1
|
Madec M, Rosati E, Lallement C. Feasibility and reliability of sequential logic with gene regulatory networks. PLoS One 2021; 16:e0249234. [PMID: 33784367 PMCID: PMC8009411 DOI: 10.1371/journal.pone.0249234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/14/2021] [Indexed: 11/19/2022] Open
Abstract
Gene regulatory networks exhibiting Boolean behaviour, e.g. AND, OR or XOR, have been routinely designed for years. However, achieving more sophisticated functions, such as control or computation, usually requires sequential circuits or so-called state machines. For such a circuit, outputs depend both on inputs and the current state of the system. Although it is still possible to design such circuits by analogy with digital electronics, some particularities of biology make the task trickier. The impact of two of them, namely the stochasticity of biological processes and the inhomogeneity in the response of regulation mechanisms, are assessed in this paper. Numerical simulations performed in two use cases point out high risks of malfunctions even for designed GRNs functional from a theoretical point of view. Several solutions to improve reliability of such systems are also discussed.
Collapse
Affiliation(s)
- Morgan Madec
- Laboratory of Engineering Sciences, Computer Sciences and Imaging, UMR 7357 (University of Strasbourg / CNRS), Illkirch, France
| | - Elise Rosati
- Laboratory of Engineering Sciences, Computer Sciences and Imaging, UMR 7357 (University of Strasbourg / CNRS), Illkirch, France
| | - Christophe Lallement
- Laboratory of Engineering Sciences, Computer Sciences and Imaging, UMR 7357 (University of Strasbourg / CNRS), Illkirch, France
| |
Collapse
|
2
|
Eisenhut P, Mebrahtu A, Moradi Barzadd M, Thalén N, Klanert G, Weinguny M, Sandegren A, Su C, Hatton D, Borth N, Rockberg J. Systematic use of synthetic 5'-UTR RNA structures to tune protein translation improves yield and quality of complex proteins in mammalian cell factories. Nucleic Acids Res 2020; 48:e119. [PMID: 33051690 PMCID: PMC7672427 DOI: 10.1093/nar/gkaa847] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/28/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022] Open
Abstract
Predictably regulating protein expression levels to improve recombinant protein production has become an important tool, but is still rarely applied to engineer mammalian cells. We therefore sought to set-up an easy-to-implement toolbox to facilitate fast and reliable regulation of protein expression in mammalian cells by introducing defined RNA hairpins, termed 'regulation elements (RgE)', in the 5'-untranslated region (UTR) to impact translation efficiency. RgEs varying in thermodynamic stability, GC-content and position were added to the 5'-UTR of a fluorescent reporter gene. Predictable translation dosage over two orders of magnitude in mammalian cell lines of hamster and human origin was confirmed by flow cytometry. Tuning heavy chain expression of an IgG with the RgEs to various levels eventually resulted in up to 3.5-fold increased titers and fewer IgG aggregates and fragments in CHO cells. Co-expression of a therapeutic Arylsulfatase-A with RgE-tuned levels of the required helper factor SUMF1 demonstrated that the maximum specific sulfatase activity was already attained at lower SUMF1 expression levels, while specific production rates steadily decreased with increasing helper expression. In summary, we show that defined 5'-UTR RNA-structures represent a valid tool to systematically tune protein expression levels in mammalian cells and eventually help to optimize recombinant protein expression.
Collapse
Affiliation(s)
- Peter Eisenhut
- ACIB Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
- BOKU University of Natural Resources and Life Sciences, Department of Biotechnology, Vienna 1190, Austria
| | - Aman Mebrahtu
- KTH Royal Institute of Technology, Department of Protein Science, 10691 Stockholm, Sweden
| | - Mona Moradi Barzadd
- KTH Royal Institute of Technology, Department of Protein Science, 10691 Stockholm, Sweden
| | - Niklas Thalén
- KTH Royal Institute of Technology, Department of Protein Science, 10691 Stockholm, Sweden
| | - Gerald Klanert
- ACIB Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Marcus Weinguny
- ACIB Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
- BOKU University of Natural Resources and Life Sciences, Department of Biotechnology, Vienna 1190, Austria
| | - Anna Sandegren
- Affibody Medical AB, Scheeles väg 2, SE-171 65 Solna, Sweden
| | - Chao Su
- SOBI AB, Tomtebodavägen 23A, Stockholm, Sweden
| | - Diane Hatton
- AstraZeneca, Biopharmaceutical Development, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Nicole Borth
- ACIB Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
- BOKU University of Natural Resources and Life Sciences, Department of Biotechnology, Vienna 1190, Austria
| | - Johan Rockberg
- KTH Royal Institute of Technology, Department of Protein Science, 10691 Stockholm, Sweden
| |
Collapse
|
3
|
Paul A, Warszawik EM, Loznik M, Boersma AJ, Herrmann A. Modular and Versatile Trans‐Encoded Genetic Switches. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Avishek Paul
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Eliza M. Warszawik
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Mark Loznik
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Arnold J. Boersma
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| |
Collapse
|
4
|
Paul A, Warszawik EM, Loznik M, Boersma AJ, Herrmann A. Modular and Versatile Trans-Encoded Genetic Switches. Angew Chem Int Ed Engl 2020; 59:20328-20332. [PMID: 32352201 PMCID: PMC7689881 DOI: 10.1002/anie.202001372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/10/2020] [Indexed: 01/14/2023]
Abstract
Current bacterial RNA switches suffer from lack of versatile inputs and are difficult to engineer. We present versatile and modular RNA switches that are trans-encoded and based on tRNA-mimicking structures (TMSs). These switches provide a high degree of freedom for reengineering and can thus be designed to accept a wide range of inputs, including RNA, small molecules, and proteins. This powerful approach enables control of the translation of protein expression from plasmid and genome DNA.
