collapse
Affiliation(s)
- Chiharu Kuwata
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, Japan.
| | - Takanori Maejima
- Translational Science, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, Japan
| | - Shinobu Hakamata
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, Japan
| | - Satoko Yahagi
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, Japan
| | - Toshiki Matsuoka
- Translational Science, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, Japan
| | - Yoshimi Tsuchiya
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, Japan
| |
Collapse
|
23
|
Fu J, Hu X. Simvastatin alleviates epithelial‑mesenchymal transition and oxidative stress of high glucose‑induced lens epithelial cells in vitro by inhibiting RhoA/ROCK signaling. Exp Ther Med 2022; 23:420. [PMID: 35601076 PMCID: PMC9117960 DOI: 10.3892/etm.2022.11347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/18/2022] [Indexed: 11/06/2022] Open
Abstract
Diabetic cataracts (DC) is one of the main causes of blindness among patients with diabetes mellitus. The aim of the present study was to examine the effect of simvastatin on lens epithelial cells in DC and the underlying mechanism. The viability of SRA01/04 cells treated with different concentrations of simvastatin was detected using a Cell Counting Kit-8 assay before and after high glucose (HG) treatment. The expression levels of E-cadherin, N-cadherin, Vimentin and α-smooth muscle actin (α-SMA), proteins associated with epithelial-mesenchymal transition (EMT), in addition to RhoA, Rho-associated kinases (ROCK)1 and ROCK2, proteins related to RhoA/ROCK signaling, were also measured in SRA01/04 cells treated with HG and simvastatin, with or without U46619, using western blot analysis. DCFH-DA dyes, superoxide dismutase (SOD) and glutathione (GSH)/glutathione disulfide (GSSG) kits were used to measure the levels of oxidative stress parameters in SRA01/04 cells treated with HG and simvastatin with or without U46619. The cell viability of SRA01/04 cells treated with simvastatin was found to be significantly elevated after HG treatment. The protein expression levels of E-cadherin were increased but those of N-cadherin, Vimentin and α-SMA decreased after HG and simvastatin treatment, and this was reversed by U46619. The levels of SOD and GSH-GSSG were found to be increased whereas reactive oxygen species levels were decreased, effects that were reversed by U46619. Additionally, the protein expression levels of RhoA, ROCK1 and ROCK2 were markedly decreased. These findings provided evidence that simvastatin increased HG-induced SRA01/04 cell viability and exerted inhibitory effects on EMT and oxidative stress that occurs during DC.
Collapse
Affiliation(s)
- Jianming Fu
- Department of Ophthalmology, The Second People's Hospital of Yueqing, Wenzhou, Zhejiang 325608, P.R. China
| | - Xiaojie Hu
- Department of Ophthalmology, Wenzhou People's Hospital, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
24
|
Lledó VE, Alkozi HA, Sánchez-Naves J, Fernandez-Torres MA, Guzman-Aranguez A. Melatonin counteracts oxidative damage in lens by regulation of Nrf2 and NLRP3 inflammasome activity. Exp Eye Res 2021; 215:108912. [PMID: 34965405 DOI: 10.1016/j.exer.2021.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 11/04/2022]
Abstract
Oxidative stress, generated because of an imbalance between reactive oxygen species (ROS) generation and elimination, is associated with lens damage and cataract progression. ROS generation is known to activate NLRP3 (nucleotide-binding oligomerization domain-like receptor family, pyrin domain-cointaining 3) inflammasome, and is believed to be an important link between oxidative stress and inflammation, that is also related to cataract development. Potential oxidative hazard to the lens by white light-emitting diode (LED) light, a source of illumination commonly used nowadays, has been suggested, although available information is limited. In this work, we evaluated the cytotoxicity induced by hydrogen peroxide (an oxidative stressor agent) and white LED light in lens epithelial cells as well as melatonin ability to counteract the effects induced by them. Melatonin is a neurohormone secreted by different ocular structures that could be useful to alleviate oxidative damage induced by different oxidative stressors in lens. Particularly, the modulation of Nrf2 (nuclear erythroid 2-related factor)/Keap 1 (Kelch-like ECH-associated protein 1), an essential oxidative stress regulator, and NLRP3 activity by melatonin was evaluated in lens epithelial cells. ROS levels rose after white LED light exposure and cell viability was reduced after challenge with oxidative stressor agents. Melatonin prevented cell death triggered by hydrogen peroxide and white LED light, precluded ROS generation induced by white LED light and promoted antioxidant lens capacity through upregulation of Nrf2 protein levels and SOD activity. NLRP3, caspase-1 and IL1-β expression significantly increased in human lens cells exposed to H2O2 or irradiated with white LED light. Activation of NLRP3 inflammasome triggered by oxidative stressors was also abrogated by melatonin. Attenuation of inflammatory and cytotoxic effects induced by oxidative stressors provided by melatonin in lens indicate the interest of this molecule as a potential therapeutic agent for cataract prevention/management.
Collapse
Affiliation(s)
- Victoria Eugenia Lledó
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Hanan Awad Alkozi
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Sánchez-Naves
- Department of Ophthalmology, OPHTHALMEDIC and I.P.O. Institute of Ophthalmology, Balearic Island, Spain
| | - Miguel Angel Fernandez-Torres
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
25
|
Quan Y, Du Y, Tong Y, Gu S, Jiang JX. Connexin Gap Junctions and Hemichannels in Modulating Lens Redox Homeostasis and Oxidative Stress in Cataractogenesis. Antioxidants (Basel) 2021; 10:1374. [PMID: 34573006 PMCID: PMC8464761 DOI: 10.3390/antiox10091374] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
The lens is continuously exposed to oxidative stress insults, such as ultraviolet radiation and other oxidative factors, during the aging process. The lens possesses powerful oxidative stress defense systems to maintain its redox homeostasis, one of which employs connexin channels. Connexins are a family of proteins that form: (1) Hemichannels that mediate the communication between the intracellular and extracellular environments, and (2) gap junction channels that mediate cell-cell communication between adjacent cells. The avascular lens transports nutrition and metabolites through an extensive network of connexin channels, which allows the passage of small molecules, including antioxidants and oxidized wastes. Oxidative stress-induced post-translational modifications of connexins, in turn, regulates gap junction and hemichannel permeability. Recent evidence suggests that dysfunction of connexins gap junction channels and hemichannels may induce cataract formation through impaired redox homeostasis. Here, we review the recent advances in the knowledge of connexin channels in lens redox homeostasis and their response to cataract-related oxidative stress by discussing two major aspects: (1) The role of lens connexins and channels in oxidative stress and cataractogenesis, and (2) the impact and underlying mechanism of oxidative stress in regulating connexin channels.
