1
|
Daniyan MO, Singh H, Blatch GL. The J Domain Proteins of Plasmodium knowlesi, a Zoonotic Malaria Parasite of Humans. Int J Mol Sci 2024; 25:12302. [PMID: 39596368 PMCID: PMC11594657 DOI: 10.3390/ijms252212302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Plasmodium knowlesi is a zoonotic form of human malaria, the pathology of which is poorly understood. While the J domain protein (JDP) family has been extensively studied in Plasmodium falciparum, and shown to contribute to malaria pathology, there is currently very limited information on the P. knowlesi JDPs (PkJDPs). This review provides a critical analysis of the literature and publicly available data on PkJDPs. Interestingly, the P. knowlesi genome encodes at least 31 PkJDPs, with well over half belonging to the most diverse types which contain only the signature J domain (type IIIs, 19) or a corrupted version of the J domain (type IVs, 2) as evidence of their membership. The more typical PkJDPs containing other domains typical of JDPs in addition to the J domain are much fewer in number (type IIs, 8; type Is, 2). This study indentifies PkJDPs that are potentially involved in: folding of newly synthesized or misfolded proteins within the P. knowlesi cytosol (a canonical type I and certain typical type IIs); protein translocation (a type III) and folding (a type II) in the ER; and protein import into mitochondria (a type III). Interestingly, a type II PkJDP is potentially exported to the host cell cytosol where it may recruit human HSP70 for the trafficking and folding of other exported P. knowlesi proteins. Experimental studies are required on this fascinating family of proteins, not only to validate their role in the pathology of knowlesi malaria, but also because they represent potential anti-malarial drug targets.
Collapse
Affiliation(s)
- Michael O Daniyan
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife 220005, Nigeria
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar 144008, India
| | - Gregory L Blatch
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6140, South Africa
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA 6959, Australia
| |
Collapse
|
2
|
Omoda A, Matsumoto K, Yoshino KI, Tachibana M, Tsuboi T, Torii M, Ishino T, Iriko H. Skeleton binding protein 1 localizes to the Maurer's cleft and interacts with PfHSP70-1 and PfHSP70-x in Plasmodium falciparum gametocyte-infected erythrocytes. Parasitol Int 2024; 100:102864. [PMID: 38331312 DOI: 10.1016/j.parint.2024.102864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
Plasmodium falciparum accounts for the majority of malaria deaths, due to pathology provoked by the ability of infected erythrocytes to adhere to vascular endothelium within deep tissues. The parasite recognizes endothelium by trafficking and displaying protein ligands on the surface of asexual stage infected erythrocytes, such as members of the large family of pathogenic proteins, P. falciparum erythrocyte membrane protein 1 (PfEMP1). Parasite-encoded skeleton binding protein 1 (SBP1) plays an important role in the transport of these binding-related surface proteins, via cleft-like membranous structures termed Maurer's clefts, which are present within the cytoplasm of infected erythrocytes. Erythrocytes infected with gametocyte stages accumulate in the extravascular compartment of bone marrow; and it was suggested that their surface-expressed adhesion molecule profile and protein trafficking mechanisms might differ from those in asexual stage parasites. Protein trafficking mechanisms via Maurer's clefts have been well investigated in asexual stage parasite-infected erythrocytes; but little is known regarding the gametocyte stages. In this study, we characterized SBP1 during gametocyte maturation and demonstrated that SBP1 is expressed and localizes to dot-like Maurer's cleft structures in the cytoplasm of gametocyte-infected erythrocytes. Co-immunoprecipitation and mass spectrometry assays indicated that SBP1 interacts with the molecular chaperones PfHSP70-1 and PfHSP70-x. Localization analysis suggested that some PfHSP70-1 and/or PfHSP70-x localize in a dot-like pattern within the cytoplasm of immature gametocyte-infected erythrocytes. These findings suggest that SBP1 may interact with HSP70 chaperones in the infected erythrocyte cytoplasm during the immature gametocyte stages.
Collapse
Affiliation(s)
- Ayaka Omoda
- Division of Global Infectious Diseases, Department of Public Health, Graduate School of Health Sciences, Kobe University, Kobe, Hyogo, Japan
| | - Konomi Matsumoto
- Faculty of Health Sciences, Kobe University School of Medicine, Kobe, Hyogo, Japan
| | | | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Motomi Torii
- Division of Global Infectious Diseases, Department of Public Health, Graduate School of Health Sciences, Kobe University, Kobe, Hyogo, Japan; Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Tomoko Ishino
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hideyuki Iriko
- Division of Global Infectious Diseases, Department of Public Health, Graduate School of Health Sciences, Kobe University, Kobe, Hyogo, Japan; Faculty of Health Sciences, Kobe University School of Medicine, Kobe, Hyogo, Japan.
| |
Collapse
|
3
|
Almaazmi SY, Kaur RP, Singh H, Blatch GL. The Plasmodium falciparum exported J domain proteins fine-tune human and malarial Hsp70s: pathological exploitation of proteostasis machinery. Front Mol Biosci 2023; 10:1216192. [PMID: 37457831 PMCID: PMC10349383 DOI: 10.3389/fmolb.2023.1216192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Cellular proteostasis requires a network of molecular chaperones and co-chaperones, which facilitate the correct folding and assembly of other proteins, or the degradation of proteins misfolded beyond repair. The function of the major chaperones, heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90), is regulated by a cohort of co-chaperone proteins. The J domain protein (JDP) family is one of the most diverse co-chaperone families, playing an important role in functionalizing the Hsp70 chaperone system to form a powerful protein quality control network. The intracellular malaria parasite, Plasmodium falciparum, has evolved the capacity to invade and reboot mature human erythrocytes, turning them into a vehicles of pathology. This process appears to involve the harnessing of both the human and parasite chaperone machineries. It is well known that malaria parasite-infected erythrocytes are highly enriched in functional human Hsp70 (HsHsp70) and Hsp90 (HsHsp90), while recent proteomics studies have provided evidence that human JDPs (HsJDPs) may also be enriched, but at lower levels. Interestingly, P. falciparum JDPs (PfJDPs) are the most prominent and diverse family of proteins exported into the infected erythrocyte cytosol. We hypothesize that the exported PfJPDs may be an evolutionary consequence of the need to boost chaperone power for specific protein folding pathways that enable both survival and pathogenesis of the malaria parasite. The evidence suggests that there is an intricate network of PfJDP interactions with the exported malarial Hsp70 (PfHsp70-x) and HsHsp70, which appear to be important for the trafficking of key malarial virulence factors, and the proteostasis of protein complexes of human and parasite proteins associated with pathology. This review will critically evaluate the current understanding of the role of exported PfJDPs in pathological exploitation of the proteostasis machinery by fine-tuning the chaperone properties of both human and malarial Hsp70s.
Collapse
Affiliation(s)
- Shaikha Y. Almaazmi
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Rupinder P. Kaur
- The Department of Chemistry, Guru Nanak Dev University College Verka, Amritsar, Punjab, India
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| | - Gregory L. Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
4
|
Blatch GL. Plasmodium falciparum Molecular Chaperones: Guardians of the Malaria Parasite Proteome and Renovators of the Host Proteome. Front Cell Dev Biol 2022; 10:921739. [PMID: 35652103 PMCID: PMC9149364 DOI: 10.3389/fcell.2022.921739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum is a unicellular protozoan parasite and causative agent of the most severe form of malaria in humans. The malaria parasite has had to develop sophisticated mechanisms to preserve its proteome under the changing stressful conditions it confronts, particularly when it invades host erythrocytes. Heat shock proteins, especially those that function as molecular chaperones, play a key role in protein homeostasis (proteostasis) of P. falciparum. Soon after invading erythrocytes, the malaria parasite exports a large number of proteins including chaperones, which are responsible for remodeling the infected erythrocyte to enable its survival and pathogenesis. The infected host cell has parasite-resident and erythrocyte-resident chaperones, which appear to play a vital role in the folding and functioning of P. falciparum proteins and potentially host proteins. This review critiques the current understanding of how the major chaperones, particularly the Hsp70 and Hsp40 (or J domain proteins, JDPs) families, contribute to proteostasis of the malaria parasite-infected erythrocytes.
Collapse
Affiliation(s)
- Gregory L Blatch
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia.,Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa.,Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| |
Collapse
|
5
|
Red Blood Cell BCL-x L Is Required for Plasmodium falciparum Survival: Insights into Host-Directed Malaria Therapies. Microorganisms 2022; 10:microorganisms10040824. [PMID: 35456874 PMCID: PMC9027239 DOI: 10.3390/microorganisms10040824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/01/2023] Open
Abstract
The development of antimalarial drug resistance is an ongoing problem threatening progress towards the elimination of malaria, and antimalarial treatments are urgently needed for drug-resistant malaria infections. Host-directed therapies (HDT) represent an attractive strategy for the development of new antimalarials with untapped targets and low propensity for resistance. In addition, drug repurposing in the context of HDT can lead to a substantial decrease in the time and resources required to develop novel antimalarials. Host BCL-xL is a target in anti-cancer therapy and is essential for the development of numerous intracellular pathogens. We hypothesised that red blood cell (RBC) BCL-xL is essential for Plasmodium development and tested this hypothesis using six BCL-xL inhibitors, including one FDA-approved compound. All BCL-xL inhibitors tested impaired proliferation of Plasmodium falciparum 3D7 parasites in vitro at low micromolar or sub-micromolar concentrations. Western blot analysis of infected cell fractions and immunofluorescence microscopy assays revealed that host BCL-xL is relocated from the RBC cytoplasm to the vicinity of the parasite upon infection. Further, immunoprecipitation of BCL-xL coupled with mass spectrometry analysis identified that BCL-xL forms unique molecular complexes with human μ-calpain in uninfected RBCs, and with human SHOC2 in infected RBCs. These results provide interesting perspectives for the development of host-directed antimalarial therapies and drug repurposing efforts.