Collapse
Affiliation(s)
- Avishek Paul
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- DWI-Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Eliza M. Warszawik
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Mark Loznik
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- DWI-Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Arnold J. Boersma
- DWI-Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Andreas Herrmann
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- DWI-Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| |
Collapse
|
5
|
Kawasaki S, Ono H, Hirosawa M, Saito H. RNA and protein-based nanodevices for mammalian post-transcriptional circuits. Curr Opin Biotechnol 2020; 63:99-110. [DOI: 10.1016/j.copbio.2019.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/16/2019] [Accepted: 11/22/2019] [Indexed: 12/26/2022]
|
6
|
Panigaj M, Johnson MB, Ke W, McMillan J, Goncharova EA, Chandler M, Afonin KA. Aptamers as Modular Components of Therapeutic Nucleic Acid Nanotechnology. ACS NANO 2019; 13:12301-12321. [PMID: 31664817 PMCID: PMC7382785 DOI: 10.1021/acsnano.9b06522] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nucleic acids play a central role in all domains of life, either as genetic blueprints or as regulators of various biochemical pathways. The chemical makeup of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA), generally represented by a sequence of four monomers, also provides precise instructions for folding and higher-order assembly of these biopolymers that, in turn, dictate biological functions. The sequence-based specific 3D structures of nucleic acids led to the development of the directed evolution of oligonucleotides, SELEX (systematic evolution of ligands by exponential enrichment), against a chosen target molecule. Among the variety of functions, selected oligonucleotides named aptamers also allow targeting of cell-specific receptors with antibody-like precision and can deliver functional RNAs without a transfection agent. The advancements in the field of customizable nucleic acid nanoparticles (NANPs) opened avenues for the design of nanoassemblies utilizing aptamers for triggering or blocking cell signaling pathways or using aptamer-receptor combinations to activate therapeutic functionalities. A recent selection of fluorescent aptamers enables real-time tracking of NANP formation and interactions. The aptamers are anticipated to contribute to the future development of technologies, enabling an efficient assembly of functional NANPs in mammalian cells or in vivo. These research topics are of top importance for the field of therapeutic nucleic acid nanotechnology with the promises to scale up mass production of NANPs suitable for biomedical applications, to control the intracellular organization of biological materials to enhance the efficiency of biochemical pathways, and to enhance the therapeutic potential of NANP-based therapeutics while minimizing undesired side effects and toxicities.
Collapse
Affiliation(s)
- Martin Panigaj
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Kosice 04154, Slovak Republic
| | - M. Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Weina Ke
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Jessica McMillan
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Ekaterina A. Goncharova
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 191002, Russian Federation
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kirill A. Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
7
|
Hong E, Halman JR, Shah A, Cedrone E, Truong N, Afonin KA, Dobrovolskaia MA. Toll-Like Receptor-Mediated Recognition of Nucleic Acid Nanoparticles (NANPs) in Human Primary Blood Cells. Molecules 2019; 24:E1094. [PMID: 30897721 PMCID: PMC6470694 DOI: 10.3390/molecules24061094] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
Infusion reactions (IRs) create a translational hurdle for many novel therapeutics, including those utilizing nanotechnology. Nucleic acid nanoparticles (NANPs) are a novel class of therapeutics prepared by rational design of relatively short oligonucleotides to self-assemble into various programmable geometric shapes. While cytokine storm, a common type of IR, has halted clinical development of several therapeutic oligonucleotides, NANP technologies hold tremendous potential to bring these reactions under control by tuning the particle's physicochemical properties to the desired type and magnitude of the immune response. Recently, we reported the very first comprehensive study of the structure⁻activity relationship between NANPs' shape, size, composition, and their immunorecognition in human cells, and identified the phagolysosomal pathway as the major route for the NANPs' uptake and subsequent immunostimulation. Here, we explore the molecular mechanism of NANPs' recognition by primary immune cells, and particularly the contributing role of the Toll-like receptors. Our current study expands the understanding of the immune recognition of engineered nucleic acid-based therapeutics and contributes to the improvement of the nanomedicine safety profile.
Collapse
Affiliation(s)
- Enping Hong
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by The National Cancer Institute, Frederick, MD 21702, USA.
| | - Justin R Halman
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Ankit Shah
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by The National Cancer Institute, Frederick, MD 21702, USA.
| | - Edward Cedrone
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by The National Cancer Institute, Frederick, MD 21702, USA.
| | - Nguyen Truong
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by The National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
8
|
Geary C, Chworos A, Verzemnieks E, Voss NR, Jaeger L. Composing RNA Nanostructures from a Syntax of RNA Structural Modules. NANO LETTERS 2017; 17:7095-7101. [PMID: 29039189 PMCID: PMC6363482 DOI: 10.1021/acs.nanolett.7b03842] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Natural stable RNAs fold and assemble into complex three-dimensional architectures by relying on the hierarchical formation of intricate, recurrent networks of noncovalent tertiary interactions. These sequence-dependent networks specify RNA structural modules enabling orientational and topological control of helical struts to form larger self-folding domains. Borrowing concepts from linguistics, we defined an extended structural syntax of RNA modules for programming RNA strands to assemble into complex, responsive nanostructures under both thermodynamic and kinetic control. Based on this syntax, various RNA building blocks promote the multimolecular assembly of objects with well-defined three-dimensional shapes as well as the isothermal folding of long RNAs into complex single-stranded nanostructures during transcription. This work offers a glimpse of the limitless potential of RNA as an informational medium for designing programmable and functional nanomaterials useful for synthetic biology, nanomedicine, and nanotechnology.
Collapse
Affiliation(s)
- Cody Geary
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106-9510, United States
| | - Arkadiusz Chworos
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106-9510, United States
| | - Erik Verzemnieks
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106-9510, United States
| | - Neil R. Voss
- Biological, Chemical, and Physical Sciences Department, Roosevelt University, 1400 North Roosevelt Blvd., Schaumburg, Illinois 60173, United States
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
9
|
Regulatory RNAs in Bacillus subtilis: a Gram-Positive Perspective on Bacterial RNA-Mediated Regulation of Gene Expression. Microbiol Mol Biol Rev 2016; 80:1029-1057. [PMID: 27784798 DOI: 10.1128/mmbr.00026-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5' untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5' ends of mRNA molecules. These can include 5' secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis.
