1
|
Pan M, Zhang Y, Wright WC, Liu X, Passaia B, Currier D, Low J, Chapple RH, Steele JA, Connelly JP, Ju B, Plyler E, Lu M, Loughran AJ, Yang L, Abraham BJ, Pruett-Miller SM, Freeman B, Campbell GE, Dyer MA, Chen T, Stewart E, Koo S, Sheppard H, Easton J, Geeleher P. Bone morphogenetic protein (BMP) signaling determines neuroblastoma cell fate and sensitivity to retinoic acid. Nat Commun 2025; 16:2036. [PMID: 40021625 PMCID: PMC11871043 DOI: 10.1038/s41467-025-57185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/12/2025] [Indexed: 03/03/2025] Open
Abstract
Retinoic acid (RA) is a standard-of-care neuroblastoma drug thought to be effective by inducing differentiation. Curiously, RA has little effect on primary human tumors during upfront treatment but can eliminate neuroblastoma cells from the bone marrow during post-chemo maintenance therapy-a discrepancy that has never been explained. To investigate this, we treat a large cohort of neuroblastoma cell lines with RA and observe that the most RA-sensitive cells predominantly undergo apoptosis or senescence, rather than differentiation. We conduct genome-wide CRISPR knockout screens under RA treatment, which identify bone morphogenic protein (BMP) signaling as controlling the apoptosis/senescence vs differentiation cell fate decision and determining RA's overall potency. We then discover that BMP signaling activity is markedly higher in neuroblastoma patient samples at bone marrow metastatic sites, providing a plausible explanation for RA's ability to clear neuroblastoma cells specifically from the bone marrow, by seemingly mimicking interactions between BMP and RA during normal development.
Collapse
Affiliation(s)
- Min Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Yinwen Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - William C Wright
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xueying Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Barbara Passaia
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Duane Currier
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jonathan Low
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Richard H Chapple
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jacob A Steele
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jon P Connelly
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Bensheng Ju
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Emily Plyler
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Meifen Lu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Allister J Loughran
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Brian J Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Burgess Freeman
- Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - George E Campbell
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Elizabeth Stewart
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Selene Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Heather Sheppard
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Paul Geeleher
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
2
|
Datta N, Vp S, Parvathy K, A S S, Maliekal TT. ALDH1A1 as a marker for metastasis initiating cells: A mechanistic insight. Exp Cell Res 2024; 442:114213. [PMID: 39173941 DOI: 10.1016/j.yexcr.2024.114213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Since metastasis accounts for the majority of cancer morbidity and mortality, attempts are focused to block metastasis and metastasis initiating cellular programs. It is generally believed that hypoxia, reactive oxygen species (ROS) and the dysregulated redox pathways regulate metastasis. Although induction of epithelial to mesenchymal transition (EMT) can initiate cell motility to different sites other than the primary site, the initiation of a secondary tumor at a distant site depends on self-renewal property of cancer stem cell (CSC) property. That subset of metastatic cells possessing CSC property are referred to as metastasis initiating cells (MICs). Among the different cellular intermediates regulating metastasis in response to hypoxia by inducing EMT and self-renewal property, ALDH1A1 is a critical molecule, which can be used as a marker for MICs in a wide variety of malignancies. The cytosolic ALDHs can irreversibly convert retinal to retinoic acid (RA), which initiates RA signaling, important for self-renewal and EMT. The metastasis permissive tumor microenvironment increases the expression of ALDH1A1, primarily through HIF1α, and leads to metabolic reprograming through OXPHOS regulation. The ALDH1A1 expression and its high activity can reprogram the cancer cells with the transcriptional upregulation of several genes, involved in EMT through RA signaling to manifest hybrid EMT or Hybrid E/M phenotype, which is important for acquiring the characteristics of MICs. Thus, the review on this topic highlights the use of ALDH1A1 as a marker for MICs, and reporters for the marker can be effectively used to trace the population in mouse models, and to screen drugs that target MICs.