Collapse
Affiliation(s)
| | | | | | | | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; (Y.Q.); (Y.D.); (Y.T.); (S.G.)
| |
Collapse
|
26
|
Satoh K, Takemura Y, Satoh M, Ozaki K, Kubota S. Loss of FYCO1 leads to cataract formation. Sci Rep 2021; 11:13771. [PMID: 34215815 PMCID: PMC8253827 DOI: 10.1038/s41598-021-93110-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 06/03/2021] [Indexed: 01/07/2023] Open
Abstract
Autophagy is a degradation process of cytoplasmic proteins and organelles trafficked to degradation vesicles known as autophagosomes. The conversion of LC3-I to LC3-II is an essential step of autophagosome formation, and FYCO1 is a LC3-binding protein that mediates autophagosome transport. The p62 protein also directly binds to LC3 and is degraded by autophagy. In the present study, we demonstrated that disrupting the FYCO1 gene in mice resulted in cataract formation. LC3 conversion decreased in eyes from FYCO1 knockout mice. Further, FYCO1 interacted with αA- and αB-crystallin, as demonstrated by yeast two-hybrid screening and immunoprecipitation analyses. In eyes from knockout mice, the soluble forms of αA- and αB-crystallin, the lens’s major protein components, decreased. In addition, p62 accumulated in eyes from FYCO1 knockout mice. Collectively, these findings suggested that FYCO1 recruited damaged α-crystallin into autophagosomes to protect lens cells from cataract formation.
Collapse
Affiliation(s)
- Kiyotoshi Satoh
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yukitoshi Takemura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Motohiko Satoh
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Kiyokazu Ozaki
- Laboratory of Pathology, Setsunan University, 45-1 Nagaotohge-cho, Hirakata, Osaka, Japan
| | - Shunichiro Kubota
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
27
|
Phadte AS, Sluzala ZB, Fort PE. Therapeutic Potential of α-Crystallins in Retinal Neurodegenerative Diseases. Antioxidants (Basel) 2021; 10:1001. [PMID: 34201535 PMCID: PMC8300683 DOI: 10.3390/antiox10071001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
The chaperone and anti-apoptotic activity of α-crystallins (αA- and αB-) and their derivatives has received increasing attention due to their tremendous potential in preventing cell death. While originally known and described for their role in the lens, the upregulation of these proteins in cells and animal models of neurodegenerative diseases highlighted their involvement in adaptive protective responses to neurodegeneration associated stress. However, several studies also suggest that chronic neurodegenerative conditions are associated with progressive loss of function of these proteins. Thus, while external supplementation of α-crystallin shows promise, their potential as a protein-based therapeutic for the treatment of chronic neurodegenerative diseases remains ambiguous. The current review aims at assessing the current literature supporting the anti-apoptotic potential of αA- and αB-crystallins and its potential involvement in retinal neurodegenerative diseases. The review further extends into potentially modulating the chaperone and the anti-apoptotic function of α-crystallins and the use of such functionally enhanced proteins for promoting neuronal viability in retinal neurodegenerative disease.
Collapse
Affiliation(s)
- Ashutosh S. Phadte
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (A.S.P.); (Z.B.S.)
| | - Zachary B. Sluzala
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (A.S.P.); (Z.B.S.)
| | - Patrice E. Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (A.S.P.); (Z.B.S.)
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
28
|
Hanafy BI, Cave GWV, Barnett Y, Pierscionek BK. Nanoceria Prevents Glucose-Induced Protein Glycation in Eye Lens Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1473. [PMID: 34206140 PMCID: PMC8228845 DOI: 10.3390/nano11061473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Cerium oxide nanoparticles (nanoceria) are generally known for their recyclable antioxidative properties making them an appealing biomaterial for protecting against physiological and pathological age-related changes that are caused by reactive oxygen species (ROS). Cataract is one such pathology that has been associated with oxidation and glycation of the lens proteins (crystallins) leading to aggregation and opacification. A novel coated nanoceria formulation has been previously shown to enter the human lens epithelial cells (HLECs) and protect them from oxidative stress induced by hydrogen peroxide (H2O2). In this work, the mechanism of nanoceria uptake in HLECs is studied and multiple anti-cataractogenic properties are assessed in vitro. Our results show that the nanoceria provide multiple beneficial actions to delay cataract progression by (1) acting as a catalase mimetic in cells with inhibited catalase, (2) improving reduced to oxidised glutathione ratio (GSH/GSSG) in HLECs, and (3) inhibiting the non-enzymatic glucose-induced glycation of the chaperone lens protein α-crystallin. Given the multifactorial nature of cataract progression, the varied actions of nanoceria render them promising candidates for potential non-surgical therapeutic treatment.
Collapse
Affiliation(s)
- Belal I. Hanafy
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Gareth W. V. Cave
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Yvonne Barnett
- Faculty of Heath, Education, Medicine and Social Care and Pharmaceutical Research Group, Medical Technology Research Centre, Anglia Ruskin University, Cambridgeshire CB1 1PT, UK;
| | - Barbara K. Pierscionek
- Faculty of Heath, Education, Medicine and Social Care and Pharmaceutical Research Group, Medical Technology Research Centre, Anglia Ruskin University, Cambridgeshire CB1 1PT, UK;
- School of Life Science and Education, Staffordshire University College Road, Stoke on Trent ST4 2DE, UK
| |
Collapse
|
29
|
Autophagy attenuates high glucose-induced oxidative injury to lens epithelial cells. Biosci Rep 2021; 40:222411. [PMID: 32186721 PMCID: PMC7109002 DOI: 10.1042/bsr20193006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/24/2020] [Accepted: 03/17/2020] [Indexed: 01/06/2023] Open
Abstract
Purpose: Autophagic dysfunction and abnormal oxidative stress are associated with cataract. The purpose of the present study was to investigate the changes of cellular autophagy and oxidative stress and their association in lens epithelial cells (LECs) upon exposure to high glucose. Methods: Autophagy and oxidative stress-related changes were detected in streptozotocin-induced Type 1 diabetic mice and normal mouse LECs incubated in high glucose conditions. Rapamycin at a concentration of 100 nm/l or 50 μM chloroquine was combined for analysis of the relationship between autophagy and oxidative stress. The morphology of LECs during autophagy was observed by transmission electron microscopy. The expressions of autophagy markers (LC3B and p62) were identified, as well as the key factors of oxidative stress (SOD2 and CAT) and mitochondrial reactive oxygen species (ROS) generation. Results: Transmission electron microscopy indicated an altered autophagy activity in diabetic mouse lens tissues with larger autophagosomes and multiple mitochondria. Regarding the expressions, LC3B was elevated, p62 was decreased first and then increased, and SOD2 and CAT were increased before a decrease during 4 months of follow-up in diabetic mice and 72 h of culture under high glucose for mouse LECs. Furthermore, rapamycin promoted the expressions of autophagy markers but alleviated those of oxidative stress markers, whereas chloroquine antagonized autophagy but enhanced oxidative stress by elevating ROS generation in LECs exposed to high glucose. Conclusions: The changes in autophagy and oxidative stress were fluctuating in the mouse LECs under constant high glucose conditions. Autophagy might attenuate high glucose-induced oxidative injury to LECs.