Collapse
|
6
|
Tintó-Font E, Cortés A. Malaria parasites do respond to heat. Trends Parasitol 2022; 38:435-449. [PMID: 35301987 DOI: 10.1016/j.pt.2022.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/09/2023]
Abstract
The capacity of malaria parasites to respond to changes in their environment at the transcriptional level has been the subject of debate, but recent evidence has unambiguously demonstrated that Plasmodium spp. can produce adaptive transcriptional responses when exposed to some specific types of stress. These include metabolic conditions and febrile temperature. The Plasmodium falciparum protective response to thermal stress is similar to the response in other organisms, but it is regulated by a transcription factor evolutionarily unrelated to the conserved transcription factor that drives the heat shock (HS) response in most eukaryotes. Of the many genes that change expression during HS, only a subset constitutes an authentic response that contributes to parasite survival.
Collapse
Affiliation(s)
- Elisabet Tintó-Font
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Alfred Cortés
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain; ICREA, Barcelona 08010, Catalonia, Spain.
| |
Collapse
|
7
|
Gao L, Yuan Z, Li Y, Ma Z. Genome-wide comparative analysis of DNAJ genes and their co-expression patterns with HSP70s in aestivation of the sea cucumber Apostichopus japonicus. Funct Integr Genomics 2022; 22:317-330. [PMID: 35195842 DOI: 10.1007/s10142-022-00830-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/20/2021] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
DNAJ proteins function as co-chaperones of HSP70 and play key roles in cell physiology to promote protein folding and degradation, especially under environmental stress. Based on our previous study on HSP70, a systematic study of DNAJ was performed in sea cucumber Apostichopus japonicus using the transcriptomic and genomic data, identifying 43 AjDNAJ genes, including six AjDNAJA genes, eight AjDNAJB genes, and 29 AjDNAJC genes. Slight expansion and conserved genomic structure were observed using the phylogenetic and syntenic analysis. Differential period-specific and tissue-specific expression patterns of AjDNAJs were observed between adult and juvenile individuals during aestivation. Strong tissue-specific expression correlations between AjDNAJ and AjHSP70 genes were found, indicating that the involvements of AjHSP70IVAs in the aestivation of sea cucumbers were regulated by AjDNAJs. Several key genes with significant expression correlations, such as AjDNAJB4L and AjHSP70IVAs, were suggested to function together under heat stress. Together, these findings provide early insight into the involvement of AjDNAJs in the aestivation and their roles as co-chaperones of AjHSP70s.
Collapse
Affiliation(s)
- Lei Gao
- Dalian Ocean University, Dalian, 116023, Liaoning, China. .,Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China.
| | - Zihao Yuan
- The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yunfeng Li
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Zhen Ma
- Dalian Ocean University, Dalian, 116023, Liaoning, China.
| |
Collapse
|
8
|
Essential role of a Plasmodium berghei heat shock protein (PBANKA_0938300) in gametocyte development. Sci Rep 2021; 11:23640. [PMID: 34880324 PMCID: PMC8654831 DOI: 10.1038/s41598-021-03059-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
The continued existence of Plasmodium parasites in physiologically distinct environments during their transmission in mosquitoes and vertebrate hosts requires effector proteins encoded by parasite genes to provide adaptability. Parasites utilize their robust stress response system involving heat shock proteins for their survival. Molecular chaperones are involved in maintaining protein homeostasis within a cell during stress, protein biogenesis and the formation of protein complexes. Due to their critical role in parasite virulence, they are considered targets for therapeutic interventions. Our results identified a putative P. berghei heat shock protein (HSP) belonging to the HSP40 family (HspJ62), which is abundantly induced upon heat stress and expressed during all parasite stages. To determine the role HspJ62, a gene-disrupted P. berghei transgenic line was developed (ΔHspJ62), which resulted in disruption of gametocyte formation. Such parasites were unable to form subsequent sexual stages because of disrupted gametogenesis, indicating the essential role of HspJ62 in gametocyte formation. Transcriptomic analysis of the transgenic line showed downregulation of a number of genes, most of which were specific to male or female gametocytes. The transcription factor ApiAP2 was also downregulated in ΔHspJ62 parasites. Our findings suggest that the downregulation of ApiAP2 likely disrupts the transcriptional regulation of sexual stage genes, leading to impaired gametogenesis. This finding also highlights the critical role that HspJ62 indirectly plays in the development of P. berghei sexual stages and in facilitating the conversion from the asexual blood stage to the sexual stage. This study characterizes the HspJ62 protein as a fertility factor because parasites lacking it are unable to transmit to mosquitoes. This study adds an important contribution to ongoing research aimed at understanding gametocyte differentiation and formation in parasites. The molecule adds to the list of potential drug targets that can be targeted to inhibit parasite sexual development and consequently parasite transmission.
Collapse
|
9
|
Daniyan MO. Heat Shock Proteins as Targets for Novel Antimalarial Drug Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:205-236. [PMID: 34569027 DOI: 10.1007/978-3-030-78397-6_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Plasmodium falciparum, the parasitic agent that is responsible for a severe and dangerous form of human malaria, has a history of long years of cohabitation with human beings with attendant negative consequences. While there have been some gains in the fight against malaria through the application of various control measures and the use of chemotherapeutic agents, and despite the global decline in malaria cases and associated deaths, the continual search for new and effective therapeutic agents is key to achieving sustainable development goals. An important parasite survival strategy, which is also of serious concern to the scientific community, is the rate at which the parasites continually develop resistance to drugs. Among the key players in the parasite's ability to develop resistance, maintain cellular integrity, and survives within an unusual environment of the red blood cells are the molecular chaperones of the heat shock proteins (HSP) family. HSPs constitute a novel avenue for antimalarial drug discovery and by exploring their ubiquitous nature and multifunctional activities, they may be suitable targets for the discovery of multi-targets antimalarial drugs, needed to fight incessant drug resistance. In this chapter, features of selected families of plasmodial HSPs that can be exploited in drug discovery are presented. Also, known applications of HSPs in small molecule screening, their potential usefulness in high throughput drug screening, as well as possible challenges are highlighted.
Collapse
Affiliation(s)
- Michael Oluwatoyin Daniyan
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.
| |
Collapse
|
10
|
Dutta T, Singh H, Gestwicki JE, Blatch GL. Exported plasmodial J domain protein, PFE0055c, and PfHsp70-x form a specific co-chaperone-chaperone partnership. Cell Stress Chaperones 2021; 26:355-366. [PMID: 33236291 PMCID: PMC7925779 DOI: 10.1007/s12192-020-01181-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
Plasmodium falciparum is a unicellular protozoan parasite and causative agent of a severe form of malaria in humans, accounting for very high worldwide fatality rates. At the molecular level, survival of the parasite within the human host is mediated by P. falciparum heat shock proteins (PfHsps) that provide protection during febrile episodes. The ATP-dependent chaperone activity of Hsp70 relies on the co-chaperone J domain protein (JDP), with which it forms a chaperone-co-chaperone complex. The exported P. falciparum JDP (PfJDP), PFA0660w, has been shown to stimulate the ATPase activity of the exported chaperone, PfHsp70-x. Furthermore, PFA0660w has been shown to associate with another exported PfJDP, PFE0055c, and PfHsp70-x in J-dots, highly mobile structures found in the infected erythrocyte cytosol. Therefore, the present study aims to conduct a structural and functional characterization of the full-length exported PfJDP, PFE0055c. Recombinant PFE0055c was successfully expressed and purified and found to stimulate the basal ATPase activity of PfHsp70-x to a greater extent than PFA0660w but, like PFA0660w, did not significantly stimulate the basal ATPase activity of human Hsp70. Small-molecule inhibition assays were conducted to determine the effect of known inhibitors of JDPs (chalcone, C86) and Hsp70 (benzothiazole rhodacyanines, JG231 and JG98) on the basal and PFE0055c-stimulated ATPase activity of PfHsp70-x. In this study, JG231 and JG98 were found to inhibit both the basal and PFE0055c-stimulated ATPase activity of PfHsp70-x. C86 only inhibited the PFE0055c-stimulated ATPase activity of PfHsp70-x, consistent with PFE0055c binding to PfHsp70-x through its J domain. This research has provided further insight into the molecular basis of the interaction between these exported plasmodial chaperones, which could inform future antimalarial drug discovery studies.
Collapse
Affiliation(s)
- Tanima Dutta
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia
- The Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Gregory L Blatch
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia.
- The Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia.
| |
Collapse
|
11
|
Structural-functional diversity of malaria parasite's PfHSP70-1 and PfHSP40 chaperone pair gives an edge over human orthologs in chaperone-assisted protein folding. Biochem J 2021; 477:3625-3643. [PMID: 32893851 DOI: 10.1042/bcj20200434] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Plasmodium falciparum, the human malaria parasite harbors a metastable proteome which is vulnerable to proteotoxic stress conditions encountered during its lifecycle. How parasite's chaperone machinery is able to maintain its aggregation-prone proteome in functional state, is poorly understood. As HSP70-40 system forms the central hub in cellular proteostasis, we investigated the protein folding capacity of PfHSP70-1 and PfHSP40 chaperone pair and compared it with human orthologs (HSPA1A and DNAJA1). Despite the structural similarity, we observed that parasite chaperones and their human orthologs exhibit striking differences in conformational dynamics. Comprehensive biochemical investigations revealed that PfHSP70-1 and PfHSP40 chaperone pair has better protein folding, aggregation inhibition, oligomer remodeling and disaggregase activities than their human orthologs. Chaperone-swapping experiments suggest that PfHSP40 can also efficiently cooperate with human HSP70 to facilitate the folding of client-substrate. SPR-derived kinetic parameters reveal that PfHSP40 has higher binding affinity towards unfolded substrate than DNAJA1. Interestingly, the observed slow dissociation rate of PfHSP40-substrate interaction allows PfHSP40 to maintain the substrate in folding-competent state to minimize its misfolding. Structural investigation through small angle x-ray scattering gave insights into the conformational architecture of PfHSP70-1 (monomer), PfHSP40 (dimer) and their complex. Overall, our data suggest that the parasite has evolved functionally diverged and efficient chaperone machinery which allows the human malaria parasite to survive in hostile conditions. The distinct allosteric landscapes and interaction kinetics of plasmodial chaperones open avenues for the exploration of small-molecule based antimalarial interventions.