Collapse
Affiliation(s)
- Nandini Datta
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - Snijesh Vp
- Division of Molecular Medicine, St. John's Research Institute, St John's National Academy of Health Sciences, Bangalore, 560034, India
| | - K Parvathy
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - Sneha A S
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - Tessy Thomas Maliekal
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India; Regional Centre for Biotechnology, Faridabad, Haryana 121001, India.
| |
Collapse
|
3
|
Hodrea J, Balogh DB, Hosszu A, Lenart L, Besztercei B, Koszegi S, Sparding N, Genovese F, Wagner LJ, Szabo AJ, Fekete A. Reduced O-GlcNAcylation and tubular hypoxia contribute to the antifibrotic effect of SGLT2 inhibitor dapagliflozin in the diabetic kidney. Am J Physiol Renal Physiol 2020; 318:F1017-F1029. [PMID: 32116017 PMCID: PMC7242633 DOI: 10.1152/ajprenal.00021.2020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diabetic kidney disease is a worldwide epidemic, and therapies are incomplete. Clinical data suggest that improved renal outcomes by Na+-glucose cotransporter 2 inhibitor (SGLT2i) are partly beyond their antihyperglycemic effects; however, the mechanisms are still elusive. Here, we investigated the effect of the SGLT2i dapagliflozin (DAPA) in the prevention of elevated O-GlcNAcylation and tubular hypoxia as contributors of renal fibrosis. Type 1 diabetes was induced by streptozotocin in adult male Wistar rats. After the onset of diabetes, rats were treated for 6 wk with DAPA or DAPA combined with losartan (LOS). The effect of hyperglycemia was tested in HK-2 cells kept under normal or high glucose conditions. To test the effect of hypoxia, cells were kept in 1% O2 for 2 h. Cells were treated with DAPA or DAPA combined with LOS. DAPA slowed the loss of renal function, mitigated renal tubular injury markers (kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin), and reduced tubulointerstitial fibrosis. DAPA diminished high glucose-induced protein O-GlcNAcylation and moderated the tubular response to hypoxia through the hypoxia-inducible factor pathway. DAPA alone was as effective as combined treatment with LOS in all outcome parameters. These data highlight the role of ameliorated O-GlcNAcylation and diminished tubular hypoxia as important benefits of SGLT2i treatment. Our results support the link between glucose toxicity, tubular hypoxia, and fibrosis, a vicious trio that could be targeted by SGLT2i in kidney diseases of other origins as well.
Collapse
Affiliation(s)
- Judit Hodrea
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Dora B Balogh
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Adam Hosszu
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Lilla Lenart
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balazs Besztercei
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Sandor Koszegi
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nadja Sparding
- Nordic Bioscience, Biomarkers & Research, Herlev, Denmark.,Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen N, Denmark
| | | | - Laszlo J Wagner
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Attila J Szabo
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary.,MTA-SE Paediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Andrea Fekete
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
García-Pastor C, Benito-Martínez S, Moreno-Manzano V, Fernández-Martínez AB, Lucio-Cazaña FJ. Mechanism and Consequences of The Impaired Hif-1α Response to Hypoxia in Human Proximal Tubular HK-2 Cells Exposed to High Glucose. Sci Rep 2019; 9:15868. [PMID: 31676796 PMCID: PMC6825166 DOI: 10.1038/s41598-019-52310-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 10/16/2019] [Indexed: 01/01/2023] Open
Abstract
Renal hypoxia and loss of proximal tubular cells (PTC) are relevant in diabetic nephropathy. Hypoxia inhibits hypoxia-inducible factor-1α (HIF-1α) degradation, which leads to cellular adaptive responses through HIF-1-dependent activation of gene hypoxia-responsive elements (HRE). However, the diabetic microenvironment represses the HIF-1/HRE response in PTC. Here we studied the mechanism and consequences of impaired HIF-1α regulation in human proximal tubular HK-2 cells incubated in hyperglycemia. Inhibition at different levels of the canonical pathway of HIF-1α degradation did not activate the HIF-1/HRE response under hyperglycemia, except when proteasome was inhibited. Further studies suggested that hyperglycemia disrupts the interaction of HIF-1α with Hsp90, a known cause of proteasomal degradation of HIF-1α. Impaired HIF-1α regulation in cells exposed to hyperglycemic, hypoxic diabetic-like milieu led to diminished production of vascular endothelial growth factor-A and inhibition of cell migration (responses respectively involved in tubular protection and repair). These effects, as well as impaired HIF-1α regulation, were reproduced in normoglycemia in HK-2 cells incubated with microparticles released by HK-2 cells exposed to diabetic-like milieu. In summary, these results highlight the role of proteasome-dependent mechanisms of HIF-1α degradation on diabetes-induced HK-2 cells dysfunction and suggest that cell-derived microparticles may mediate negative effects of the diabetic milieu on PTC.