Collapse
|
30
|
Kreuzer M, Dučić T, Hawlina M, Andjelic S. Synchrotron-based FTIR microspectroscopy of protein aggregation and lipids peroxidation changes in human cataractous lens epithelial cells. Sci Rep 2020; 10:15489. [PMID: 32968091 PMCID: PMC7511928 DOI: 10.1038/s41598-020-72413-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Cataract is the leading cause of blindness worldwide but the mechanisms involved in the process of cataractogenesis are not yet fully understood. Two most prevalent types of age-related cataracts are nuclear (N) and cortical (C) cataracts. A common environmental factor in most age-related cataracts is believed to be oxidative stress. The lens epithelium, the first physical and biological barrier in the lens, is build from lens epithelial cells (LECs). LECs are important for the maintenance of lens transparency as they control energy production, antioxidative mechanisms and biochemical transport for the whole lens. The purpose of this study is to characterize compounds in LECs originated from N and C cataracts, by using the synchrotron radiation-based Fourier Transform Infrared (SR-FTIR) microspectroscopy, in order to understand the functional importance of their different bio-macromolecules in cataractogenesis. We used the SR-FTIR microspectroscopy setup installed on the beamline MIRAS at the Spanish synchrotron light source ALBA, where measurements were set to achieve single cell resolution, with high spectral stability and high photon flux. The results showed that protein aggregation in form of fibrils was notably pronounced in LECs of N cataracts, while oxidative stress and the lipids peroxidation were more pronounced in LECs of C cataracts.
Collapse
Affiliation(s)
- Martin Kreuzer
- CELLS-ALBA, Carrer de la Llum 2-26, Cerdanyola del Valles, 08290, Barcelona, Spain
| | - Tanja Dučić
- CELLS-ALBA, Carrer de la Llum 2-26, Cerdanyola del Valles, 08290, Barcelona, Spain.
| | - Marko Hawlina
- Eye Hospital, University Medical Centre, Grablovičeva 46, 1000, Ljubljana, Slovenia
| | - Sofija Andjelic
- Eye Hospital, University Medical Centre, Grablovičeva 46, 1000, Ljubljana, Slovenia.
| |
Collapse
|
31
|
Marakhonov AV, Voskresenskaya AA, Ballesta MJ, Konovalov FA, Vasilyeva TA, Blanco-Kelly F, Pozdeyeva NA, Kadyshev VV, López-González V, Guillen E, Ayuso C, Zinchenko RA, Corton M. Expanding the phenotype of CRYAA nucleotide variants to a complex presentation of anterior segment dysgenesis. Orphanet J Rare Dis 2020; 15:207. [PMID: 32791987 PMCID: PMC7427288 DOI: 10.1186/s13023-020-01484-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mutations in CRYAA, which encodes the α-crystallin protein, are associated with a spectrum of congenital cataract-microcornea syndromes. RESULTS In this study, we performed clinical examination and subsequent genetic analysis in two unrelated sporadic cases of different geographical origins presenting with a complex phenotype of ocular malformation. Both cases manifested bilateral microphthalmia and severe anterior segment dysgenesis, primarily characterized by congenital aphakia, microcornea, and iris hypoplasia/aniridia. NGS-based analysis revealed two novel single nucleotide variants occurring de novo and affecting the translation termination codon of the CRYAA gene, c.520T > C and c.521A > C. Both variants are predicted to elongate the C-terminal protein domain by one-third of the original length. CONCLUSIONS Our report not only expands the mutational spectrum of CRYAA but also identifies the genetic cause of the unusual ocular phenotype described in this report.
Collapse
Affiliation(s)
- Andrey V Marakhonov
- Research Centre for Medical Genetics, Moskvorechie Str., 1, Moscow, Russian Federation.
| | - Anna A Voskresenskaya
- Cheboksary Branch of the S. Fyodorov Eye Microsurgery Federal State Institution, Cheboksary, Russian Federation
| | - Maria Jose Ballesta
- Medical Genetics Department, University Hospital Virgen de la Arrixaca, Murcia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII - Instituto de Salud Carlos III, Madrid, Spain
| | - Fedor A Konovalov
- Independent Clinical Bioinformatics Laboratory, Moscow, Russian Federation
| | - Tatyana A Vasilyeva
- Research Centre for Medical Genetics, Moskvorechie Str., 1, Moscow, Russian Federation
| | - Fiona Blanco-Kelly
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII - Instituto de Salud Carlos III, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos n° 2, 28040, Madrid, Spain
| | - Nadezhda A Pozdeyeva
- Cheboksary Branch of the S. Fyodorov Eye Microsurgery Federal State Institution, Cheboksary, Russian Federation
| | - Vitaly V Kadyshev
- Research Centre for Medical Genetics, Moskvorechie Str., 1, Moscow, Russian Federation
| | - Vanesa López-González
- Medical Genetics Department, University Hospital Virgen de la Arrixaca, Murcia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII - Instituto de Salud Carlos III, Madrid, Spain
| | - Encarna Guillen
- Medical Genetics Department, University Hospital Virgen de la Arrixaca, Murcia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII - Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Ayuso
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII - Instituto de Salud Carlos III, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos n° 2, 28040, Madrid, Spain
| | - Rena A Zinchenko
- Research Centre for Medical Genetics, Moskvorechie Str., 1, Moscow, Russian Federation
| | - Marta Corton
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII - Instituto de Salud Carlos III, Madrid, Spain.