Collapse
|
10
|
Ausländer S, Fussenegger M. Engineering Gene Circuits for Mammalian Cell-Based Applications. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a023895. [PMID: 27194045 DOI: 10.1101/cshperspect.a023895] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthetic gene switches are basic building blocks for the construction of complex gene circuits that transform mammalian cells into useful cell-based machines for next-generation biotechnological and biomedical applications. Ligand-responsive gene switches are cellular sensors that are able to process specific signals to generate gene product responses. Their involvement in complex gene circuits results in sophisticated circuit topologies that are reminiscent of electronics and that are capable of providing engineered cells with the ability to memorize events, oscillate protein production, and perform complex information-processing tasks. Microencapsulated mammalian cells that are engineered with closed-loop gene networks can be implanted into mice to sense disease-related input signals and to process this information to produce a custom, fine-tuned therapeutic response that rebalances animal metabolism. Progress in gene circuit design, in combination with recent breakthroughs in genome engineering, may result in tailored engineered mammalian cells with great potential for future cell-based therapies.
Collapse
Affiliation(s)
- Simon Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland Faculty of Science, University of Basel, CH-4058 Basel, Switzerland
| |
Collapse
|
11
|
Ausländer S, Fuchs D, Hürlemann S, Ausländer D, Fussenegger M. Engineering a ribozyme cleavage-induced split fluorescent aptamer complementation assay. Nucleic Acids Res 2016; 44:e94. [PMID: 26939886 PMCID: PMC4889925 DOI: 10.1093/nar/gkw117] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/16/2016] [Indexed: 12/19/2022] Open
Abstract
Hammerhead ribozymes are self-cleaving RNA molecules capable of regulating gene expression in living cells. Their cleavage performance is strongly influenced by intra-molecular loop–loop interactions, a feature not readily accessible through modern prediction algorithms. Ribozyme engineering and efficient implementation of ribozyme-based genetic switches requires detailed knowledge of individual self-cleavage performances. By rational design, we devised fluorescent aptamer-ribozyme RNA architectures that allow for the real-time measurement of ribozyme self-cleavage activity in vitro. The engineered nucleic acid molecules implement a split Spinach aptamer sequence that is made accessible for strand displacement upon ribozyme self-cleavage, thereby complementing the fluorescent Spinach aptamer. This fully RNA-based ribozyme performance assay correlates ribozyme cleavage activity with Spinach fluorescence to provide a rapid and straightforward technology for the validation of loop–loop interactions in hammerhead ribozymes.
Collapse
Affiliation(s)
- Simon Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - David Fuchs
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Samuel Hürlemann
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - David Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| |
Collapse
|
12
|
RNA and RNP as Building Blocks for Nanotechnology and Synthetic Biology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 139:165-85. [PMID: 26970194 DOI: 10.1016/bs.pmbts.2015.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent technologies that aimed to elucidate cellular function have revealed essential roles for RNA molecules in living systems. Our knowledge concerning functional and structural information of naturally occurring RNA and RNA-protein (RNP) complexes is increasing rapidly. RNA and RNP interaction motifs are structural units that function as building blocks to constitute variety of complex structures. RNA-central synthetic biology and nanotechnology are constructive approaches that employ the accumulated information and build synthetic RNA (RNP)-based circuits and nanostructures. Here, we describe how to design and construct synthetic RNA (RNP)-based devices and structures at the nanometer-scale for biological and future therapeutic applications. RNA/RNP nanostructures can also be utilized as the molecular scaffold to control the localization or interactions of target molecule(s). Moreover, RNA motifs recognized by RNA-binding proteins can be applied to make protein-responsive translational "switches" that can turn gene expression "on" or "off" depending on the intracellular environment. This "synthetic RNA and RNP world" will expand tools for nanotechnology and synthetic biology. In addition, these reconstructive approaches would lead to a greater understanding of building principle in naturally occurring RNA/RNP molecules and systems.
Collapse
|
13
|
Ohno H, Inoue T. Designed Regular Tetragon-Shaped RNA-Protein Complexes with Ribosomal Protein L1 for Bionanotechnology and Synthetic Biology. ACS NANO 2015; 9:4950-4956. [PMID: 25933202 DOI: 10.1021/nn5069622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
RNA nanotechnology has been established by employing the molecular architecture of RNA structural motifs. Here, we report two designed RNA-protein complexes (RNPs) composed of ribosomal protein L1 (RPL1) and its RNA-binding motif that are square-shaped nano-objects. The formation and the shape of the objects were confirmed by gel electrophoresis analysis and atomic force microscopy, respectively. Any protein can be attached to the RNA via a fusion protein with RPL1, indicating that it can be used as a scaffold for loading a variety of functional proteins or for building higher-order structures. In summary, the RNP object will serve as a useful tool in the fields of bionanotechnology and synthetic biology. Moreover, the RNP interaction enhances the RNA stability against nucleases, rendering these complexes stable in cells.
Collapse
Affiliation(s)
- Hirohisa Ohno
- Laboratory of Gene Biodynamics, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tan Inoue
- Laboratory of Gene Biodynamics, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
14
|
Ohno H, Osada E, Saito H. Design, assembly, and evaluation of RNA-protein nanostructures. Methods Mol Biol 2015; 1297:197-211. [PMID: 25896005 DOI: 10.1007/978-1-4939-2562-9_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of RNA-protein interaction motifs (RNP motifs) to design and build nanoscale objects has the potential to expand the field of RNA nanotechnology. In principle, RNP motifs can be integrated easily into RNA nano objects, providing an alternative technique to increase the functional and structural complexities of the RNA. Investigating the design principles of RNP nanostructures will enable the construction of highly sophisticated biomacromolecular complexes such as ribosomes from scratch. As an initial step towards this goal, we designed and constructed triangular-like nanostructures by employing box C/D kink-turn (K-turn)-L7Ae RNP motifs. We showed that the K-turn RNA and the ribosomal protein L7Ae could form a nanostructure shaped like an equilateral triangle that consists of the three proteins attached to the tips of the RNA scaffold. The construction of the complex depends on L7Ae binding to the K-turn motifs in the RNA. The RNP motif allows the RNA to bend by approximately 60° at three positions to form a nanoscale triangle. Functional RNP triangles with desired protein modules at the three tips can be constructed in a modular manner. Here, we describe how to design, construct, and evaluate the RNP nanostructures.