Collapse
|
12
|
Role of the J Domain Protein Family in the Survival and Pathogenesis of Plasmodium falciparum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:97-123. [PMID: 34569022 DOI: 10.1007/978-3-030-78397-6_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plasmodium falciparum has dedicated an unusually large proportion of its genome to molecular chaperones (2% of all genes), with the heat shock protein 40 (Hsp40) family (now called J domain proteins, JDPs) exhibiting evolutionary radiation into 49 members. A large number of the P. falciparum JDPs (PfJDPs) are predicted to be exported, with certain members shown experimentally to be present in the erythrocyte cytosol (PFA0660w and PFE0055c) or erythrocyte membrane (ring-infected erythrocyte surface antigen, RESA). PFA0660w and PFE0055c are associated with an exported plasmodial Hsp70 (PfHsp70-x) within novel mobile structures called J-dots, which have been proposed to be dedicated to the trafficking of key membrane proteins such as erythrocyte membrane protein 1 (PfEMP1). Well over half of the PfJDPs appear to be essential, including the J-dot PfJDP, PFE0055c, while others have been found to be required for growth under febrile conditions (e.g. PFA0110w, the ring-infected erythrocyte surface antigen protein [RESA]) or involved in pathogenesis (e.g. PF10_0381 has been shown to be important for protrusions of the infected red blood cell membrane, the so-called knobs). Here we review what is known about those PfJDPs that have been well characterised, and may be directly or indirectly involved in the survival and pathogenesis of the malaria parasite.
Collapse
|
13
|
Jonsdottir TK, Gabriela M, Gilson PR. The Role of Malaria Parasite Heat Shock Proteins in Protein Trafficking and Remodelling of Red Blood Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:141-167. [PMID: 34569024 DOI: 10.1007/978-3-030-78397-6_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The genus Plasmodium comprises intracellular eukaryotic parasites that infect many vertebrate groups and cause deadly malaria disease in humans. The parasites employ a suite of heat shock proteins to help traffic other proteins to different compartments within their own cells and that of the host cells they parasitise. This review will cover the role of these chaperones in protein export and host cell modification in the asexual blood stage of the human parasite P. falciparum which is the most deadly and well-studied parasite species. We will examine the role chaperones play in the import of proteins into the secretory pathway from where they are escorted to the vacuole space surrounding the intraerythrocytic parasite. Here, other heat shock proteins unfold protein cargoes and extrude them into the red blood cell (RBC) cytosol from where additional chaperones of parasite and possibly host origin refold the cargo proteins and guide them to their final functional destinations within their RBC host cells. The secretory pathway also serves as a launch pad for proteins targeted to the non-photosynthetic apicoplast organelle of endosymbiotic origin, and the role of heat shock proteins in trafficking proteins here will be reviewed. Finally, the function of chaperones in protein trafficking into the mitochondrion, the remaining organelle of endosymbiotic origin, will be discussed.
Collapse
Affiliation(s)
- Thorey K Jonsdottir
- Burnet Institute, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia
| | - Mikha Gabriela
- Burnet Institute, Melbourne, VIC, Australia.,School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | | |
Collapse
|
14
|
Lu KY, Pasaje CFA, Srivastava T, Loiselle DR, Niles JC, Derbyshire E. Phosphatidylinositol 3-phosphate and Hsp70 protect Plasmodium falciparum from heat-induced cell death. eLife 2020; 9:e56773. [PMID: 32975513 PMCID: PMC7518890 DOI: 10.7554/elife.56773] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Phosphatidylinositol 3-phosphate (PI(3)P) levels in Plasmodium falciparum correlate with tolerance to cellular stresses caused by artemisinin and environmental factors. However, PI(3)P function during the Plasmodium stress response was unknown. Here, we used PI3K inhibitors and antimalarial agents to examine the importance of PI(3)P under thermal conditions recapitulating malarial fever. Live cell microscopy using chemical and genetic reporters revealed that PI(3)P stabilizes the digestive vacuole (DV) under heat stress. We demonstrate that heat-induced DV destabilization in PI(3)P-deficient P. falciparum precedes cell death and is reversible after withdrawal of the stress condition and the PI3K inhibitor. A chemoproteomic approach identified PfHsp70-1 as a PI(3)P-binding protein. An Hsp70 inhibitor and knockdown of PfHsp70-1 phenocopy PI(3)P-deficient parasites under heat shock. Furthermore, PfHsp70-1 downregulation hypersensitizes parasites to heat shock and PI3K inhibitors. Our findings underscore a mechanistic link between PI(3)P and PfHsp70-1 and present a novel PI(3)P function in DV stabilization during heat stress.
Collapse
Affiliation(s)
- Kuan-Yi Lu
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke UniversityDurhamUnited States
- Department of Chemistry, Duke UniversityDurhamUnited States
| | | | | | - David R Loiselle
- Department of Pharmacology and Cancer Biology, School of Medicine, Duke UniversityDurhamUnited States
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Emily Derbyshire
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke UniversityDurhamUnited States
- Department of Chemistry, Duke UniversityDurhamUnited States
| |
Collapse
|
15
|
He Q, Luo J, Xu JZ, Meng XZ, Pan GQ, Li T, Zhou ZY. Characterization of Hsp70 gene family provides insight into its functions related to microsporidian proliferation. J Invertebr Pathol 2020; 174:107394. [PMID: 32428446 DOI: 10.1016/j.jip.2020.107394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
Heat shock protein 70 (Hsp70), a highly conserved protein family, is widely distributed in organisms and plays fundamental roles in biotic and abiotic stress responses. However, reports on Hsp70 genes are scarce in microsporidia, a very large group of obligate intracellular parasites that can infect nearly all animals, including humans. In this study, we identified 37 Hsp70 proteins from eight microsporidian genomes and classified them into four subfamilies (A-D). The number of Hsp70 genes in these microsporidia was significantly fewer than in Rozella allomycis and yeast. All microsporidian species contained genes from each subfamily and similar subcellular locations (mitochondria, endoplasmic reticulum, cytosol, and cytosol and/or nucleus), indicating that each Hsp70 member may fulfil distinct functions. The conserved structures and motifs of the Hsp70 proteins in the same subfamily were highly similar. Expression analysis indicated that the subfamily C cytosol (cyto)-associated Hsp70s is functional during microsporidia development. Immunofluorescence assays revealed that Cyto-NbHsp70 was cytoplasmically located in the proliferation-stage of Nosema bombycis. Cyto-NbHsp70 antiserum also labeled Encephalitozoon hellem within infected cells, suggesting that this antiserum is a potential molecular marker for labeling the proliferative phases of different microsporidian species. The propagation of N. bombycis was significantly inhibited following RNAi of Cyto-NbHsp70, indicating that Cyto-NbHsp70 is important for pathogen proliferation. Our phylogenetic data suggest that Hsp70 proteins evolved during microsporidia adaption to intracellular parasitism, and they play important roles in pathogen development.
Collapse
Affiliation(s)
- Qiang He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Jian Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Jin-Zhi Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Xian-Zhi Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Guo-Qing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China.
| | - Ze-Yang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China; College of Life Science, Chongqing Normal University, Chongqing 400047, China.
| |
Collapse
|
16
|
Jankowska-Döllken M, Sanchez CP, Cyrklaff M, Lanzer M. Overexpression of the HECT ubiquitin ligase PfUT prolongs the intraerythrocytic cycle and reduces invasion efficiency of Plasmodium falciparum. Sci Rep 2019; 9:18333. [PMID: 31797898 PMCID: PMC6893019 DOI: 10.1038/s41598-019-54854-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/18/2019] [Indexed: 11/22/2022] Open
Abstract
The glms ribozyme system has been used as an amenable tool to conditionally control expression of genes of interest. It is generally assumed that insertion of the ribozyme sequence does not affect expression of the targeted gene in the absence of the inducer glucosamine-6-phosphate, although experimental support for this assumption is scarce. Here, we report the unexpected finding that integration of the glms ribozyme sequence in the 3′ untranslated region of a gene encoding a HECT E3 ubiquitin ligase, termed Plasmodium falciparum ubiquitin transferase (PfUT), increased steady state RNA and protein levels 2.5-fold in the human malaria parasite P. falciparum. Overexpression of pfut resulted in an S/M phase-associated lengthening of the parasite’s intraerythrocytic developmental cycle and a reduced merozoite invasion efficiency. The addition of glucosamine partially restored the wild type phenotype. Our study suggests a role of PfUT in controlling cell cycle progression and merozoite invasion. Our study further raises awareness regarding unexpected effects on gene expression when inserting the glms ribozyme sequence into a gene locus.