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos n° 2, 28040, Madrid, Spain.
| |
Collapse
|
32
|
Molnar KS, Dunyak BM, Su B, Izrayelit Y, McGlasson-Naumann B, Hamilton PD, Qian M, Covey DF, Gestwicki JE, Makley LN, Andley UP. Mechanism of Action of VP1-001 in cryAB(R120G)-Associated and Age-Related Cataracts. Invest Ophthalmol Vis Sci 2019; 60:3320-3331. [PMID: 31369034 PMCID: PMC6676924 DOI: 10.1167/iovs.18-25647] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose We previously identified an oxysterol, VP1-001 (also known as compound 29), that partially restores the transparency of lenses with cataracts. To understand the mechanism of VP1-001, we tested the ability of its enantiomer, ent-VP1-001, to bind and stabilize αB-crystallin (cryAB) in vitro and to produce a similar therapeutic effect in cryAB(R120G) mutant and aged wild-type mice with cataracts. VP1-001 and ent-VP1-001 have identical physicochemical properties. These experiments are designed to critically evaluate whether stereoselective binding to cryAB is required for activity. Methods We compared the binding of VP1-001 and ent-VP1-001 to cryAB using in silico docking, differential scanning fluorimetry (DSF), and microscale thermophoresis (MST). Compounds were delivered by six topical administrations to mouse eyes over 2 weeks, and the effects on cataracts and lens refractive measures in vivo were examined. Additionally, lens epithelial and fiber cell morphologies were assessed via transmission electron microscopy. Results Docking studies suggested greater binding of VP1-001 into a deep groove in the cryAB dimer compared with ent-VP1-001. Consistent with this prediction, DSF and MST experiments showed that VP1-001 bound cryAB, whereas ent-VP1-001 did not. Accordingly, topical treatment of lenses with ent-VP1-001 had no effect, whereas VP1-001 produced a statistically significant improvement in lens clarity and favorable changes in lens morphology. Conclusions The ability of VP1-001 to bind native cryAB dimers is important for its ability to reverse lens opacity in mouse models of cataracts.
Collapse
Affiliation(s)
- Kathleen S Molnar
- ViewPoint Therapeutics, South San Francisco, California, United States
| | - Bryan M Dunyak
- ViewPoint Therapeutics, South San Francisco, California, United States
| | - Bonnie Su
- ViewPoint Therapeutics, South San Francisco, California, United States
| | | | - Brittney McGlasson-Naumann
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Paul D Hamilton
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Mingxing Qian
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California at San Francisco, San Francisco, California, United States
| | - Leah N Makley
- ViewPoint Therapeutics, South San Francisco, California, United States
| | - Usha P Andley
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
33
|
Tekin K, Ozdamar Erol Y, Inanc M, Sargon MF, Cakar Ozdal P, Berker N. Ultrastructural Analysis of the Anterior Lens Epithelium in Cataracts Associated with Uveitis. Ophthalmic Res 2019; 63:213-221. [PMID: 31838467 DOI: 10.1159/000504497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate the transmission electron microscopic findings of lens epithelial cells (LECs) in patients with different subtypes of uveitis and to compare the findings with those in age-matched controls. METHODS In this prospective case-control study, the anterior lens capsules were taken from 47 eyes of 47 patients with uveitis of different subtypes (17 with Fuchs uveitis syndrome [FUS], 13 with -Behçet's uveitis, 10 with idiopathic uveitis, and 7 with herpetic keratouveitis) and from 15 eyes of 15 control patients. RESULTS In the FUS group, the LECs had homogeneous thickening and irregularity, with some small vacuoles and widespread, oval-shaped pigment clusters in some areas. In the Behçet uveitis group, there was evident thinning in the lens epithelium. The subepithelial tissue under the epithelium was thickened, and edematous areas were detected. In the idiopathic uveitis group, the LECs were thinner with small vacuoles, and the cubic structure of the LECs was transformed into a squamous one. Moreover, the LECs included some small vacuoles, similar to those in the FUS group. In the herpetic keratouveitis group, two prominent cell types were observed: (1) completely normal LECs and (2) degenerated-type LECs with pyknotic nuclei, condensation of chromatin, swelling in the cytoplasm, membrane ruptures, and intra-cytoplasmic inclusion bodies. In the control group, the LECs and all of their elements occurred in normal ultrastructural patterns, with the exception of a few small intraepithelial vacuoles, which were fewer in number and smaller than those in the FUS and idiopathic uveitis groups. CONCLUSION The electron microscopic analysis of LECs of patients with different subtypes of uveitis revealed significant ultrastructural alterations, which may be related to the summation of oxidative stress and intraocular inflammation.
Collapse
Affiliation(s)
- Kemal Tekin
- Ophthalmology Department, Ercis State Hospital, Van, Turkey,
| | - Yasemin Ozdamar Erol
- Ophthalmology Department, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| | - Merve Inanc
- Ophthalmology Department, Ercis State Hospital, Van, Turkey
| | | | - Pinar Cakar Ozdal
- Ophthalmology Department, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| | - Nilufer Berker
- Ophthalmology Department, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
34
|
Rats deficient in α-galactosidase A develop ocular manifestations of Fabry disease. Sci Rep 2019; 9:9392. [PMID: 31253878 PMCID: PMC6599056 DOI: 10.1038/s41598-019-45837-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022] Open
Abstract
Fabry disease is an X-linked lysosomal storage disease caused by deficiency of α-galactosidase A. Ocular findings, such as cornea verticillata, cataracts, and retinal vascular tortuosity, serve as important diagnostic markers. We aimed to evaluate ocular phenotypes in α-galactosidase A-deficient (Fabry) rats and hypothesized that these rats would manifest ocular signs similar to those observed in patients. Slit lamp biomicroscopy was used to evaluate the cornea and lens, and retinal vasculature was examined by fluorescein angiography in WT and Fabry rats. Mass spectrometry was used to characterize and quantify ocular glycosphingolipids, and histology and electron microscopy revealed the location of the glycosphingolipid storage. We found that Fabry rats developed corneal and lenticular opacities to a statistically greater degree than WT rats. Retinal vascular morphology did not appear grossly different, but there was vascular leakage in at least one Fabry rat. Fabry rat eyes accumulated substrates of α-galactosidase A, and these α-galactosyl glycoconjugates were found in corneal keratocytes, lens fibers, and retinal vascular endothelial cells. Electron-dense lamellar inclusions were observed in keratocytes. Because Fabry rats recapitulate many ocular phenotypes observed in patients, they can be used to study disease pathogenesis and determine whether ocular findings serve as noninvasive indicators of therapeutic efficacy.
Collapse
|
35
|
Abstract
Visual impairment leads to a decrease in quality of life. Cataract is the most commonly
observed ocular disease in humans that causes vision disorders. The risk factors
associated with cataract development include aging, infections, eye injuries,
environmental causes, such as radiation and exposure to ultraviolet rays in sunlight, and
genetic mutations. Additionally, several cataract patients display phenotypic
heterogeneity, suggesting the role of genetic modifiers in the modulation of severity and
onset time of cataractogenesis. However, the genetic modifiers associated with cataract
have not been identified in humans yet. In contrast, the identification and mapping of
genetic modifiers have been successfully carried out in mice and rats. In this review, we
focus on the genetic modifiers of cataract in the rodent models.