Collapse
Affiliation(s)
- Hirohisa Ohno
- Laboratory of Gene Biodynamics, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | |
Collapse
|
15
|
Characterizing Synthetic Biology Through Its Novel and Enhanced Functionalities. Synth Biol (Oxf) 2015. [DOI: 10.1007/978-3-319-02783-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
16
|
Enyeart PJ, Simpson ZB, Ellington AD. A microbial model of economic trading and comparative advantage. J Theor Biol 2014; 364:326-43. [PMID: 25265557 DOI: 10.1016/j.jtbi.2014.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 08/28/2014] [Accepted: 09/18/2014] [Indexed: 01/07/2023]
Abstract
The economic theory of comparative advantage postulates that beneficial trading relationships can be arrived at by two self-interested entities producing the same goods as long as they have opposing relative efficiencies in producing those goods. The theory predicts that upon entering trade, in order to maximize consumption both entities will specialize in producing the good they can produce at higher efficiency, that the weaker entity will specialize more completely than the stronger entity, and that both will be able to consume more goods as a result of trade than either would be able to alone. We extend this theory to the realm of unicellular organisms by developing mathematical models of genetic circuits that allow trading of a common good (specifically, signaling molecules) required for growth in bacteria in order to demonstrate comparative advantage interactions. In Conception 1, the experimenter controls production rates via exogenous inducers, allowing exploration of the parameter space of specialization. In Conception 2, the circuits self-regulate via feedback mechanisms. Our models indicate that these genetic circuits can demonstrate comparative advantage, and that cooperation in such a manner is particularly favored under stringent external conditions and when the cost of production is not overly high. Further work could involve implementing the models in living bacteria and searching for naturally occurring cooperative relationships between bacteria that conform to the principles of comparative advantage.
Collapse
Affiliation(s)
- Peter J Enyeart
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Zachary B Simpson
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Andrew D Ellington
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
17
|
Nomura Y, Zhou L, Miu A, Yokobayashi Y. Controlling mammalian gene expression by allosteric hepatitis delta virus ribozymes. ACS Synth Biol 2013; 2:684-9. [PMID: 23697539 PMCID: PMC3874218 DOI: 10.1021/sb400037a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
We engineered small molecule responsive
allosteric ribozymes based
on the genomic hepatitis delta virus (HDV) ribozyme by replacing the
P4-L4 stem-loop with an RNA aptamer through a connector stem. When
embedded in the 3′ untranslated region of a reporter gene mRNA,
these RNA devices enabled regulation of cis-gene
expression by theophylline and guanine by up to 29.5-fold in mammalian
cell culture. Furthermore, a NOR logic gate device was constructed
by placing two engineered ribozymes in tandem, demonstrating the modularity
of the RNA devices. The significant improvement in the regulatory
dynamic range (ON/OFF ratio) of the RNA devices based on the HDV ribozyme
should provide new opportunities for practical applications.
Collapse
Affiliation(s)
- Yoko Nomura
- Department
of Biomedical Engineering, University of California, Davis, 451 Health Sciences
Drive, Davis, California 95616, United States
| | - Linlin Zhou
- Department
of Biomedical Engineering, University of California, Davis, 451 Health Sciences
Drive, Davis, California 95616, United States
| | - Anh Miu
- Department
of Biomedical Engineering, University of California, Davis, 451 Health Sciences
Drive, Davis, California 95616, United States
| | - Yohei Yokobayashi
- Department
of Biomedical Engineering, University of California, Davis, 451 Health Sciences
Drive, Davis, California 95616, United States
| |
Collapse
|
18
|
Abstract
RNA molecules are highly modular components that can be used in a variety of contexts for building new metabolic, regulatory and genetic circuits in cells. The majority of synthetic RNA systems to date predominately rely on two-dimensional modularity. However, a better understanding and integration of three-dimensional RNA modularity at structural and functional levels is critical to the development of more complex, functional bio-systems and molecular machines for synthetic biology applications.
Collapse
Affiliation(s)
- Wade Grabow
- Department of Chemistry and Biochemistry, Seattle Pacific University3307 Third Avenue West, Seattle, WA 98119USA
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Bio-Molecular Science and Engineering Program, University of CaliforniaSanta Barbara, CA 93106-9510USA
| |
Collapse
|
19
|
Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol 2013; 31:170-4. [PMID: 23334451 DOI: 10.1038/nbt.2461] [Citation(s) in RCA: 479] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 11/22/2012] [Indexed: 12/16/2022]
Abstract
Small regulatory RNAs (sRNAs) regulate gene expression in bacteria. We designed synthetic sRNAs to identify and modulate the expression of target genes for metabolic engineering in Escherichia coli. Using synthetic sRNAs for the combinatorial knockdown of four candidate genes in 14 different strains, we isolated an engineered E. coli strain (tyrR- and csrA-repressed S17-1) capable of producing 2 g per liter of tyrosine. Using a library of 130 synthetic sRNAs, we also identified chromosomal gene targets that enabled substantial increases in cadaverine production. Repression of murE led to a 55% increase in cadaverine production compared to the reported engineered strain (XQ56 harboring the plasmid p15CadA). The design principles and the engineering strategy using synthetic sRNAs reported here are generalizable to other bacteria and applicable in developing superior producer strains. The ability to fine-tune target genes with designed sRNAs provides substantial advantages over gene-knockout strategies and other large-scale target identification strategies owing to its easy implementation, ability to modulate chromosomal gene expression without modifying those genes and because it does not require construction of strain libraries.