Collapse
Affiliation(s)
- Monika Jankowska-Döllken
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Cecilia P Sanchez
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Marek Cyrklaff
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
17
|
Structural insights into the binding mechanism of Plasmodium falciparum exported Hsp40-Hsp70 chaperone pair. Comput Biol Chem 2019; 83:107099. [DOI: 10.1016/j.compbiolchem.2019.107099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/11/2019] [Accepted: 08/06/2019] [Indexed: 11/21/2022]
|
18
|
Du B, Liu G, Ke M, Zhang Z, Zheng M, Lu T, Sun L, Qian H. Proteomic analysis of the hepatotoxicity of Microcystis aeruginosa in adult zebrafish (Danio rerio) and its potential mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113019. [PMID: 31419664 DOI: 10.1016/j.envpol.2019.113019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 08/03/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Microcystis aeruginosa is one of the main species of cyanobacteria that causes water blooms. M. aeruginosa can release into the water several types of microcystins (MCs), which are harmful to aquatic organisms and even humans. However, few studies have investigated the hepatotoxicity of M. aeruginosa itself in zebrafish in environments that simulate natural aquatic systems. The objective of this study was to evaluate the hepatotoxicity of M. aeruginosa in adult zebrafish (Danio rerio) after short-term (96 h) exposure and to elucidate the potential underlying mechanisms. Distinct histological changes in the liver, such as enlargement of the peripheral nuclei and sinusoids and the appearance of fibroblasts, were observed in zebrafish grown in M. aeruginosa culture. In addition, antioxidant enzyme activity was activated and protein phosphatase (PP) activity was significantly decreased with increasing microalgal density. A proteomic analysis revealed alterations in a number of protein pathways, including ribosome translation, immune response, energy metabolism and oxidative phosphorylation pathways. Western blot and real-time PCR analyses confirmed the results of the proteomic analysis. All results indicated that M. aeruginosa could disrupt hepatic functions in adult zebrafish, thus highlighting the necessity of ecotoxicity assessments for M. aeruginosa at environmentally relevant densities.
Collapse
Affiliation(s)
- Benben Du
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Guangfu Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Meng Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
19
|
Bennink S, von Bohl A, Ngwa CJ, Henschel L, Kuehn A, Pilch N, Weißbach T, Rosinski AN, Scheuermayer M, Repnik U, Przyborski JM, Minns AM, Orchard LM, Griffiths G, Lindner SE, Llinás M, Pradel G. A seven-helix protein constitutes stress granules crucial for regulating translation during human-to-mosquito transmission of Plasmodium falciparum. PLoS Pathog 2018; 14:e1007249. [PMID: 30133543 PMCID: PMC6122839 DOI: 10.1371/journal.ppat.1007249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/04/2018] [Accepted: 07/29/2018] [Indexed: 12/16/2022] Open
Abstract
The complex life-cycle of the human malaria parasite Plasmodium falciparum requires a high degree of tight coordination allowing the parasite to adapt to changing environments. One of the major challenges for the parasite is the human-to-mosquito transmission, which starts with the differentiation of blood stage parasites into the transmissible gametocytes, followed by the rapid conversion of the gametocytes into gametes, once they are taken up by the blood-feeding Anopheles vector. In order to pre-adapt to this change of host, the gametocytes store transcripts in stress granules that encode proteins needed for parasite development in the mosquito. Here we report on a novel stress granule component, the seven-helix protein 7-Helix-1. The protein, a homolog of the human stress response regulator LanC-like 2, accumulates in stress granules of female gametocytes and interacts with ribonucleoproteins, such as CITH, DOZI, and PABP1. Malaria parasites lacking 7-Helix-1 are significantly impaired in female gametogenesis and thus transmission to the mosquito. Lack of 7-Helix-1 further leads to a deregulation of components required for protein synthesis. Consistently, inhibitors of translation could mimic the 7-Helix-1 loss-of-function phenotype. 7-Helix-1 forms a complex with the RNA-binding protein Puf2, a translational regulator of the female-specific antigen Pfs25, as well as with pfs25-coding mRNA. In accord, gametocytes deficient of 7-Helix-1 exhibit impaired Pfs25 synthesis. Our data demonstrate that 7-Helix-1 constitutes stress granules crucial for regulating the synthesis of proteins needed for life-cycle progression of Plasmodium in the mosquito vector.
Collapse
Affiliation(s)
- Sandra Bennink
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Andreas von Bohl
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Che J. Ngwa
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Leonie Henschel
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Andrea Kuehn
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Nicole Pilch
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Tim Weißbach
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Alina N. Rosinski
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | | | - Urska Repnik
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Allen M. Minns
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Lindsey M. Orchard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | | | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
- Department of Chemistry & Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, United States of America
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
20
|
Zhang M, Faou P, Maier AG, Rug M. Plasmodium falciparum exported protein PFE60 influences Maurer’s clefts architecture and virulence complex composition. Int J Parasitol 2018; 48:83-95. [DOI: 10.1016/j.ijpara.2017.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/20/2017] [Accepted: 09/06/2017] [Indexed: 11/30/2022]
|
21
|
Zininga T, Achilonu I, Hoppe H, Prinsloo E, Dirr HW, Shonhai A. Plasmodium falciparum Hsp70-z, an Hsp110 homologue, exhibits independent chaperone activity and interacts with Hsp70-1 in a nucleotide-dependent fashion. Cell Stress Chaperones 2016; 21:499-513. [PMID: 26894764 PMCID: PMC4837182 DOI: 10.1007/s12192-016-0678-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 11/11/2022] Open
Abstract
The role of molecular chaperones, among them heat shock proteins (Hsps), in the development of malaria parasites has been well documented. Hsp70s are molecular chaperones that facilitate protein folding. Hsp70 proteins are composed of an N-terminal nucleotide binding domain (NBD), which confers them with ATPase activity and a C-terminal substrate binding domain (SBD). In the ADP-bound state, Hsp70 possesses high affinity for substrate and releases the folded substrate when it is bound to ATP. The two domains are connected by a conserved linker segment. Hsp110 proteins possess an extended lid segment, a feature that distinguishes them from canonical Hsp70s. Plasmodium falciparum Hsp70-z (PfHsp70-z) is a member of the Hsp110 family of Hsp70-like proteins. PfHsp70-z is essential for survival of malaria parasites and is thought to play an important role as a molecular chaperone and nucleotide exchange factor of its cytosolic canonical Hsp70 counterpart, PfHsp70-1. Unlike PfHsp70-1 whose functions are fairly well established, the structure-function features of PfHsp70-z remain to be fully elucidated. In the current study, we established that PfHsp70-z possesses independent chaperone activity. In fact, PfHsp70-z appears to be marginally more effective in suppressing protein aggregation than its cytosol-localized partner, PfHsp70-1. Furthermore, based on coimmunoaffinity chromatography and surface plasmon resonance analyses, PfHsp70-z associated with PfHsp70-1 in a nucleotide-dependent fashion. Our findings suggest that besides serving as a molecular chaperone, PfHsp70-z could facilitate the nucleotide exchange function of PfHsp70-1. These dual functions explain why it is essential for parasite survival.
Collapse
Affiliation(s)
- Tawanda Zininga
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Heinrich Hoppe
- Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
| | - Earl Prinsloo
- Biotechnology Innovation Centre, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
| | - Heini W Dirr
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.
| |
Collapse
|
22
|
Use of a Chimeric Hsp70 to Enhance the Quality of Recombinant Plasmodium falciparum S-Adenosylmethionine Decarboxylase Protein Produced in Escherichia coli. PLoS One 2016; 11:e0152626. [PMID: 27031344 PMCID: PMC4816425 DOI: 10.1371/journal.pone.0152626] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 03/16/2016] [Indexed: 01/22/2023] Open
Abstract
S-adenosylmethionine decarboxylase (PfAdoMetDC) from Plasmodium falciparum is a prospective antimalarial drug target. The production of recombinant PfAdoMetDC for biochemical validation as a drug target is important. The production of PfAdoMetDC in Escherichia coli has been reported to result in unsatisfactory yields and poor quality product. The co-expression of recombinant proteins with molecular chaperones has been proposed as one way to improve the production of the former in E. coli. E. coli heat shock proteins DnaK, GroEL-GroES and DnaJ have previously been used to enhance production of some recombinant proteins. However, the outcomes were inconsistent. An Hsp70 chimeric protein, KPf, which is made up of the ATPase domain of E. coli DnaK and the substrate binding domain of P. falciparum Hsp70 (PfHsp70) has been previously shown to exhibit chaperone function when it was expressed in E. coli cells whose resident Hsp70 (DnaK) function was impaired. We proposed that because of its domain constitution, KPf would most likely be recognised by E. coli Hsp70 co-chaperones. Furthermore, because it possesses a substrate binding domain of plasmodial origin, KPf would be primed to recognise recombinant PfAdoMetDC expressed in E. coli. First, using site-directed mutagenesis, followed by complementation assays, we established that KPf with a mutation in the hydrophobic residue located in its substrate binding cavity was functionally compromised. We further co-expressed PfAdoMetDC with KPf, PfHsp70 and DnaK in E. coli cells either in the absence or presence of over-expressed GroEL-GroES chaperonin. The folded and functional status of the produced PfAdoMetDC was assessed using limited proteolysis and enzyme assays. PfAdoMetDC co-expressed with KPf and PfHsp70 exhibited improved activity compared to protein co-expressed with over-expressed DnaK. Our findings suggest that chimeric KPf may be an ideal Hsp70 co-expression partner for the production of recombinant plasmodial proteins in E. coli.