Collapse
Affiliation(s)
- Kenta Wada
- Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan.,Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Shumpei P Yasuda
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
36
|
Nandi SK, Rakete S, Nahomi RB, Michel C, Dunbar A, Fritz KS, Nagaraj RH. Succinylation Is a Gain-of-Function Modification in Human Lens αB-Crystallin. Biochemistry 2019; 58:1260-1274. [PMID: 30758948 DOI: 10.1021/acs.biochem.8b01053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acylation of lysine residues is a common post-translational modification of cellular proteins. Here, we show that lysine succinylation, a type of acylation, occurs in human lens proteins. All of the major crystallins exhibited Nε-succinyllysine (SuccK) residues. Quantification of SuccK in human lens proteins (from donors between the ages of 20 and 73 years) by LC-MS/MS showed a range between 1.2 and 14.3 pmol/mg lens protein. The total SuccK levels were slightly reduced in aged lenses (age > 60 years) relative to young lenses (age < 30 years). Immunohistochemical analyses revealed that SuccK was present in epithelium and fiber cells. Western blotting and immunoprecipitation experiments revealed that SuccK is particularly prominent in αB-crystallin, and succinylation in vitro revealed that αB-crystallin is more prone to succinylation than αA-crystallin. Mass spectrometric analyses showed succinylation at K72, K90, K92, K166, K175, and potentially K174 in human lens αB-crystallin. We detected succinylation at K72, K82, K90, K92, K103, K121, K150, K166, K175, and potentially K174 by mass spectrometry in mildly succinylated αB-crystallin. Mild succinylation improved the chaperone activity of αB-crystallin along with minor perturbation in tertiary and quaternary structure of the protein. These observations imply that succinylation is beneficial to αB-crystallin by improving its chaperone activity with only mild conformational alterations.
Collapse
|
37
|
Neagu AN. Proteome Imaging: From Classic to Modern Mass Spectrometry-Based Molecular Histology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:55-98. [PMID: 31347042 DOI: 10.1007/978-3-030-15950-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In order to overcome the limitations of classic imaging in Histology during the actually era of multiomics, the multi-color "molecular microscope" by its emerging "molecular pictures" offers quantitative and spatial information about thousands of molecular profiles without labeling of potential targets. Healthy and diseased human tissues, as well as those of diverse invertebrate and vertebrate animal models, including genetically engineered species and cultured cells, can be easily analyzed by histology-directed MALDI imaging mass spectrometry. The aims of this review are to discuss a range of proteomic information emerging from MALDI mass spectrometry imaging comparative to classic histology, histochemistry and immunohistochemistry, with applications in biology and medicine, concerning the detection and distribution of structural proteins and biological active molecules, such as antimicrobial peptides and proteins, allergens, neurotransmitters and hormones, enzymes, growth factors, toxins and others. The molecular imaging is very well suited for discovery and validation of candidate protein biomarkers in neuroproteomics, oncoproteomics, aging and age-related diseases, parasitoproteomics, forensic, and ecotoxicology. Additionally, in situ proteome imaging may help to elucidate the physiological and pathological mechanisms involved in developmental biology, reproductive research, amyloidogenesis, tumorigenesis, wound healing, neural network regeneration, matrix mineralization, apoptosis and oxidative stress, pain tolerance, cell cycle and transformation under oncogenic stress, tumor heterogeneity, behavior and aggressiveness, drugs bioaccumulation and biotransformation, organism's reaction against environmental penetrating xenobiotics, immune signaling, assessment of integrity and functionality of tissue barriers, behavioral biology, and molecular origins of diseases. MALDI MSI is certainly a valuable tool for personalized medicine and "Eco-Evo-Devo" integrative biology in the current context of global environmental challenges.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania.
| |
Collapse
|
38
|
Lanosterol Synthase Pathway Alleviates Lens Opacity in Age-Related Cortical Cataract. J Ophthalmol 2018; 2018:4125893. [PMID: 30116630 PMCID: PMC6079410 DOI: 10.1155/2018/4125893] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/31/2018] [Indexed: 11/18/2022] Open
Abstract
Purpose Lanosterol synthase (LSS) abnormity contributes to lens opacity in rats, mice, dogs, and human congenital cataract development. This study examined whether LSS pathway has a role in different subtypes of age-related cataract (ARC). Methods A total of 390 patients with ARC and 88 age-matched non-ARC patients were enrolled in this study. LSS expression was analyzed by western blot and enzyme-linked immunosorbent assay (ELISA). To further examine the function of LSS, we used U18666A, an LSS inhibitor in rat lens culture system. Results In lens epithelial cells (LECs), LSS expression in LECs increased with opaque degree C II, while it decreased with opaque degree C IV and C V. While in the cortex of age-related cortical cataract (ARCC), LSS expression was negatively related to opaque degree, while lanosterol level was positively correlated to opaque degree. No obvious change in both LSS and lanosterol level was found in either LECs or the cortex of age-related nuclear cataract (ARNC) and age-related posterior subcapsular cataract (ARPSC). In vitro, inhibiting LSS activity induced rat lens opacity and lanosterol effectively delayed the occurrence of lens opacity. Conclusions This study indicated that LSS and lanosterol were localized in the lens of human ARC, including ARCC, ARNC, and ARPSC. LSS and lanosterol level are only correlated with opaque degree of ARCC. Furthermore, activated LSS pathway in lens is protective for lens transparency in cortical cataract.
Collapse
|
39
|
Phadte AS, Santhoshkumar P, Sharma KK. Characterization of an N-terminal mutant of αA-crystallin αA-R21Q associated with congenital cataract. Exp Eye Res 2018; 174:185-195. [PMID: 29782825 DOI: 10.1016/j.exer.2018.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/06/2018] [Accepted: 05/16/2018] [Indexed: 01/20/2023]
Abstract
Several mutations associated with congenital cataracts in human beings target conserved arginine residues in αA-crystallin. The N-terminal region of αA-crystallin is a "mutational hotspot," with multiple cataract-related mutations reported in this region. Two mutations at arginine 21 in the N-terminal domain of αA-crystallin - αA-R21L and αA-R21W have been associated with congenital cataract. A third mutant of R21, αA-R21Q, was recently identified to be associated with congenital cataract in a South Australian family. The point mutation was reported to compromise the quaternary structure of αA-crystallin by preventing its assembly into higher ordered oligomers. To assess the effect of the αA-R21Q mutation on αA-crystallin function, recombinant αA-R21Q was expressed, purified and characterized in vitro. Compared to wild-type αA-crystallin, the recombinant αA-R21Q exhibits enhanced chaperone-like activity, increased surface hydrophobicity, lesser stability in urea and increased susceptibility to digestion by trypsin. αA-R21Q demonstrated increased binding affinity towards unfolding ADH and bovine lens fiber cell membranes. αA-R21Q homo-oligomers and hetero-oligomers also prevented H2O2-induced apoptosis in ARPE-19 cells. Taken together, αA-R21Q exhibited a gain of function despite subtle structural differences as compared to wild-type αA-crystallin. This study further validates the involvement of arginine 21 in regulating αA-crystallin structure and function.