Collapse
Affiliation(s)
- Dokyun Na
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
20
|
Sudrik C, Arha M, Cao J, Schaffer DV, Kane RS. Translational repression using BIV Tat peptide–TAR RNA interaction in mammalian cells. Chem Commun (Camb) 2013; 49:7457-9. [DOI: 10.1039/c3cc43086c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Sankaran N. How the discovery of ribozymes cast RNA in the roles of both chicken and egg in origin-of-life theories. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2012; 43:741-750. [PMID: 22886071 DOI: 10.1016/j.shpsc.2012.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 06/10/2012] [Accepted: 06/24/2012] [Indexed: 06/01/2023]
Abstract
Scientific theories about the origin-of-life theories have historically been characterized by the chicken-and-egg problem of which essential aspect of life was the first to appear, replication or self-sustenance. By the 1950s the question was cast in molecular terms and DNA and proteins had come to represent the carriers of the two functions. Meanwhile, RNA, the other nucleic acid, had played a capricious role in origin theories. Because it contained building blocks very similar to DNA, biologists recognized early that RNA could store information in its linear sequences. With the discovery in the 1980s that RNA molecules were capable of biological catalysis, a function hitherto ascribed to proteins alone, RNA took on the role of the single entity that could act as both chicken and egg. Within a few years of the discovery of these catalytic RNAs (ribozymes) scientists had formulated an RNA World hypothesis that posited an early phase in the evolution of life where all key functions were performed by RNA molecules. This paper traces the history the role of RNA in origin-of-life theories with a focus on how the discovery of ribozymes influenced the discourse.
Collapse
Affiliation(s)
- Neeraja Sankaran
- History of Science, Technology & Medicine Underwood International College, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea.
| |
Collapse
|
22
|
Ohuchi S, Mori Y, Nakamura Y. Evolution of an inhibitory RNA aptamer against T7 RNA polymerase. FEBS Open Bio 2012; 2:203-7. [PMID: 23650601 PMCID: PMC3642155 DOI: 10.1016/j.fob.2012.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/06/2012] [Accepted: 07/10/2012] [Indexed: 12/27/2022] Open
Abstract
Aptamers are promising gene components that can be used for the construction of synthetic gene circuits. In this study, we isolated an RNA aptamer that specifically inhibits transcription of T7 RNA polymerase (RNAP). The 38-nucleotide aptamer, which was a shortened variant of an initial SELEX isolate, showed moderate inhibitory activity. By stepwise doped-SELEX, we isolated evolved variants with strong inhibitory activity. A 29-nucleotide variant of a doped-SELEX isolate showed 50% inhibitory concentration at 11 nM under typical in vitro transcription conditions. Pull-down experiments revealed that the aptamer inhibited the association of T7 RNAP with T7 promoter DNA.
Collapse
Affiliation(s)
- Shoji Ohuchi
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
23
|
Kashida S, Inoue T, Saito H. Three-dimensionally designed protein-responsive RNA devices for cell signaling regulation. Nucleic Acids Res 2012; 40:9369-78. [PMID: 22810207 PMCID: PMC3467064 DOI: 10.1093/nar/gks668] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The three-dimensional (3D) structures of many biomacromolecules have been solved to reveal the functions of these molecules. However, these 3D structures have rarely been applied to constructing efficient molecular devices that function in living cells. Here, we demonstrate a 3D structure-based molecular design principle for constructing short hairpin RNA (shRNA)-mediated genetic information converters; these converters respond to specific proteins and trigger the desired gene expression by modulating the function of the RNA-processing enzyme Dicer. The inhibitory effect on Dicer cleavage against the shRNA designed to specifically bind to U1A spliceosomal protein was correlated with the degree of steric hindrance between Dicer and the shRNA-protein complex in vitro: The level of the hindrance was predicted based on the models. Moreover, the regulation of gene expression was achieved by using the shRNA converters designed to bind to the target U1A or nuclear factor-κB (NF-κB) p50 proteins expressed in human cells. The 3D molecular design approach is widely applicable for developing new devices in synthetic biology.
Collapse
Affiliation(s)
- Shunnichi Kashida
- Laboratory of Gene Biodynamics, Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
24
|
Nomura Y, Kumar D, Yokobayashi Y. Synthetic mammalian riboswitches based on guanine aptazyme. Chem Commun (Camb) 2012; 48:7215-7. [PMID: 22692003 DOI: 10.1039/c2cc33140c] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Allosteric hammerhead ribozymes (aptazymes) that are activated by guanine were used to control mammalian gene expression in cis and in trans. Coexpression of the two mechanistically distinct riboswitches resulted in an improved dynamic range of gene expression.
Collapse
Affiliation(s)
- Yoko Nomura
- Department of Biomedical Engineering, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | | | | |
Collapse
|
25
|
Stapleton JA, Endo K, Fujita Y, Hayashi K, Takinoue M, Saito H, Inoue T. Feedback control of protein expression in mammalian cells by tunable synthetic translational inhibition. ACS Synth Biol 2012; 1:83-8. [PMID: 23651072 PMCID: PMC4165468 DOI: 10.1021/sb200005w] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Feedback regulation plays a crucial role in dynamic gene
expression
in nature, but synthetic translational feedback systems have yet to
be demonstrated. Here we use an RNA/protein interaction-based synthetic
translational switch to create a feedback system that tightly controls
the expression of proteins of interest in mammalian cells. Feedback
is mediated by modified ribosomal L7Ae proteins, which bind a set
of RNA motifs with a range of affinities. We designed these motifs
into L7Ae-encoding mRNA. Newly translated L7Ae binds its own mRNA,
inhibiting further translation. This inhibition tightly feedback-regulates
the concentration of L7Ae and any fusion partner of interest. A mathematical
model predicts system behavior as a function of RNA/protein affinity.
We further demonstrate that the L7Ae protein can simultaneously and
tunably regulate the expression of multiple proteins of interest by
binding RNA control motifs built into each mRNA, allowing control
over the coordinated expression of protein networks.