Collapse
|
23
|
Malaria Parasite Proteins and Their Role in Alteration of the Structure and Function of Red Blood Cells. ADVANCES IN PARASITOLOGY 2015; 91:1-86. [PMID: 27015947 DOI: 10.1016/bs.apar.2015.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Malaria, caused by Plasmodium spp., continues to be a major threat to human health and a significant cause of socioeconomic hardship in many countries. Almost half of the world's population live in malaria-endemic regions and many of them suffer one or more, often life-threatening episodes of malaria every year, the symptoms of which are attributable to replication of the parasite within red blood cells (RBCs). In the case of Plasmodium falciparum, the species responsible for most malaria-related deaths, parasite replication within RBCs is accompanied by striking alterations to the morphological, biochemical and biophysical properties of the host cell that are essential for the parasites' survival. To achieve this, the parasite establishes a unique and extensive protein export network in the infected RBC, dedicating at least 6% of its genome to the process. Understanding the full gamut of proteins involved in this process and the mechanisms by which P. falciparum alters the structure and function of RBCs is important both for a more complete understanding of the pathogenesis of malaria and for development of new therapeutic strategies to prevent or treat this devastating disease. This review focuses on what is currently known about exported parasite proteins, their interactions with the RBC and their likely pathophysiological consequences.
Collapse
|
24
|
Skorokhod OA, Davalos-Schafler D, Gallo V, Valente E, Ulliers D, Notarpietro A, Mandili G, Novelli F, Persico M, Taglialatela-Scafati O, Arese P, Schwarzer E. Oxidative stress-mediated antimalarial activity of plakortin, a natural endoperoxide from the tropical sponge Plakortis simplex. Free Radic Biol Med 2015; 89:624-37. [PMID: 26459031 DOI: 10.1016/j.freeradbiomed.2015.10.399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/27/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
Abstract
Plakortin, a polyketide endoperoxide from the sponge Plakortis simplex has antiparasitic activity against P. falciparum. Similar to artemisinin, its activity depends on the peroxide functionality. Plakortin induced stage-, dose- and time-dependent morphologic anomalies, early maturation delay, ROS generation and lipid peroxidation in the parasite. Ring damage by 1 and 10 µM plakortin led to parasite death before schizogony at 20 and 95%, respectively. Treatment of late schizonts with 1, 2, 5 and 10 µM plakortin resulted in decreased reinfection rates by 30, 50, 61 and 65%, respectively. In both rings and trophozoites, plakortin induced a dose- and time-dependent ROS production as well as a significant lipid peroxidation and up to 4-fold increase of the lipoperoxide breakdown product 4-hydroxynonenal (4-HNE). Antioxidants and the free radical scavengers trolox and N-acetylcysteine significantly attenuated the parasite damage. Plakortin generated 4-HNE conjugates with the P. falciparum proteins: heat shock protein Hsp70-1, endoplasmatic reticulum-standing Hsp70-2 (BiP analogue), V-type proton ATPase catalytic subunit A, enolase, the putative vacuolar protein sorting-associated protein 11, and the dynein heavy chain-like protein, whose specific binding sites were identified by mass spectrometry. These proteins are crucially involved in protein trafficking, transmembrane and vesicular transport and parasite survival. We hypothesize that binding of 4-HNE to functionally relevant parasite proteins may explain the observed plakortin-induced morphologic aberrations and parasite death. The identification of 4-HNE-protein conjugates may generate a novel paradigm to explain the mechanism of action of pro-oxidant, peroxide-based antimalarials such as plakortin, artemisinins and synthetic endoperoxides.
Collapse
Affiliation(s)
- Oleksii A Skorokhod
- Department of Oncology, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| | | | - Valentina Gallo
- Department of Oncology, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| | - Elena Valente
- Department of Oncology, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| | - Daniela Ulliers
- Department of Oncology, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| | - Agata Notarpietro
- Department of Oncology, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| | - Giorgia Mandili
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino Medical School, Via Nizza 52, 10126 Torino, Italy; Center for Experimental Research and Medical Studies (CeRMS), Città della Salute e della Scienza, Ospedale San Giovanni Battista, Via Cherasco 15, 10126 Torino, Italy.
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino Medical School, Via Nizza 52, 10126 Torino, Italy; Center for Experimental Research and Medical Studies (CeRMS), Città della Salute e della Scienza, Ospedale San Giovanni Battista, Via Cherasco 15, 10126 Torino, Italy.
| | - Marco Persico
- Department of Pharmacy, University of Napoli 'Federico II', Via D. Montesano 49, 80131 Napoli, Italy.
| | | | - Paolo Arese
- Department of Oncology, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| | - Evelin Schwarzer
- Department of Oncology, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| |
Collapse
|
25
|
Zininga T, Makumire S, Gitau GW, Njunge JM, Pooe OJ, Klimek H, Scheurr R, Raifer H, Prinsloo E, Przyborski JM, Hoppe H, Shonhai A. Plasmodium falciparum Hop (PfHop) Interacts with the Hsp70 Chaperone in a Nucleotide-Dependent Fashion and Exhibits Ligand Selectivity. PLoS One 2015; 10:e0135326. [PMID: 26267894 PMCID: PMC4534038 DOI: 10.1371/journal.pone.0135326] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/22/2015] [Indexed: 12/24/2022] Open
Abstract
Heat shock proteins (Hsps) play an important role in the development and pathogenicity of malaria parasites. One of the most prominent functions of Hsps is to facilitate the folding of other proteins. Hsps are thought to play a crucial role when malaria parasites invade their host cells and during their subsequent development in hepatocytes and red blood cells. It is thought that Hsps maintain proteostasis under the unfavourable conditions that malaria parasites encounter in the host environment. Although heat shock protein 70 (Hsp70) is capable of independent folding of some proteins, its functional cooperation with heat shock protein 90 (Hsp90) facilitates folding of some proteins such as kinases and steroid hormone receptors into their fully functional forms. The cooperation of Hsp70 and Hsp90 occurs through an adaptor protein called Hsp70-Hsp90 organising protein (Hop). We previously characterised the Hop protein from Plasmodium falciparum (PfHop). We observed that the protein co-localised with the cytosol-localised chaperones, PfHsp70-1 and PfHsp90 at the blood stages of the malaria parasite. In the current study, we demonstrated that PfHop is a stress-inducible protein. We further explored the direct interaction between PfHop and PfHsp70-1 using far Western and surface plasmon resonance (SPR) analyses. The interaction of the two proteins was further validated by co-immunoprecipitation studies. We observed that PfHop and PfHsp70-1 associate in the absence and presence of either ATP or ADP. However, ADP appears to promote the association of the two proteins better than ATP. In addition, we investigated the specific interaction between PfHop TPR subdomains and PfHsp70-1/ PfHsp90, using a split-GFP approach. This method allowed us to observe that TPR1 and TPR2B subdomains of PfHop bind preferentially to the C-terminus of PfHsp70-1 compared to PfHsp90. Conversely, the TPR2A motif preferentially interacted with the C-terminus of PfHsp90. Finally, we observed that recombinant PfHop occasionally eluted as a protein species of twice its predicted size, suggesting that it may occur as a dimer. We conducted SPR analysis which suggested that PfHop is capable of self-association in presence or absence of ATP/ADP. Overall, our findings suggest that PfHop is a stress-inducible protein that directly associates with PfHsp70-1 and PfHsp90. In addition, the protein is capable of self-association. The findings suggest that PfHop serves as a module that brings these two prominent chaperones (PfHsp70-1 and PfHsp90) into a functional complex. Since PfHsp70-1 and PfHsp90 are essential for parasite growth, findings from this study are important towards the development of possible antimalarial inhibitors targeting the cooperation of these two chaperones.
Collapse
Affiliation(s)
- Tawanda Zininga
- Department of Biochemistry, School of Mathematics and Natural Sciences, University of Venda, Thohoyandou, 0950, South Africa
| | - Stanely Makumire
- Department of Biochemistry, School of Mathematics and Natural Sciences, University of Venda, Thohoyandou, 0950, South Africa
| | - Grace Wairimu Gitau
- Department of Biochemistry & Microbiology, University of Zululand, P. Bag X1001, KwaDlangezwa, 3886, South Africa
| | - James M. Njunge
- Department of Biochemistry and Microbiology, Rhodes, Grahamstown, 6140, South Africa
| | - Ofentse Jacob Pooe
- Department of Biochemistry & Microbiology, University of Zululand, P. Bag X1001, KwaDlangezwa, 3886, South Africa
| | - Hanna Klimek
- Parasitology, FB Biology, Philipps University Marburg, 35043, Marburg, Germany
| | - Robina Scheurr
- Parasitology, FB Biology, Philipps University Marburg, 35043, Marburg, Germany
| | - Hartmann Raifer
- Flow cytometry core facility, Institute for Medical Microbiology, University Clinic Marburg, Marburg, Germany
| | - Earl Prinsloo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, 6140, South Africa
| | - Jude M. Przyborski
- Parasitology, FB Biology, Philipps University Marburg, 35043, Marburg, Germany
| | - Heinrich Hoppe
- Department of Biochemistry and Microbiology, Rhodes, Grahamstown, 6140, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, School of Mathematics and Natural Sciences, University of Venda, Thohoyandou, 0950, South Africa
- * E-mail:
| |
Collapse
|
26
|
Przyborski JM, Diehl M, Blatch GL. Plasmodial HSP70s are functionally adapted to the malaria parasite life cycle. Front Mol Biosci 2015; 2:34. [PMID: 26167469 PMCID: PMC4481151 DOI: 10.3389/fmolb.2015.00034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/12/2015] [Indexed: 11/13/2022] Open
Abstract
The human malaria parasite, Plasmodium falciparum, encodes a minimal complement of six heat shock protein 70s (PfHSP70s), some of which are highly expressed and are thought to play an important role in the survival and pathology of the parasite. In addition to canonical features of molecular chaperones, these HSP70s possess properties that reflect functional adaptation to a parasitic life style, including resistance to thermal insult during fever periods and host–parasite interactions. The parasite even exports an HSP70 to the host cell where it is likely to be involved in host cell modification. This review focuses on the features of the PfHSP70s, particularly with respect to their adaptation to the malaria parasite life cycle.