Collapse
Affiliation(s)
- Ashutosh S Phadte
- Department of Ophthalmology, University of Missouri School of Medicine, Columbia, MO 65212, United States; Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States
| | - Puttur Santhoshkumar
- Department of Ophthalmology, University of Missouri School of Medicine, Columbia, MO 65212, United States
| | - K Krishna Sharma
- Department of Ophthalmology, University of Missouri School of Medicine, Columbia, MO 65212, United States; Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
40
|
Tekin K, Erol YO, Sargon MF, Inanc M, Ozdal PC, Berker N. Effects of Fuchs uveitis syndrome on the ultrastructure of the anterior lens epithelium: A transmission electron microscopic study. Indian J Ophthalmol 2017; 65:1459-1464. [PMID: 29208835 PMCID: PMC5742983 DOI: 10.4103/ijo.ijo_691_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022] Open
Abstract
PURPOSE The purpose of the study was to investigate the electron microscopic findings of the lens epithelial cells (LECs) in patients with Fuchs uveitis syndrome (FUS) who suffered from cataracts and to compare those with age-matched controls. METHODS This study was a prospective, comparative case series. The anterior lens capsules (ALC: basement membrane and associated LECs) were taken from 12 eyes of 12 cases of FUS and ten eyes of ten control patients. The ALCs were obtained from cataract surgery and prepared for transmission electron microscopy (TEM). RESULTS There were no statistically significant differences regarding the age or gender between the FUS group and the control group (P > 0.05). In the TEM examinations of the ALCs, all of the FUS cases revealed similar significant ultrastructural changes when compared to the control patients. In the FUS group, the LECs showed homogeneous thickening and irregularity which included some small vacuoles in different areas of the epithelial tissue. Moreover, in some areas of the LECs, widespread, oval-shaped, pigment clusters were detected. Conversely, in the control group, the LECs and all of their elements were in normal ultrastructural patterns, with the exception of some small intraepithelial vacuoles which were fewer and smaller than those in the FUS group. CONCLUSION Ultrastructural analysis of the ALC of the patients with FUS disclosed some significant alterations which may be related to the summation of oxidative stress, intraocular inflammation, and iris atrophy.
Collapse
Affiliation(s)
- Kemal Tekin
- Department of Ophthalmology, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| | - Yasemin Ozdamar Erol
- Department of Ophthalmology, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| | | | - Merve Inanc
- Department of Ophthalmology, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| | - Pinar Cakar Ozdal
- Department of Ophthalmology, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| | - Nilufer Berker
- Department of Ophthalmology, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
41
|
Zhang L, Cheng R, Huang Y. MiR-30a inhibits BECN1-mediated autophagy in diabetic cataract. Oncotarget 2017; 8:77360-77368. [PMID: 29100392 PMCID: PMC5652784 DOI: 10.18632/oncotarget.20483] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/25/2017] [Indexed: 01/17/2023] Open
Abstract
Purpose To investigate the role of microRNAs in the regulation of autophagy and apoptosis in lens epithelial cells (LECs) during diabetic cataract formation. Methods A miRNA microarray study and quantitative real-time PCR were performed to identify the expression of miRNAs in LECs of diabetic cataract. Human LECs were cultured in high glucose conditions as a diabetic cataract model. BECN1 and LC3B were detected by Western blotting and quantitative real-time PCR. The extent of apoptosis was measured using FACSCalibur flow cytometry. Results Downregulation of miR-30a was identified in LECs attached to diabetic cataract tissues. By the bioinformatic assay and the luciferase activity assay, BECN1 was found to be a direct target of miR-30a. MiR-30a reduced the BECN1-mediated autophagy activity induced by high glucose in LECs in vitro. The ratio of LECs apoptosis was also decreased. Conclusion MiR-30a was involved in the inhibition of autophagy by targeting BECN1 in LECs in human diabetic cataract.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Ophthalmology, School of Medicine, Shandong University, Jinan 250012, China.,Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Rong Cheng
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, China.,College of Medicine, Qingdao University, Qingdao 266071, China
| | - Yusen Huang
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, China
| |
Collapse
|
42
|
Dai J, Zhou J, Liu H, Huang K. Selenite and ebselen supplementation attenuates D-galactose-induced oxidative stress and increases expression of SELR and SEP15 in rat lens. J Biol Inorg Chem 2016; 21:1037-1046. [PMID: 27752786 DOI: 10.1007/s00775-016-1400-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/08/2016] [Indexed: 12/16/2022]
Abstract
Selenite and ebselen supplementation has been shown to possess anti-cataract potential in some experimental animal models of cataract, however, the underlying mechanisms remain unclear. The present study was designed to evaluate the anti-cataract effects and the underlying mechanisms of selenite and ebselen supplementation on galactose induced cataract in rats, a common animal model of sugar cataract. Transmission electron microscopy images of lens fiber cells (LFC) and lens epithelial cells (LEC) were observed in D-galactose-induced experimental cataractous rats treated with or without selenite and ebselen, also redox homeostasis and expression of proteins such as selenoprotein R (SELR), 15kD selenoprotein (SEP15), superoxide dismutase 1 (SOD1), catalase (CAT), β-crystallin protein, aldose reductase (AR) and glucose-regulated protein 78 (GRP78) were estimated in the lenses. The results showed that D-galactose injection injured rat lens and resulted in cataract formation; however, selenite and ebselen supplementation markedly alleviated ultrastructural injury of LFC and LEC. Moreover, selenite and ebselen supplementation could mitigate the oxidative damage in rat lens and increase the protein expressions of SELR, SEP15, SOD1, CAT and β-crystallin, as well as decrease the protein expressions of AR and GRP78. Taken together, these findings for the first time reveal the anti-cataract potential of selenite and ebselen in galactosemic cataract, and provide important new insights into the anti-cataract mechanisms of selenite and ebselen in sugar cataract.