Collapse
Affiliation(s)
- James A. Stapleton
- Laboratory of Gene
Biodynamics,
Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kei Endo
- International Cooperative Research
Project, Japan Science and Technology Agency, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yoshihiko Fujita
- Laboratory of Gene
Biodynamics,
Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
- International Cooperative Research
Project, Japan Science and Technology Agency, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Karin Hayashi
- International Cooperative Research
Project, Japan Science and Technology Agency, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Masahiro Takinoue
- Department of Computational Intelligence
and Systems Science, Interdisciplinary Graduate School of Science
and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Hirohide Saito
- International Cooperative Research
Project, Japan Science and Technology Agency, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
- The Hakubi Center, Kyoto University, Oiwake-cho,
Kitashirakawa, Sakyo-ku,
Kyoto 606-8502, Japan
- Center
for iPS Cell Research
and Application, Kyoto University, 53 Kawahara-cho,
Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tan Inoue
- Laboratory of Gene
Biodynamics,
Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
- International Cooperative Research
Project, Japan Science and Technology Agency, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
26
|
Mori Y, Nakamura Y, Ohuchi S. Inhibitory RNA aptamer against SP6 RNA polymerase. Biochem Biophys Res Commun 2012; 420:440-3. [PMID: 22426482 DOI: 10.1016/j.bbrc.2012.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
Abstract
Aptamers are attractive tools for modulating function of a desired target. In this study, we isolated an RNA aptamer that specifically inhibits transcription of SP6 RNA polymerase. The dissociation constant and 50% inhibitory concentration of the aptamer were estimated 9.5 nM and 24.8 nM, respectively. Doped-SELEX and mutational analysis revealed that the aptamer adopts the structure including two stems, two loops, and 5' single-stranded region. Based on the results, the aptamer could be engineered to circular permutant and binary construct forms without decreasing the activity. The aptamer would be applicable for the construction of expression regulation systems.
Collapse
Affiliation(s)
- Yusuke Mori
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
27
|
Programmable bacterial catalysis - designing cells for biosynthesis of value-added compounds. FEBS Lett 2012; 586:2184-90. [DOI: 10.1016/j.febslet.2012.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 02/16/2012] [Accepted: 02/20/2012] [Indexed: 12/26/2022]
|
28
|
Carothers JM, Goler JA, Juminaga D, Keasling JD. Model-driven engineering of RNA devices to quantitatively program gene expression. Science 2012; 334:1716-9. [PMID: 22194579 DOI: 10.1126/science.1212209] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The models and simulation tools available to design functionally complex synthetic biological devices are very limited. We formulated a design-driven approach that used mechanistic modeling and kinetic RNA folding simulations to engineer RNA-regulated genetic devices that control gene expression. Ribozyme and metabolite-controlled, aptazyme-regulated expression devices with quantitatively predictable functions were assembled from components characterized in vitro, in vivo, and in silico. The models and design strategy were verified by constructing 28 Escherichia coli expression devices that gave excellent quantitative agreement between the predicted and measured gene expression levels (r = 0.94). These technologies were applied to engineer RNA-regulated controls in metabolic pathways. More broadly, we provide a framework for studying RNA functions and illustrate the potential for the use of biochemical and biophysical modeling to develop biological design methods.
Collapse
Affiliation(s)
- James M Carothers
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley CA 94720, USA
| | | | | | | |
Collapse
|
29
|
Kim IK, Roldão A, Siewers V, Nielsen J. A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res 2012; 12:228-48. [DOI: 10.1111/j.1567-1364.2011.00779.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/05/2011] [Accepted: 12/09/2011] [Indexed: 12/01/2022] Open
Affiliation(s)
- Il-Kwon Kim
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg; Sweden
| | - António Roldão
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg; Sweden
| | - Verena Siewers
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg; Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg; Sweden
| |
Collapse
|
30
|
Abstract
Aptamers are useful for allosteric regulation because they are nucleic acid-based structures in which ligand binding induces conformational changes that may alter the function of a connected oligonucleotide at a distant site. Through this approach, a specific input is efficiently converted into an altered output. This property makes these biomolecules ideally suited to function as sensors or switches in biochemical assays or inside living cells. The ability to select oligonucleotide-based recognition elements in vitro in combination with the availability of nucleic acids with enzymatic activity has led to the development of a wide range of engineered allosteric aptasensors and aptazymes. Here, we discuss recent progress in the screening, design and diversity of these conformational switching oligonucleotides. We cover their application in vitro and for regulating gene expression in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Jan L Vinkenborg
- Life & Medical Sciences Institute, Chemical Biology & Medicinal Chemistry Unit, Laboratory of Chemical Biology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | | |
Collapse
|
31
|
Laing C, Schlick T. Computational approaches to RNA structure prediction, analysis, and design. Curr Opin Struct Biol 2011; 21:306-18. [PMID: 21514143 PMCID: PMC3112238 DOI: 10.1016/j.sbi.2011.03.015] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/24/2011] [Accepted: 03/29/2011] [Indexed: 12/19/2022]
Abstract
RNA molecules are important cellular components involved in many fundamental biological processes. Understanding the mechanisms behind their functions requires RNA tertiary structure knowledge. Although modeling approaches for the study of RNA structures and dynamics lag behind efforts in protein folding, much progress has been achieved in the past two years. Here, we review recent advances in RNA folding algorithms, RNA tertiary motif discovery, applications of graph theory approaches to RNA structure and function, and in silico generation of RNA sequence pools for aptamer design. Advances within each area can be combined to impact many problems in RNA structure and function.