Collapse
Affiliation(s)
- Coral García-Pastor
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
| | - Selma Benito-Martínez
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | |
Collapse
|
5
|
Liggins MC, Li F, Zhang LJ, Dokoshi T, Gallo RL. Retinoids Enhance the Expression of Cathelicidin Antimicrobial Peptide during Reactive Dermal Adipogenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1589-1597. [PMID: 31420464 PMCID: PMC9233297 DOI: 10.4049/jimmunol.1900520] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/16/2019] [Indexed: 11/30/2023]
Abstract
A subset of dermal fibroblasts undergo rapid differentiation into adipocytes in response to infection and acutely produce the cathelicidin antimicrobial peptide gene Camp Vitamin A and other retinoids inhibit adipogenesis yet can show benefit to skin disorders, such as cystic acne, that are exacerbated by bacteria. We observed that retinoids potently increase and sustain the expression of Camp in preadipocytes undergoing adipogenesis despite inhibition of markers of adipogenesis, such as Adipoq, Fabp4, and Rstn Retinoids increase cathelicidin in both mouse and human preadipocytes, but this enhancement of antimicrobial peptide expression did not occur in keratinocytes or a sebocyte cell line. Preadipocytes undergoing adipogenesis more effectively inhibited growth of Staphylococcus aureus when exposed to retinoic acid. Whole transcriptome analysis identified hypoxia-inducible factor 1-α (HIF-1α) as a mechanism through which retinoids mediate this response. These observations uncouple the lipid accumulation element of adipogenesis from the innate immune response and uncover a mechanism, to our knowledge previously unsuspected, that may explain therapeutic benefits of retinoids in some skin disorders.
Collapse
Affiliation(s)
- Marc C Liggins
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093; and
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093; and
| | - Ling-Juan Zhang
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093; and
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Tatsuya Dokoshi
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093; and
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093; and
| |
Collapse
|
6
|
Madrigal‐Martínez A, Constâncio V, Lucio‐Cazaña FJ, Fernández‐Martínez AB. PROSTAGLANDIN E
2
stimulates cancer‐related phenotypes in prostate cancer PC3 cells through cyclooxygenase‐2. J Cell Physiol 2018; 234:7548-7559. [DOI: 10.1002/jcp.27515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 09/10/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | - Vera Constâncio
- Departamento de Biología de Sistemas Universidad de Alcalá Madrid Spain
| | | | | |
Collapse
|
7
|
Retinoic Acid Is Required for Neural Stem and Progenitor Cell Proliferation in the Adult Hippocampus. Stem Cell Reports 2018; 10:1705-1720. [PMID: 29805108 PMCID: PMC5993652 DOI: 10.1016/j.stemcr.2018.04.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 01/19/2023] Open
Abstract
Neural stem and precursor cell (NSPC) proliferation in the rodent adult hippocampus is essential to maintain stem cell populations and produce new neurons. Retinoic acid (RA) signaling is implicated in regulation of adult hippocampal neurogenesis, but its exact role in control of NSPC behavior has not been examined. We show RA signaling in all hippocampal NSPC subtypes and that inhibition of RA synthesis or signaling significantly decreases NSPC proliferation via abrogation of cell-cycle kinetics and cell-cycle regulators. RA signaling controls NSPC proliferation through hypoxia inducible factor-1α (HIF1α), where stabilization of HIF1α concurrent with disruption of RA signaling can prevent NSPC defects. These studies demonstrate a cell-autonomous role for RA signaling in hippocampal NSPCs that substantially broadens RA's function beyond its well-described role in neuronal differentiation.