Collapse
Affiliation(s)
| | - Mathias Diehl
- Parasitology, Philipps University Marburg Marburg, Germany
| | - Gregory L Blatch
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University Melbourne, VIC, Australia ; Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University Grahamstown, South Africa
| |
Collapse
|
27
|
Cockburn IL, Boshoff A, Pesce ER, Blatch GL. Selective modulation of plasmodial Hsp70s by small molecules with antimalarial activity. Biol Chem 2015; 395:1353-62. [PMID: 24854538 DOI: 10.1515/hsz-2014-0138] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/12/2014] [Indexed: 11/15/2022]
Abstract
Plasmodial heat shock protein 70 (Hsp70) chaperones represent a promising new class of antimalarial drug targets because of the important roles they play in the survival and pathogenesis of the malaria parasite Plasmodium falciparum. This study assessed a set of small molecules (lapachol, bromo-β-lapachona and malonganenones A, B and C) as potential modulators of two biologically important plasmodial Hsp70s, the parasite-resident PfHsp70-1 and the exported PfHsp70-x. Compounds of interest were assessed for modulatory effects on the steady-state basal and heat shock protein 40 (Hsp40)-stimulated ATPase activities of PfHsp70-1, PfHsp70-x and human Hsp70, as well as on the protein aggregation suppression activity of PfHsp70-x. The antimalarial marine alkaloid malonganenone A was of particular interest, as it was found to have limited cytotoxicity to mammalian cell lines and exhibited the desired properties of an effective plasmodial Hsp70 modulator. This compound was found to inhibit plasmodial and not human Hsp70 ATPase activity (Hsp40-stimulated), and hindered the aggregation suppression activity of PfHsp70-x. Furthermore, malonganenone A was shown to disrupt the interaction between PfHsp70-x and Hsp40. This is the first report to show that PfHsp70-x has chaperone activity, is stimulated by Hsp40 and can be specifically modulated by small molecule compounds.
Collapse
|
28
|
Zininga T, Achilonu I, Hoppe H, Prinsloo E, Dirr HW, Shonhai A. Overexpression, Purification and Characterisation of the Plasmodium falciparum Hsp70-z (PfHsp70-z) Protein. PLoS One 2015; 10:e0129445. [PMID: 26083397 PMCID: PMC4471362 DOI: 10.1371/journal.pone.0129445] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/09/2015] [Indexed: 11/18/2022] Open
Abstract
Six Hsp70-like genes are represented on the genome of Plasmodium falciparum. Of these two occur in the cytosol: P. falciparum Hsp70-z (PfHsp70-z) and PfHsp70-1. PfHsp70-1 is a well characterised canonical Hsp70 that facilitates protein quality control and is crucial for the development of malaria parasites. There is very little known about PfHsp70-z. However, PfHsp70-z is known to be essential and is implicated in suppressing aggregation of asparagine-rich proteins of P. falciparum. In addition, its expression at the clinical stage of malaria correlates with disease prognosis. Based on structural evidence PfHsp70-z belongs to the Hsp110 family of proteins. Since Hsp110 proteins have been described as nucleotide exchange factors (NEFs) of their canonical Hsp70 counterparts, it has been speculated that PfHsp70-z may serve as a NEF of PfHsp70-1. In the current study, P. falciparum cells cultured in vitro were subjected to heat stress, triggering the enhanced expression of PfHsp70-z. Biochemical assays conducted using recombinant PfHsp70-z protein demonstrated that the protein is heat stable and possesses ATPase activity. Furthermore, we observed that PfHsp70-z is capable of self-association. The structural-functional features of PfHsp70-z provide further evidence for its role as a chaperone and possible nucleotide exchange factor of PfHsp70-1.
Collapse
Affiliation(s)
- Tawanda Zininga
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, Thohoyandou, 0950, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Heinrich Hoppe
- Department of Biochemistry, Microbiology & Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - Earl Prinsloo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa
| | - Heini W. Dirr
- Protein Structure-Function Research Unit, School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, Thohoyandou, 0950, South Africa
- * E-mail:
| |
Collapse
|
29
|
Njunge JM, Mandal P, Przyborski JM, Boshoff A, Pesce ER, Blatch GL. PFB0595w is a Plasmodium falciparum J protein that co-localizes with PfHsp70-1 and can stimulate its in vitro ATP hydrolysis activity. Int J Biochem Cell Biol 2015; 62:47-53. [PMID: 25701168 DOI: 10.1016/j.biocel.2015.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/05/2015] [Accepted: 02/10/2015] [Indexed: 12/01/2022]
Abstract
Heat shock proteins, many of which function as molecular chaperones, play important roles in the lifecycle and pathogenesis of the malaria parasite, Plasmodium falciparum. The P. falciparum heat shock protein 70 (PfHsp70) family of chaperones is potentially regulated by a large complement of J proteins that localize to various intracellular compartments including the infected erythrocyte cytosol. While PfHsp70-1 has been shown to be an abundant cytosolic chaperone, its regulation by J proteins is poorly understood. In this study, we characterized the J protein PFB0595w, a homologue of the well-studied yeast cytosolic J protein, Sis1. PFB0595w, similarly to PfHsp70-1, was localized to the parasite cytosol and its expression was upregulated by heat shock. Additionally, recombinant PFB0595w was shown to be dimeric and to stimulate the in vitro ATPase activity of PfHsp70-1. Overall, the expression, localization and biochemical data for PFB0595w suggest that it may function as a cochaperone of PfHsp70-1, and advances current knowledge on the chaperone machinery of the parasite.
Collapse
Affiliation(s)
- James M Njunge
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes, Rhodes University, Grahamstown 6140, South Africa
| | - Pradipta Mandal
- Parasitology, Philipps University Marburg, 35043 Marburg, Germany
| | | | - Aileen Boshoff
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes, Rhodes University, Grahamstown 6140, South Africa
| | - Eva-Rachele Pesce
- College of Health and Biomedicine, Victoria University, Melbourne 8001, VIC, Australia
| | - Gregory L Blatch
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes, Rhodes University, Grahamstown 6140, South Africa; College of Health and Biomedicine, Victoria University, Melbourne 8001, VIC, Australia.
| |
Collapse
|
30
|
Moreno-Pérez DA, Dégano R, Ibarrola N, Muro A, Patarroyo MA. Determining the Plasmodium vivax VCG-1 strain blood stage proteome. J Proteomics 2014; 113:268-280. [PMID: 25316051 DOI: 10.1016/j.jprot.2014.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/17/2014] [Accepted: 10/02/2014] [Indexed: 01/31/2023]
Abstract
Plasmodium vivax is the second most prevalent parasite species causing malaria in humans living in tropical and subtropical areas throughout the world. There have been few P. vivax proteomic studies to date and they have focused on using clinical isolates, given the technical difficulties concerning how to maintain an in vitro culture of this species. This study was thus focused on identifying the P. vivax VCG-1 strain proteome during its blood lifecycle through LC-MS/MS; this led to identifying 734 proteins, thus increasing the overall number reported for P. vivax to date. Some of them have previously been related to reticulocyte invasion, parasite virulence and growth and others are new molecules possibly playing a functional role during metabolic processes, as predicted by Database for Annotation, Visualization and Integrated Discovery (DAVID) functional analysis. This is the first large-scale proteomic analysis of a P. vivax strain adapted to a non-human primate model showing the parasite protein repertoire during the blood lifecycle. Database searches facilitated the in silico prediction of proteins proposed for evaluation in further experimental assays regarding their potential as pharmacologic targets or as component of a totally efficient vaccine against malaria caused by P. vivax. BIOLOGICAL SIGNIFICANCE P. vivax malaria continues being a public health problem around world. Although considerable progress has been made in understanding genome- and transcriptome-related P. vivax biology, there are few proteome studies, currently representing only 8.5% of the predicted in silico proteome reported in public databases. A high-throughput proteomic assay was used for discovering new P. vivax intra-reticulocyte asexual stage molecules taken from parasites maintained in vivo in a primate model. The methodology avoided the main problem related to standardising an in vitro culture system to obtain enough samples for protein identification and annotation. This study provides a source of potential information contributing towards a basic understanding of P. vivax biology related to parasite proteins which are of significant importance for the malaria research community.
Collapse
Affiliation(s)
- D A Moreno-Pérez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, Colombia; Universidad del Rosario, Calle 63D No. 24-31, Bogotá, Colombia; IBSAL-CIETUS (Instituto de Investigación Biomédica de Salamanca-Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain.
| | - R Dégano
- Unidad de Proteómica, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.
| | - N Ibarrola
- Unidad de Proteómica, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.
| | - A Muro
- IBSAL-CIETUS (Instituto de Investigación Biomédica de Salamanca-Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain.
| | - M A Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, Colombia; Universidad del Rosario, Calle 63D No. 24-31, Bogotá, Colombia.
| |
Collapse
|
31
|
Chaubey S, Grover M, Tatu U. Endoplasmic reticulum stress triggers gametocytogenesis in the malaria parasite. J Biol Chem 2014; 289:16662-74. [PMID: 24755215 DOI: 10.1074/jbc.m114.551549] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The malaria parasite experiences a significant amount of redox stress during its growth in human erythrocytes and heavily relies on secretory functions for pathogenesis. Most certainly, the parasite is equipped with machinery to tackle perturbations in the secretory pathway, like the unfolded protein response pathway in higher eukaryotes. Our bioinformatics analysis revealed the complete absence of genes involved in the canonical unfolded protein response pathway in Plasmodium falciparum. Accordingly, the parasite was unable to up-regulate endoplasmic reticulum (ER) chaperones or ER-associated degradation in response to DTT-mediated ER stress. Global profiling of gene expression upon DTT treatment revealed a network of AP2 transcription factors and their targets being activated. The overall outcome was up-regulation of genes involved in protein export and the sexual stage of the parasite life cycle culminating in gametocytogenesis. Our results suggest that the malaria parasite uses ER stress as a cue to switch to the transmissible sexual stages.