Collapse
Affiliation(s)
- Christian Laing
- Department of Chemistry, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Tamar Schlick
- Department of Chemistry, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| |
Collapse
|
32
|
Salvado B, Karathia H, Chimenos AU, Vilaprinyo E, Omholt S, Sorribas A, Alves R. Methods for and results from the study of design principles in molecular systems. Math Biosci 2011; 231:3-18. [DOI: 10.1016/j.mbs.2011.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/24/2011] [Accepted: 02/10/2011] [Indexed: 12/27/2022]
|
33
|
Krivoruchko A, Siewers V, Nielsen J. Opportunities for yeast metabolic engineering: Lessons from synthetic biology. Biotechnol J 2011; 6:262-76. [DOI: 10.1002/biot.201000308] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 01/06/2011] [Accepted: 01/13/2011] [Indexed: 11/08/2022]
|
34
|
Ohno H, Kobayashi T, Kabata R, Endo K, Iwasa T, Yoshimura SH, Takeyasu K, Inoue T, Saito H. Synthetic RNA-protein complex shaped like an equilateral triangle. NATURE NANOTECHNOLOGY 2011; 6:116-120. [PMID: 21240283 DOI: 10.1038/nnano.2010.268] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 12/07/2010] [Indexed: 05/30/2023]
Abstract
Synthetic nanostructures consisting of biomacromolecules such as nucleic acids have been constructed using bottom-up approaches. In particular, Watson-Crick base pairing has been used to construct a variety of two- and three-dimensional DNA nanostructures. Here, we show that RNA and the ribosomal protein L7Ae can form a nanostructure shaped like an equilateral triangle that consists of three proteins bound to an RNA scaffold. The construction of the complex relies on the proteins binding to kink-turn (K-turn) motifs in the RNA, which allows the RNA to bend by ∼ 60° at three positions to form a triangle. Functional RNA-protein complexes constructed with this approach could have applications in nanomedicine and synthetic biology.
Collapse
Affiliation(s)
- Hirohisa Ohno
- Laboratory of Gene Biodynamics, Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Saito H, Fujita Y, Kashida S, Hayashi K, Inoue T. Synthetic human cell fate regulation by protein-driven RNA switches. Nat Commun 2011; 2:160. [PMID: 21245841 PMCID: PMC3105309 DOI: 10.1038/ncomms1157] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 12/08/2010] [Indexed: 02/07/2023] Open
Abstract
Understanding how to control cell fate is crucial in biology, medical science and engineering. In this study, we introduce a method that uses an intracellular protein as a trigger for regulating human cell fate. The ON/OFF translational switches, composed of an intracellular protein L7Ae and its binding RNA motif, regulate the expression of a desired target protein and control two distinct apoptosis pathways in target human cells. Combined use of the switches demonstrates that a specific protein can simultaneously repress and activate the translation of two different mRNAs: one protein achieves both up- and downregulation of two different proteins/pathways. A genome-encoded protein fused to L7Ae controlled apoptosis in both directions (death or survival) depending on its cellular expression. The method has potential for curing cellular defects or improving the intracellular production of useful molecules by bypassing or rewiring intrinsic signal networks. The control of cell fate and apoptosis is a continuing challenge in synthetic biology. In this study, systems are developed in which an intracellularly expressed genome-encoded protein simultaneously achieves up- and downregulation of two distinct apoptosis pathways.
Collapse
Affiliation(s)
- Hirohide Saito
- 1] Laboratory of Gene Biodynamics, Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan. [2] International Cooperative Research Project, Japan Science and Technology Agency, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan. [3] The Hakubi Center, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
36
|
Shu W, Liu M, Chen H, Bo X, Wang S. ARDesigner: A web-based system for allosteric RNA design. J Biotechnol 2010; 150:466-73. [DOI: 10.1016/j.jbiotec.2010.10.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 10/11/2010] [Accepted: 10/12/2010] [Indexed: 12/19/2022]
|
37
|
Abstract
Supra-molecular assembly is a powerful strategy used by nature for building nano-scale architectures with predefined sizes and shapes. Numerous challenges remain however to be solved in order to demonstrate precise control over the synthesis, folding and assembly of rationally designed three-dimensional (3D) nano-objects made of RNA. Using the transfer RNA molecule as a structural building block, we report the design, efficient synthesis and structural characterization of stable, modular 3D particles adopting the polyhedral geometry of a non-uniform square antiprism. The spatial control within the final architecture allows precise positioning and encapsulation of proteins. This work demonstrates that a remarkable degree of structural control can be achieved with RNA structural motifs to build thermostable 3D nano-architectures that do not rely on helix bundles or tensegrity. RNA 3D particles can potentially be used as carriers or scaffolds in nano-medicine and synthetic biology.
Collapse
|
38
|
The transDSL ligase ribozyme can utilize various forms of modules to clamp its substrate and enzyme units. Biosci Biotechnol Biochem 2010; 74:872-4. [PMID: 20378973 DOI: 10.1271/bbb.90849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
TransDSL is an RNA ligase ribozyme whose enzyme unit joins two RNA fragments constituting a substrate. The enzyme unit recognizes the substrate by means of two clamp modules. We constructed active variants by replacing the original clamp module with various types of interactions. Such flexible modularity would be advantageous in the application of this ribozyme in nanobiotechnology.
Collapse
|
39
|
Lioliou E, Romilly C, Romby P, Fechter P. RNA-mediated regulation in bacteria: from natural to artificial systems. N Biotechnol 2010; 27:222-35. [PMID: 20211281 DOI: 10.1016/j.nbt.2010.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacteria use various means of RNA-mediated gene regulation. Regulatory RNAs include mRNA leaders that affect expression in cis or in trans, non-coding RNAs that trap regulatory proteins or interact with one or multiple target mRNAs, and RNAs that protect the bacteria against foreign and invasive DNA. The aim of this review is to outline the basic principles of bacterial RNA-mediated regulation, with a special focus on both cis-acting regulatory regions of mRNAs and antisense RNAs (asRNAs), and to give a brief overview of selected examples of RNA-based technology that have paved the way for biotechnological applications.