Collapse
|
8
|
Madrigal-Martínez A, Fernández-Martínez AB, Lucio Cazaña FJ. Intracrine prostaglandin E 2 pro-tumoral actions in prostate epithelial cells originate from non-canonical pathways. J Cell Physiol 2017; 233:3590-3602. [PMID: 29154474 DOI: 10.1002/jcp.26220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
Abstract
Prostaglandin E2 (PGE2 ) increases cell proliferation and stimulates migratory and angiogenic abilities in prostate cancer cells. However, the effects of PGE2 on non-transformed prostate epithelial cells are unknown, despite the fact that PGE2 overproduction has been found in benign hyperplastic prostates. In the present work we studied the effects of PGE2 in immortalized, non-malignant prostate epithelial RWPE-1 cells and found that PGE2 increased cell proliferation, cell migration, and production of vascular endothelial growth factor-A, and activated in vitro angiogenesis. These actions involved a non-canonic intracrine mechanism in which the actual effector was intracellular PGE2 (iPGE2 ) instead of extracellular PGE2 : inhibition of the prostaglandin uptake transporter (PGT) or antagonism of EP receptors prevented the effects of PGE2 , which indicated that PGE2 activity depended on its carrier-mediated translocation from the outside to the inside of cells and that EP receptors located intracellularly (iEP) mediated the effects of PGE2 . iPGE2 acted through transactivation of epidermal growth factor-receptor (EGFR) by iEP, leading to increased expression and activity of hypoxia-inducible factor-1α (HIF-1α). Interestingly, iPGE2 also mediates the effects of PGE2 on prostate cancer PC3 cells through the axis iPGE2 -iEP receptors-EGFR-HIF-1α. Thus, this axis might be responsible for the growth-stimulating effects of PGE2 on prostate epithelial cells, thereby contributing to prostate proliferative diseases associated with chronic inflammation. Since this PGT-dependent non-canonic intracrine mechanism of PGE2 action operates in both benign and malignant prostate epithelial cells, PGT inhibitors should be tested as a novel therapeutic modality to treat prostate proliferative disease.
Collapse
|
9
|
Zhang J, Yang S, Chen F, Li H, Chen B. Ginkgetin aglycone ameliorates LPS-induced acute kidney injury by activating SIRT1 via inhibiting the NF-κB signaling pathway. Cell Biosci 2017; 7:44. [PMID: 28852469 PMCID: PMC5567569 DOI: 10.1186/s13578-017-0173-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
Background Ginkgetin aglycone (GA), a novel Ginkgo biloba extract (GBE) by acid hydrolysis and recrystallization, is characterized by higher liposolubility and antioxidation than classical GBEs. There is no study depicting the functional role of GA in acute kidney injury (AKI). Here, we firstly reported the protective effect of GA on lipopolysaccharide (LPS)-induced AKI and its underlying mechanism. Methods ELISA analysis was applied to measure plasma level of TNF-α and IL-6, and NF-κB activity in kidney homogenate. Renal function analysis was performed by detecting serum concentration of Kim-1 and urine level of BUN. Cell apoptosis in kidney tissues was detected by TUNEL assay and caspase-3 activity assay. qRT-PCR was conducted to determine mRNA expression of TNF-α, IL-6 and IκBα. Western blot was carried out to confirm expression of p-IκBα, SIRT1, and iNOS. Results GA administration protected mice from LPS-induced AKI by attenuating inflammatory response, renal injury, as well as tubular apoptosis both in vivo. GA suppressed inflammatory response induced by LPS in HK-2 cells. Moreover, GA upregulated SIRT1 expression and blocked the NF-κB signaling pathway in LPS-induced AKT in vivo and vitro. Furthermore, suppression of SIRT1 abated the inhibitory effect of GA on LPS-induced inflammatory response and renal injury. Conclusions GA prevented LPS-induced AKI by activating SIRT1 via inhibiting the NF-κB signaling pathway, providing new insights into the function and molecular mechanism of GA in AKI. Therefore, GA may be a promising therapeutic agent for the treatment of septic AKI.