Collapse
Affiliation(s)
- Shweta Chaubey
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Manish Grover
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Utpal Tatu
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
32
|
Abstract
SUMMARYPlasmodium falciparumdisplays a large and remarkable variety of heat shock protein 40 family members (PfHsp40s). The majority of the PfHsp40s are poorly characterized, and although the functions of some of them have been suggested, their exact mechanism of action is still elusive and their interacting partners and client proteins are unknown. TheP. falciparumheat shock protein 70 family members (PfHsp70s) have been more extensively characterized than the PfHsp40s, with certain members shown to function as molecular chaperones. However, little is known about the PfHsp70-PfHsp40 chaperone partnerships. There is mounting evidence that these chaperones are important not only in protein homoeostasis and cytoprotection, but also in protein trafficking across the parasitophorous vacuole (PV) and into the infected erythrocyte. We propose that certain members of these chaperone families work together to maintain exported proteins in an unfolded state until they reach their final destination. In this review, we critically evaluate what is known and not known about PfHsp40s and PfHsp70s.
Collapse
|
33
|
Zhang NS, Li HY, Liu JS, Yang WD. Gene expression profiles in zebrafish (Danio rerio) liver after acute exposure to okadaic acid. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:791-802. [PMID: 24637248 DOI: 10.1016/j.etap.2014.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
Okadaic acid (OA), a main component of diarrheic shellfish poisoning (DSP) toxins, is a strong and specific inhibitor of the serine/threonine protein phosphatases PP1 and PP2A. However, not all of the OA-induced effects can be explained by this phosphatase inhibition, and controversial results on OA are increasing. To provide clues on potential mechanisms of OA other than phosphatase inhibition, here, acute toxicity of OA was evaluated in zebrafish, and changes in gene expression in zebrafish liver tissues upon exposure to OA were observed by microarray. The i.p. ED50 (6 h) of OA on zebrafish was 1.54 μg OA/g body weight (bw). Among the genes analyzed on the zebrafish array, 55 genes were significantly up-regulated and 36 down-regulated in the fish liver tissue upon exposure to 0.176 μg OA/g bw (low-dose group, LD) compared with the low ethanol control (LE). However, there were no obvious functional clusters for them. On the contrary, fish exposure to 1.760 μg OA/g bw (high-dose group, HD) yielded a great number of differential expressed genes (700 up and 285 down) compared with high ethanol control (HE), which clustered in several functional terms such as p53 signaling pathway, Wnt signaling pathway, glutathione metabolism and protein processing in endoplasmic reticulum, etc. These genes were involved in protein phosphatase activity, translation factor activity, heat shock protein binding, as well as transmembrane transporter activity. Our findings may give some useful information on the pathways of OA-induced injury in fish.
Collapse
Affiliation(s)
- Nai-sheng Zhang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China; Wageningen University and Research Centre, Centre for Water and Climate, Alterra, PO Box 47, 6700AA Wageningen, The Netherlands
| | - Hong-ye Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, P. R. China
| | - Jie-sheng Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, P. R. China
| | - Wei-dong Yang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, P. R. China.
| |
Collapse
|
34
|
Sanz S, Bandini G, Ospina D, Bernabeu M, Mariño K, Fernández-Becerra C, Izquierdo L. Biosynthesis of GDP-fucose and other sugar nucleotides in the blood stages of Plasmodium falciparum. J Biol Chem 2013; 288:16506-16517. [PMID: 23615908 DOI: 10.1074/jbc.m112.439828] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carbohydrate structures play important roles in many biological processes, including cell adhesion, cell-cell communication, and host-pathogen interactions. Sugar nucleotides are activated forms of sugars used by the cell as donors for most glycosylation reactions. Using a liquid chromatography-tandem mass spectrometry-based method, we identified and quantified the pools of UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, GDP-mannose, and GDP-fucose in Plasmodium falciparum intraerythrocytic life stages. We assembled these data with the in silico functional reconstruction of the parasite metabolic pathways obtained from the P. falciparum annotated genome, exposing new active biosynthetic routes crucial for further glycosylation reactions. Fucose is a sugar present in glycoconjugates often associated with recognition and adhesion events. Thus, the GDP-fucose precursor is essential in a wide variety of organisms. P. falciparum presents homologues of GDP-mannose 4,6-dehydratase and GDP-L-fucose synthase enzymes that are active in vitro, indicating that most GDP-fucose is formed by a de novo pathway that involves the bioconversion of GDP-mannose. Homologues for enzymes involved in a fucose salvage pathway are apparently absent in the P. falciparum genome. This is in agreement with in vivo metabolic labeling experiments showing that fucose is not significantly incorporated by the parasite. Fluorescence microscopy of epitope-tagged versions of P. falciparum GDP-mannose 4,6-dehydratase and GDP-L-fucose synthase expressed in transgenic 3D7 parasites shows that these enzymes localize in the cytoplasm of P. falciparum during the intraerythrocytic developmental cycle. Although the function of fucose in the parasite is not known, the presence of GDP-fucose suggests that the metabolite may be used for further fucosylation reactions.
Collapse
Affiliation(s)
- Sílvia Sanz
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, CEK, 1a Planta, Rosselló 149-153, 08036, Barcelona, Spain
| | - Giulia Bandini
- College of Life Sciences, University of Dundee, Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, Dundee DD15EH, Scotland, United Kingdom
| | - Diego Ospina
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, CEK, 1a Planta, Rosselló 149-153, 08036, Barcelona, Spain
| | - Maria Bernabeu
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, CEK, 1a Planta, Rosselló 149-153, 08036, Barcelona, Spain
| | - Karina Mariño
- College of Life Sciences, University of Dundee, Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, Dundee DD15EH, Scotland, United Kingdom
| | - Carmen Fernández-Becerra
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, CEK, 1a Planta, Rosselló 149-153, 08036, Barcelona, Spain
| | - Luis Izquierdo
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, CEK, 1a Planta, Rosselló 149-153, 08036, Barcelona, Spain.
| |
Collapse
|
35
|
Gohil S, Kats LM, Seemann T, Fernandez KM, Siddiqui G, Cooke BM. Bioinformatic prediction of the exportome of Babesia bovis and identification of novel proteins in parasite-infected red blood cells. Int J Parasitol 2013; 43:409-16. [PMID: 23395698 DOI: 10.1016/j.ijpara.2013.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
Abstract
Babesia bovis is a pathogen of considerable economic significance to the livestock industry worldwide but the precise mechanisms by which this parasite causes disease in susceptible cattle remain poorly understood. It is clear, however, that alterations to the structure and function of red blood cells in which the parasites reside and replicate play an important role in pathogenesis and that these are secondary to the export of numerous, currently unknown and uncharacterised parasite-encoded proteins. Using a rational bioinformatic approach, we have identified a set of 362 proteins (117 of which are hypothetical) that we predict encompasses the B. bovis exportome. These exported proteins are likely to be trafficked to various cellular locations, with a subset destined for the red blood cell cytosol or the red blood cell cytoskeleton. These proteins are likely to play important roles in mediating the pathogenesis of babesiosis. We have selected three novel proteins and confirmed their predicted export and localisation within the host red blood cell by immunofluorescence using specific antibodies raised against these proteins. Complete characterisation of these novel exported parasite proteins will help elucidate their function within the host red blood cell and assist in identification of new therapeutic targets for babesiosis.
Collapse
Affiliation(s)
- Sejal Gohil
- Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | | | | | | | |
Collapse
|
36
|
Gitau GW, Mandal P, Blatch GL, Przyborski J, Shonhai A. Characterisation of the Plasmodium falciparum Hsp70-Hsp90 organising protein (PfHop). Cell Stress Chaperones 2012; 17:191-202. [PMID: 22005844 PMCID: PMC3273567 DOI: 10.1007/s12192-011-0299-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 10/25/2022] Open
Abstract
Malaria is caused by Plasmodium species, whose transmission to vertebrate hosts is facilitated by mosquito vectors. The transition from the cold blooded mosquito vector to the host represents physiological stress to the parasite, and additionally malaria blood stage infection is characterised by intense fever periods. In recent years, it has become clear that heat shock proteins play an essential role during the parasite's life cycle. Plasmodium falciparum expresses two prominent heat shock proteins: heat shock protein 70 (PfHsp70) and heat shock protein 90 (PfHsp90). Both of these proteins have been implicated in the development and pathogenesis of malaria. In eukaryotes, Hsp70 and Hsp90 proteins are functionally linked by an essential adaptor protein known as the Hsp70-Hsp90 organising protein (Hop). In this study, recombinant P. falciparum Hop (PfHop) was heterologously produced in E. coli and purified by nickel affinity chromatography. Using specific anti-PfHop antisera, the expression and localisation of PfHop in P. falciparum was investigated. PfHop was shown to co-localise with PfHsp70 and PfHsp90 in parasites at the trophozoite stage. Gel filtration and co-immunoprecipitation experiments suggested that PfHop was present in a complex together with PfHsp70 and PfHsp90. The association of PfHop with both PfHsp70 and PfHsp90 suggests that this protein may mediate the functional interaction between the two chaperones.