Collapse
Affiliation(s)
- Jie Dai
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan, Wuhan, Hubei, 430074, People's Republic of China
| | - Jun Zhou
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan, Wuhan, Hubei, 430074, People's Republic of China.
| | - Hongmei Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan, Wuhan, Hubei, 430074, People's Republic of China
| | - Kaixun Huang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan, Wuhan, Hubei, 430074, People's Republic of China.
| |
Collapse
|
43
|
Anbaraki A, Khoshaman K, Ghasemi Y, Yousefi R. Preventive role of lens antioxidant defense mechanism against riboflavin-mediated sunlight damaging of lens crystallins. Int J Biol Macromol 2016; 91:895-904. [DOI: 10.1016/j.ijbiomac.2016.06.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/11/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
|
44
|
Yang J, Zhou S, Guo M, Li Y, Gu J. Different alpha crystallin expression in human age-related and congenital cataract lens epithelium. BMC Ophthalmol 2016; 16:67. [PMID: 27234311 PMCID: PMC4884376 DOI: 10.1186/s12886-016-0241-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 05/19/2016] [Indexed: 11/24/2022] Open
Abstract
Background The purpose of this study was to investigate the different expressions of αA-crystallin and αB-crystallin in human lens epithelium of age-related and congenital cataracts. Methods The central part of the human anterior lens capsule approximately 5 mm in diameter together with the adhering epithelial cells, were harvested and processed within 6 hours after cataract surgery from age-related and congenital cataract patients or from normal eyes of fresh cadavers. The mRNA and soluble protein levels of αA-crystallin and αB-crystallin in the human lens epithelium were detected by real-time PCR and western blots, respectively. Results The mRNA and soluble protein expressions of αA-crystallin and αB-crystallin in the lens epithelium were both reduced in age-related and congenital cataract groups when compared with the normal control group. However, the degree of α-crystallin loss in the lens epithelium was highly correlated with different cataract types. The α-crystallin expression of the lens epithelium was greatly reduced in the congenital cataract group but only moderately decreased in the age-related cataract group. The reduction of αA-crystallin soluble protein levels in the congenital cataract group was approximately 2.4 fold decrease compared with that of the age-related cataract group, while an mRNA fold change of 1.67 decrease was observed for the age-related cataract group. Similarly, the reduction of soluble protein levels of αB-crystallin in the congenital cataract group was approximately a 1.57 fold change compared with that of the age-related cataract group. A 1.75 fold change for mRNA levels compared with that of the age-related cataract group was observed. Conclusions The results suggest that the differential loss of α-crystallin in the human lens epithelium could be associated with the different mechanisms of cataractogenesis in age-related versus congenital cataracts, subsequently resulting in different clinical presentations.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54S Xianlie, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Sheng Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54S Xianlie, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of ophthalmology, The First People's Hospital of Foshan, Guangdong Province, China
| | - Minfei Guo
- Department of Ophthalmology, Huichang County People's Hospital, Jiangxi, China
| | - Yuting Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54S Xianlie, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Jianjun Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54S Xianlie, Guangzhou, Guangdong, 510060, People's Republic of China.
| |
Collapse
|
45
|
Tiwary E, Hegde S, Purushotham S, Deivanayagam C, Srivastava O. Interaction of βA3-Crystallin with Deamidated Mutants of αA- and αB-Crystallins. PLoS One 2015; 10:e0144621. [PMID: 26657544 PMCID: PMC4691197 DOI: 10.1371/journal.pone.0144621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022] Open
Abstract
Interaction among crystallins is required for the maintenance of lens transparency. Deamidation is one of the most common post-translational modifications in crystallins, which results in incorrect interaction and leads to aggregate formation. Various studies have established interaction among the α- and β-crystallins. Here, we investigated the effects of the deamidation of αA- and αB-crystallins on their interaction with βA3-crystallin using surface plasmon resonance (SPR) and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET) methods. SPR analysis confirmed adherence of WT αA- and WT αB-crystallins and their deamidated mutants with βA3-crystallin. The deamidated mutants of αA–crystallin (αA N101D and αA N123D) displayed lower adherence propensity for βA3-crystallin relative to the binding affinity shown by WT αA-crystallin. Among αB-crystallin mutants, αB N78D displayed higher adherence propensity whereas αB N146D mutant showed slightly lower binding affinity for βA3-crystallin relative to that shown by WT αB-crystallin. Under the in vivo condition (FLIM-FRET), both αA-deamidated mutants (αA N101D and αA N123D) exhibited strong interaction with βA3-crystallin (32±4% and 36±4% FRET efficiencies, respectively) compared to WT αA-crystallin (18±4%). Similarly, the αB N78D and αB N146D mutants showed strong interaction (36±4% and 22±4% FRET efficiencies, respectively) with βA3-crystallin compared to 18±4% FRET efficiency of WT αB-crystallin. Further, FLIM-FRET analysis of the C-terminal domain (CTE), N-terminal domain (NTD), and core domain (CD) of αA- and αB-crystallins with βA3-crystallin suggested that interaction sites most likely reside in the αA CTE and αB NTD regions, respectively, as these domains showed the highest FRET efficiencies. Overall, results suggest that similar to WT αA- and WTαB-crystallins, the deamidated mutants showed strong interactionfor βA3-crystallin. Variable in vitro and in vivo interactions are most likely due to the mutant’s large size oligomers, reduced hydrophobicity, and altered structures. Together, the results suggest that deamidation of α-crystallin may facilitate greater interaction and the formation of large oligomers with other crystallins, and this may contribute to the cataractogenic mechanism.
Collapse
Affiliation(s)
- Ekta Tiwary
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Shylaja Hegde
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Sangeetha Purushotham
- Department of Vision Sciences/Centre for Structural Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Champion Deivanayagam
- Department of Vision Sciences/Centre for Structural Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Om Srivastava
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
- * E-mail:
| |
Collapse
|
46
|
Chauss D, Brennan LA, Bakina O, Kantorow M. Integrin αVβ5-mediated Removal of Apoptotic Cell Debris by the Eye Lens and Its Inhibition by UV Light Exposure. J Biol Chem 2015; 290:30253-66. [PMID: 26527683 DOI: 10.1074/jbc.m115.688390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 12/31/2022] Open
Abstract
Accumulation of apoptotic material is toxic and associated with cataract and other disease states. Identification of mechanisms that prevent accumulation of apoptotic debris is important for establishing the etiology of these diseases. The ocular lens is routinely assaulted by UV light that causes lens cell apoptosis and is associated with cataract formation. To date, no molecular mechanism for removal of toxic apoptotic debris has been identified in the lens. Vesicular debris within lens cells exposed to UV light has been observed raising speculation that lens cells themselves could act as phagocytes to remove toxic apoptotic debris. However, phagocytosis has not been confirmed as a function of the intact eye lens, and no mechanism for lens phagocytosis has been established. Here, we demonstrate that the eye lens is capable of phagocytizing extracellular lens cell debris. Using high throughput RNA sequencing and bioinformatics analysis, we establish that lens epithelial cells express members of the integrin αVβ5-mediated phagocytosis pathway and that internalized cell debris co-localizes with αVβ5 and with RAB7 and Rab-interacting lysosomal protein that are required for phagosome maturation and fusion with lysosomes. We demonstrate that the αVβ5 receptor is required for lens epithelial cell phagocytosis and that UV light treatment of lens epithelial cells results in damage to the αVβ5 receptor with concomitant loss of phagocytosis. These data suggest that loss of αVβ5-mediated phagocytosis by the eye lens could result in accumulation of toxic cell debris that could contribute to UV light-induced cataract formation.