Collapse
Affiliation(s)
- Junwei Zhang
- Department of Nephrology, Huaihe Hospital of Henan University, No. 115, Gulou District, Kaifeng, 475000 China
| | - Suxia Yang
- Department of Nephrology, Huaihe Hospital of Henan University, No. 115, Gulou District, Kaifeng, 475000 China
| | - Fang Chen
- Department of Nephrology, Huaihe Hospital of Henan University, No. 115, Gulou District, Kaifeng, 475000 China
| | - Huicong Li
- Department of Nephrology, Huaihe Hospital of Henan University, No. 115, Gulou District, Kaifeng, 475000 China
| | - Baoping Chen
- Department of Nephrology, Huaihe Hospital of Henan University, No. 115, Gulou District, Kaifeng, 475000 China
| |
Collapse
|
10
|
Pourjafar M, Saidijam M, Mansouri K, Ghasemibasir H, Karimi dermani F, Najafi R. All-trans retinoic acid preconditioning enhances proliferation, angiogenesis and migration of mesenchymal stem cell in vitro and enhances wound repair in vivo. Cell Prolif 2017; 50:e12315. [PMID: 27862498 PMCID: PMC6529123 DOI: 10.1111/cpr.12315] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/10/2016] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Stem cell therapy is considered to be a suitable alternative in treatment of a number of diseases. However, there are challenges in their clinical application in cell therapy, such as to reduce survival and loss of transplanted stem cells. It seems that chemical and pharmacological preconditioning enhances their therapeutic efficacy. In this study, we investigated effects of all-trans retinoic acid (ATRA) on survival, angiogenesis and migration of mesenchymal stem cells (MSCs) in vitro and in a wound-healing model. MATERIALS AND METHODS MSCs were treated with a variety of concentrations of ATRA, and mRNA expression of cyclo-oxygenase-2 (COX-2), hypoxia-inducible factor-1 (HIF-1), C-X-C chemokine receptor type 4 (CXCR4), C-C chemokine receptor type 2 (CCR2), vascular endothelial growth factor (VEGF), angiopoietin-2 (Ang-2) and Ang-4 were examined by qRT-PCR. Prostaglandin E2 (PGE2) levels were measured using an ELISA kit and MSC angiogenic potential was evaluated using three-dimensional tube formation assay. Finally, benefit of ATRA-treated MSCs in wound healing was determined with a rat excisional wound model. RESULTS In ATRA-treated MSCs, expressions of COX-2, HIF-1, CXCR4, CCR2, VEGF, Ang-2 and Ang-4 increased compared to control groups. Overexpression of the related genes was reversed by celecoxib, a selective COX-2 inhibitor. Tube formation and in vivo wound healing of ATRA-treated MSCs were also significantly enhanced compared to untreated MSCs. CONCLUSION Pre-conditioning of MSCs with ATRA increased efficacy of cell therapy by activation of survival signalling pathways, trophic factors and release of pro-angiogenic molecules.