Collapse
Affiliation(s)
- Efthimia Lioliou
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, Strasbourg cedex, France
| | | | | | | |
Collapse
|
40
|
Carothers JM, Goler JA, Kapoor Y, Lara L, Keasling JD. Selecting RNA aptamers for synthetic biology: investigating magnesium dependence and predicting binding affinity. Nucleic Acids Res 2010; 38:2736-47. [PMID: 20159999 PMCID: PMC2860116 DOI: 10.1093/nar/gkq082] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ability to generate RNA aptamers for synthetic biology using in vitro selection depends on the informational complexity (IC) needed to specify functional structures that bind target ligands with desired affinities in physiological concentrations of magnesium. We investigate how selection for high-affinity aptamers is constrained by chemical properties of the ligand and the need to bind in low magnesium. We select two sets of RNA aptamers that bind planar ligands with dissociation constants (Kds) ranging from 65 nM to 100 μM in physiological buffer conditions. Aptamers selected to bind the non-proteinogenic amino acid, p-amino phenylalanine (pAF), are larger and more informationally complex (i.e., rarer in a pool of random sequences) than aptamers selected to bind a larger fluorescent dye, tetramethylrhodamine (TMR). Interestingly, tighter binding aptamers show less dependence on magnesium than weaker-binding aptamers. Thus, selection for high-affinity binding may automatically lead to structures that are functional in physiological conditions (1–2.5 mM Mg2+). We hypothesize that selection for high-affinity binding in physiological conditions is primarily constrained by ligand characteristics such as molecular weight (MW) and the number of rotatable bonds. We suggest that it may be possible to estimate aptamer–ligand affinities and predict whether a particular aptamer-based design goal is achievable before performing the selection.
Collapse
Affiliation(s)
- James M Carothers
- California Institute for Quantitative Biosciences and Berkeley Center for Synthetic Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
41
|
Synthetic translational regulation by an L7Ae–kink-turn RNP switch. Nat Chem Biol 2009; 6:71-8. [DOI: 10.1038/nchembio.273] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 10/16/2009] [Indexed: 12/25/2022]
|
42
|
Ishikawa J, Matsumura S, Jaeger L, Inoue T, Furuta H, Ikawa Y. Rational optimization of the DSL ligase ribozyme with GNRA/receptor interacting modules. Arch Biochem Biophys 2009; 490:163-70. [PMID: 19728985 PMCID: PMC2826975 DOI: 10.1016/j.abb.2009.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/26/2009] [Accepted: 08/26/2009] [Indexed: 12/28/2022]
Abstract
The DSL ribozyme is a class of artificial ligase ribozymes with a highly modular architecture, which catalyzes template-directed RNA ligation on a helical substrate module that can be either covalently connected (cis-DSL) or physically separated (trans-DSL) from the catalytic module. Substrate recognition by the catalytic module is promoted by one or two sets of GNRA/receptor interactions acting as clamps in the cis or trans configurations, respectively. In this study, we have rationally designed and analyzed the catalytic and self-assembly properties of several trans-DSL ribozymes with different sets of natural and artificial GNRA-receptor clamps. Two variants newly designed in this study showed significantly enhanced catalytic properties with respect of the original trans-DSL construct. While this work allows dissection of the turnover and catalytic properties of the trans-DSL ribozyme, it also emphasizes the remarkable modularity of RNA tertiary structure for nano-construction of complex functions.
Collapse
Affiliation(s)
- Junya Ishikawa
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Shigeyoshi Matsumura
- Institut de Science et d'Ingenierie Supramoleculaires (ISIS), Université Louis Pasteur, 8 Allée Gaspard Monge, B. P. 70028, 67083 Strasbourg Cedex, France
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | - Tan Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- ICORP, Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshiya Ikawa
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
- PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| |
Collapse
|
43
|
Carothers JM, Goler JA, Keasling JD. Chemical synthesis using synthetic biology. Curr Opin Biotechnol 2009; 20:498-503. [PMID: 19720519 DOI: 10.1016/j.copbio.2009.08.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 08/04/2009] [Accepted: 08/04/2009] [Indexed: 12/22/2022]
Abstract
An immense array of naturally occurring biological systems have evolved that convert simple substrates into the products that cells need for growth and persistence. Through the careful application of metabolic engineering and synthetic biology, this biotransformation potential can be harnessed to produce chemicals that address unmet clinical and industrial needs. Developing the capacity to utilize biology to perform chemistry is a matter of increasing control over both the function of synthetic biological systems and the engineering of those systems. Recent efforts have improved general techniques and yielded successes in the use of synthetic biology for the production of drugs, bulk chemicals, and fuels in microbial platform hosts. Synthetic promoter systems and novel RNA-based, or riboregulator, mechanisms give more control over gene expression. Improved methods for isolating, engineering, and evolving enzymes give more control over substrate and product specificity and better catalysis inside the cell. New computational tools and methods for high-throughput system assembly and analysis may lead to more rapid forward engineering. We highlight research that reduces reliance upon natural biological components and point to future work that may enable more rational design and assembly of synthetic biological systems for synthetic chemistry.
Collapse
Affiliation(s)
- James M Carothers
- California Institute for Quantitative Biosciences and Berkeley Center for Synthetic Biology, University of California, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
44
|
Wieland M, Benz A, Klauser B, Hartig JS. Artificial ribozyme switches containing natural riboswitch aptamer domains. Angew Chem Int Ed Engl 2009; 48:2715-8. [PMID: 19156802 DOI: 10.1002/anie.200805311] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA Lego: The use of natural riboswitch aptamers in synthetic RNA switches (see picture) should broaden the scope of artificial RNA regulators dramatically. It is shown that thiamine pyrophosphate (TPP) aptamers can be used in engineered devices as very sensitive switches of gene expression in unmodified organisms. The approach demonstrates that intrinsic metabolites can be utilized as external effectors of cellular functions.
Collapse
Affiliation(s)
- Markus Wieland
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
45
|
Boyle PM, Silver PA. Harnessing nature's toolbox: regulatory elements for synthetic biology. J R Soc Interface 2009; 6 Suppl 4:S535-46. [PMID: 19324675 DOI: 10.1098/rsif.2008.0521.focus] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Synthetic biologists seek to engineer complex biological systems composed of modular elements. Achieving higher complexity in engineered biological organisms will require manipulating numerous systems of biological regulation: transcription; RNA interactions; protein signalling; and metabolic fluxes, among others. Exploiting the natural modularity at each level of biological regulation will promote the development of standardized tools for designing biological systems.
Collapse
Affiliation(s)
- Patrick M Boyle
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
46
|
Wieland M, Benz A, Klauser B, Hartig J. Artificial Ribozyme Switches Containing Natural Riboswitch Aptamer Domains. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200805311] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|