Collapse
Affiliation(s)
- Grace W. Gitau
- Department of Biochemistry and Microbiology, Zululand University, Kwadlangezwa, South Africa
| | - Pradipta Mandal
- FB Biology, Philipps University Marburg, 35043 Marburg, Germany
| | - Gregory L. Blatch
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, 6140 South Africa
- School of Biomedical and Health Sciences, Victoria University, Melbourne, Victoria 8001 Australia
| | - Jude Przyborski
- FB Biology, Philipps University Marburg, 35043 Marburg, Germany
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, Zululand University, Kwadlangezwa, South Africa
| |
Collapse
|
37
|
Rug M, Maier AG. The heat shock protein 40 family of the malaria parasite Plasmodium falciparum. IUBMB Life 2011; 63:1081-6. [DOI: 10.1002/iub.525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Botha M, Chiang AN, Needham PG, Stephens LL, Hoppe HC, Külzer S, Przyborski JM, Lingelbach K, Wipf P, Brodsky JL, Shonhai A, Blatch GL. Plasmodium falciparum encodes a single cytosolic type I Hsp40 that functionally interacts with Hsp70 and is upregulated by heat shock. Cell Stress Chaperones 2011; 16:389-401. [PMID: 21191678 PMCID: PMC3118825 DOI: 10.1007/s12192-010-0250-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/10/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022] Open
Abstract
Heat shock protein 70 (Hsp70) and heat shock protein 40 (Hsp40) function as molecular chaperones during the folding and trafficking of proteins within most cell types. However, the Hsp70-Hsp40 chaperone partnerships within the malaria parasite, Plasmodium falciparum, have not been elucidated. Only one of the 43 P. falciparum Hsp40s is predicted to be a cytosolic, canonical Hsp40 (termed PfHsp40) capable of interacting with the major cytosolic P. falciparum-encoded Hsp70, PfHsp70. Consistent with this hypothesis, we found that PfHsp40 is upregulated under heat shock conditions in a similar pattern to PfHsp70. In addition, PfHsp70 and PfHsp40 reside mainly in the parasite cytosol, as assessed using indirect immunofluorescence microscopy. Recombinant PfHsp40 stimulated the ATP hydrolytic rates of both PfHsp70 and human Hsp70 similar to other canonical Hsp40s of yeast (Ydj1) and human (Hdj2) origin. In contrast, the Hsp40-stimulated plasmodial and human Hsp70 ATPase activities were differentially inhibited in the presence of pyrimidinone-based small molecule modulators. To further probe the chaperone properties of PfHsp40, protein aggregation suppression assays were conducted. PfHsp40 alone suppressed protein aggregation, and cooperated with PfHsp70 to suppress aggregation. Together, these data represent the first cellular and biochemical evidence for a PfHsp70-PfHsp40 partnership in the malaria parasite, and furthermore that the plasmodial and human Hsp70-Hsp40 chaperones possess unique attributes that are differentially modulated by small molecules.
Collapse
Affiliation(s)
- Melissa Botha
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, South Africa
| | - Annette N. Chiang
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Patrick G. Needham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Linda L. Stephens
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, South Africa
| | - Heinrich C. Hoppe
- Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Simone Külzer
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Jude M. Przyborski
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Klaus Lingelbach
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA USA
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa, South Africa
| | - Gregory L. Blatch
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
39
|
Expression of a malarial Hsp70 improves defects in chaperone-dependent activities in ssa1 mutant yeast. PLoS One 2011; 6:e20047. [PMID: 21625512 PMCID: PMC3098276 DOI: 10.1371/journal.pone.0020047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/11/2011] [Indexed: 01/06/2023] Open
Abstract
Plasmodium falciparum causes the most virulent form of malaria and encodes a large number of molecular chaperones. Because the parasite encounters radically different environments during its lifecycle, many members of this chaperone ensemble may be essential for P. falciparum survival. Therefore, Plasmodium chaperones represent novel therapeutic targets, but to establish the mechanism of action of any developed therapeutics, it is critical to ascertain the functions of these chaperones. To this end, we report the development of a yeast expression system for PfHsp70-1, a P. falciparum cytoplasmic chaperone. We found that PfHsp70-1 repairs mutant growth phenotypes in yeast strains lacking the two primary cytosolic Hsp70s, SSA1 and SSA2, and in strains harboring a temperature sensitive SSA1 allele. PfHsp70-1 also supported chaperone-dependent processes such as protein translocation and ER associated degradation, and ameliorated the toxic effects of oxidative stress. By introducing engineered forms of PfHsp70-1 into the mutant strains, we discovered that rescue requires PfHsp70-1 ATPase activity. Together, we conclude that yeast can be co-opted to rapidly uncover specific cellular activities mediated by malarial chaperones.
Collapse
|
40
|
Cockburn IL, Pesce ER, Pryzborski JM, Davies-Coleman MT, Clark PG, Keyzers RA, Stephens LL, Blatch GL. Screening for small molecule modulators of Hsp70 chaperone activity using protein aggregation suppression assays: inhibition of the plasmodial chaperone PfHsp70-1. Biol Chem 2011; 392:431-8. [DOI: 10.1515/bc.2011.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Abstract
Plasmodium falciparum heat shock protein 70 (PfHsp70-1) is thought to play an essential role in parasite survival and virulence in the human host, making it a potential antimalarial drug target. A malate dehydrogenase based aggregation suppression assay was adapted for the screening of small molecule modulators of Hsp70. A number of small molecules of natural (marine prenylated alkaloids and terrestrial plant naphthoquinones) and related synthetic origin were screened for their effects on the protein aggregation suppression activity of purified recombinant PfHsp70-1. Five compounds (malonganenone A-C, lapachol and bromo-β-lapachona) were found to inhibit the chaperone activity of PfHsp70-1 in a concentration dependent manner, with lapachol preferentially inhibiting PfHsp70-1 compared to another control Hsp70. Using growth inhibition assays on P. falciparum infected erythrocytes, all of the compounds, except for malonganenone B, were found to inhibit parasite growth with IC50 values in the low micromolar range. Overall, this study has identified two novel classes of small molecule inhibitors of PfHsp70-1, one representing a new class of antiplasmodial compounds (malonganenones). In addition to demonstrating the validity of PfHsp70-1 as a possible drug target, the compounds reported in this study will be potentially useful as molecular probes for fundamental studies on Hsp70 chaperone function.
Collapse
|
41
|
Pallavi R, Acharya P, Chandran S, Daily JP, Tatu U. Chaperone expression profiles correlate with distinct physiological states of Plasmodium falciparum in malaria patients. Malar J 2010; 9:236. [PMID: 20719001 PMCID: PMC2933700 DOI: 10.1186/1475-2875-9-236] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/19/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Molecular chaperones have been shown to be important in the growth of the malaria parasite Plasmodium falciparum and inhibition of chaperone function by pharmacological agents has been shown to abrogate parasite growth. A recent study has demonstrated that clinical isolates of the parasite have distinct physiological states, one of which resembles environmental stress response showing up-regulation of specific molecular chaperones. METHODS Chaperone networks operational in the distinct physiological clusters in clinical malaria parasites were constructed using cytoscape by utilizing their clinical expression profiles. RESULTS Molecular chaperones show distinct profiles in the previously defined physiologically distinct states. Further, expression profiles of the chaperones from different cellular compartments correlate with specific patient clusters. While cluster 1 parasites, representing a starvation response, show up-regulation of organellar chaperones, cluster 2 parasites, which resemble active growth based on glycolysis, show up-regulation of cytoplasmic chaperones. Interestingly, cytoplasmic Hsp90 and its co-chaperones, previously implicated as drug targets in malaria, cluster in the same group. Detailed analysis of chaperone expression in the patient cluster 2 reveals up-regulation of the entire Hsp90-dependent pro-survival circuitries. In addition, cluster 2 also shows up-regulation of Plasmodium export element (PEXEL)-containing Hsp40s thought to have regulatory and host remodeling roles in the infected erythrocyte. CONCLUSION In all, this study demonstrates an intimate involvement of parasite-encoded chaperones, PfHsp90 in particular, in defining pathogenesis of malaria.
Collapse
Affiliation(s)
- Rani Pallavi
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012 Karnataka, India
| | | | | | | | | |
Collapse
|
42
|
Vembar SS, Jin Y, Brodsky JL, Hendershot LM. The mammalian Hsp40 ERdj3 requires its Hsp70 interaction and substrate-binding properties to complement various yeast Hsp40-dependent functions. J Biol Chem 2009; 284:32462-71. [PMID: 19748898 DOI: 10.1074/jbc.m109.000729] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heat shock proteins of 70 kDa (Hsp70s) and their J domain-containing Hsp40 cofactors are highly conserved chaperone pairs that facilitate a large number of cellular processes. The observation that each Hsp70 partners with many J domain-containing proteins (JDPs) has led to the hypothesis that Hsp70 function is dictated by cognate JDPs. If this is true, one might expect highly divergent Hsp70-JDP pairs to be unable to function in vivo. However, we discovered that, when a yeast cytosolic JDP, Ydj1, was targeted to the mammalian endoplasmic reticulum (ER), it interacted with the ER-lumenal Hsp70, BiP, and bound to BiP substrates. Conversely, when a mammalian ER-lumenal JDP, ERdj3, was directed to the yeast cytosol, it rescued the temperature-sensitive growth phenotype of yeast-containing mutant alleles in two cytosolic JDPs, HLJ1 and YDJ1, and activated the ATP hydrolysis rate of Ssa1, the yeast cytosolic Hsp70 that partners with Hlj1 and Ydj1. Surprisingly, ERdj3 mutants that were compromised for substrate binding were unable to rescue the hlj1ydj1 growth defect even though they stimulated the ATPase activity of Ssa1. Yet, J domain mutants of ERdj3 that were defective for interaction with Ssa1 restored the growth of hlj1ydj1 yeast. Taken together, these data suggest that the substrate binding properties of certain JDPs, not simply the formation of unique Hsp70-JDP pairs, are critical to specify in vivo function.
Collapse
Affiliation(s)
- Shruthi S Vembar
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|