Collapse
Affiliation(s)
- Daniel Chauss
- From the Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431
| | - Lisa A Brennan
- From the Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431
| | - Olga Bakina
- From the Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431
| | - Marc Kantorow
- From the Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431
| |
Collapse
|
47
|
Belyy YA, Tereshchenko AV, Romanko YS, Abakushina EV, Gretchaninov VB. [Triggering factors and pathogenesis of radiation cataract]. Vestn Oftalmol 2015; 131:97-101. [PMID: 26489128 DOI: 10.17116/oftalma2015131497-101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cataract is one of the most common eye diseases in the world. Many factors, including genetic, metabolic, nutritional, and environmental, are involved in its formation. It is necessary to know main causal agents and cellular mechanism of cataractogenesis. The tissue of the lens is considered radiosensitive, thus, lens opacities are possible late effects of exposure to ionizing radiation. The use of medical radiation for both diagnostic and therapeutic purposes grows worldwide. At the same time, there continues to be much confusion regarding the actual threshold dose of radiation exposure for cataract formation. Eye safety and the risk of cataract development are not entirely clear. However, with an ever-widening range of interventional procedures, one should take attempts to reduce the risk for radiation cataract.
Collapse
Affiliation(s)
- Yu A Belyy
- Kaluga Branch of the Academician S.N. Fyodorov IRTC 'Eye Microsurgery', Ministry of Health of the Russian Federation, 5 Svyatoslava Fedorova St., Kaluga, Russian Federation, 248007
| | - A V Tereshchenko
- Kaluga Branch of the Academician S.N. Fyodorov IRTC 'Eye Microsurgery', Ministry of Health of the Russian Federation, 5 Svyatoslava Fedorova St., Kaluga, Russian Federation, 248007
| | - Yu S Romanko
- Medical radiological research center, Ministry of Health of the Russian Federation, 4 Koroleva St., Obninsk, Russian Federation, 249036
| | - E V Abakushina
- Medical radiological research center, Ministry of Health of the Russian Federation, 4 Koroleva St., Obninsk, Russian Federation, 249036
| | - V B Gretchaninov
- Kaluga Branch of the Academician S.N. Fyodorov IRTC 'Eye Microsurgery', Ministry of Health of the Russian Federation, 5 Svyatoslava Fedorova St., Kaluga, Russian Federation, 248007
| |
Collapse
|
48
|
Yang J, Zhou S, Gu J, Guo M, Xia H, Liu Y. UPR Activation and the Down-Regulation of α-Crystallin in Human High Myopia-Related Cataract Lens Epithelium. PLoS One 2015; 10:e0137582. [PMID: 26351848 PMCID: PMC4564188 DOI: 10.1371/journal.pone.0137582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/18/2015] [Indexed: 12/15/2022] Open
Abstract
Purpose To investigate the expression of αA- and αB-crystallin and the unfolded protein response in the lens epithelium of patients with high myopia-related cataracts. Methods and Materials The central portion of the human anterior lens capsule together with the adhering epithelial cells, approximately 5 mm in diameter, were harvested and processed within two hours after cataract surgery from high myopia-related (spherical equivalent ≥-10.00 diopters) and age-related cataract patients or from high myopia but non-cataractous patients (tissue were collected from ocular trauma patients with high myopia and lens trauma). Anterior lens samples from fresh cadaver normal human eyes were used as normal control (collected within 6 hours from death). Real-time PCR was performed to detect the mRNA levels of α-crystallins as well as unfolded protein response (UPR)-related GRP78, spliced-XBP1, ATF4 and ATF6. Western blot analysis was used to determine the protein level of α-crystallin, GRP78, p-IRE1α, p-eIF2α and ATF6. Results In the lens epithelium of the high myopia-related cataract group and the age related cataract group, the mRNA and soluble protein expression of αA- and αB-crystallin were both decreased; additionally, the protein levels of ATF6, p-eIF2α and p-IRE1α and the gene expression levels of spliced XBP1, GRP78, ATF6 and ATF4 were greatly increased relative to the normal control. Conclusion These results suggest the significant loss of soluble α-crystallin and the activation of the UPR in the lens epithelium of patients with high myopia-related cataract, which may be associated with the cataractogenesis of high myopia-related cataract.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Sheng Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Department of Ophthalmology, the First People’s Hospital of Foshan, Guangdong, China
| | - Jianjun Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Minfei Guo
- Department of Ophthalmology, the Huichang County People’s Hospital, Jiangxi, China
| | - Honghui Xia
- Department of Ophthalmology, Zhaoqing Gaoyao People’s Hospital, Guangdong, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
49
|
Panda AK, Nandi SK, Chakraborty A, Nagaraj RH, Biswas A. Differential role of arginine mutations on the structure and functions of α-crystallin. Biochim Biophys Acta Gen Subj 2015; 1860:199-210. [PMID: 26080000 DOI: 10.1016/j.bbagen.2015.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/22/2015] [Accepted: 06/09/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND α-Crystallin is a major protein of the eye lens in vertebrates. It is composed of two subunits, αA- and αB-crystallin. α-Crystallin is an oligomeric protein having these two subunits in 3:1 ratio. It belongs to small heat shock protein family and exhibits molecular chaperone function, which plays an important role in maintaining the lens transparency. Apart from chaperone function, both subunits also exhibit anti-apoptotic property. Comparison of their primary sequences reveals that αA- and αB-crystallin posses 13 and 14 arginine residues, respectively. Several of them undergo mutations which eventually lead to various eye diseases such as congenital cataract, juvenile cataract, and retinal degeneration. Interestingly, many arginine residues of these subunits are modified during glycation and even some are truncated during aging. All these facts indicate the importance of arginine residues in α-crystallin. SCOPE OF REVIEW In this review, we will emphasize the recent in vitro and in vivo findings related to congenital cataract causing arginine mutations in α-crystallin. MAJOR CONCLUSIONS Congenital cataract causing arginine mutations alters the structure and decreases the chaperone function of α-crystallin. These mutations also affect the lens morphology and phenotypes. Interestingly, non-natural arginine mutations (generated for mimicking the glycation and truncation environment) improve the chaperone function of α-crystallin which may play an important role in maintaining the eye lens transparency during aging. GENERAL SIGNIFICANCE The neutralization of positive charge on the guanidino group of arginine residues is not always detrimental to the functionality of α-crystallin. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Alok Kumar Panda
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 751013, India
| | - Sandip Kumar Nandi
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 751013, India
| | - Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 751013, India
| | - Ram H Nagaraj
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 751013, India.
| |
Collapse
|
50
|
|