Collapse
Affiliation(s)
- M. Pourjafar
- Research Center for Molecular MedicineHamedan University of Medical SciencesHamedanIran
| | - M. Saidijam
- Research Center for Molecular MedicineHamedan University of Medical SciencesHamedanIran
| | - K. Mansouri
- Medical Biology Research CenterKermanshah University of Medical, SciencesKermanshahIran
| | - H. Ghasemibasir
- Department of PathologyHamedan University of Medical SciencesHamedanIran
| | - F. Karimi dermani
- Research Center for Molecular MedicineHamedan University of Medical SciencesHamedanIran
| | - R. Najafi
- Research Center for Molecular MedicineHamedan University of Medical SciencesHamedanIran
- Endometrium and Endometriosis Research CenterHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
11
|
Viollet C, Davis DA, Tekeste SS, Reczko M, Ziegelbauer JM, Pezzella F, Ragoussis J, Yarchoan R. RNA Sequencing Reveals that Kaposi Sarcoma-Associated Herpesvirus Infection Mimics Hypoxia Gene Expression Signature. PLoS Pathog 2017; 13:e1006143. [PMID: 28046107 PMCID: PMC5234848 DOI: 10.1371/journal.ppat.1006143] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/13/2017] [Accepted: 12/19/2016] [Indexed: 01/09/2023] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) causes several tumors and hyperproliferative disorders. Hypoxia and hypoxia-inducible factors (HIFs) activate latent and lytic KSHV genes, and several KSHV proteins increase the cellular levels of HIF. Here, we used RNA sequencing, qRT-PCR, Taqman assays, and pathway analysis to explore the miRNA and mRNA response of uninfected and KSHV-infected cells to hypoxia, to compare this with the genetic changes seen in chronic latent KSHV infection, and to explore the degree to which hypoxia and KSHV infection interact in modulating mRNA and miRNA expression. We found that the gene expression signatures for KSHV infection and hypoxia have a 34% overlap. Moreover, there were considerable similarities between the genes up-regulated by hypoxia in uninfected (SLK) and in KSHV-infected (SLKK) cells. hsa-miR-210, a HIF-target known to have pro-angiogenic and anti-apoptotic properties, was significantly up-regulated by both KSHV infection and hypoxia using Taqman assays. Interestingly, expression of KSHV-encoded miRNAs was not affected by hypoxia. These results demonstrate that KSHV harnesses a part of the hypoxic cellular response and that a substantial portion of hypoxia-induced changes in cellular gene expression are induced by KSHV infection. Therefore, targeting hypoxic pathways may be a useful way to develop therapeutic strategies for KSHV-related diseases.
Collapse
Affiliation(s)
- Coralie Viollet
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - David A. Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shewit S. Tekeste
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Martin Reczko
- Institute of Molecular Oncology, Alexander Fleming Biomedical Sciences Research Center, Vari, Greece
| | - Joseph M. Ziegelbauer
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Francesco Pezzella
- Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, United Kingdom
| | - Jiannis Ragoussis
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Institute of Molecular Oncology, Alexander Fleming Biomedical Sciences Research Center, Vari, Greece
- McGill University and Génome Québec Innovation Centre, Montréal, Québec, Canada
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
12
|
Mishra S, Choe Y, Pleasure SJ, Siegenthaler JA. Cerebrovascular defects in Foxc1 mutants correlate with aberrant WNT and VEGF-A pathways downstream of retinoic acid from the meninges. Dev Biol 2016; 420:148-165. [PMID: 27671872 DOI: 10.1016/j.ydbio.2016.09.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 12/28/2022]
Abstract
Growth and maturation of the cerebrovasculature is a vital event in neocortical development however mechanisms that control cerebrovascular development remain poorly understood. Mutations in or deletions that include the FOXC1 gene are associated with congenital cerebrovascular anomalies and increased stroke risk in patients. Foxc1 mutant mice display severe cerebrovascular hemorrhage at late gestational ages. While these data demonstrate Foxc1 is required for cerebrovascular development, its broad expression in the brain vasculature combined with Foxc1 mutant's complex developmental defects have made it difficult to pinpoint its function(s). Using global and conditional Foxc1 mutants, we find 1) significant cerebrovascular growth defects precede cerebral hemorrhage and 2) expression of Foxc1 in neural crest-derived meninges and brain pericytes, though not endothelial cells, is required for normal cerebrovascular development. We provide evidence that reduced levels of meninges-derived retinoic acid (RA), caused by defects in meninges formation in Foxc1 mutants, is a major contributing factor to the cerebrovascular growth defects in Foxc1 mutants. We provide data that suggests that meninges-derived RA ensures adequate growth of the neocortical vasculature via regulating expression of WNT pathway proteins and neural progenitor derived-VEGF-A. Our findings offer the first evidence for a role of the meninges in brain vascular development and provide new insight into potential causes of cerebrovascular defects in patients with FOXC1 mutations.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Pediatrics, Section of Developmental Biology, University of Colorado, School of Medicine Aurora, CO 80045, USA
| | - Youngshik Choe
- Department of Neurology, Programs in Neuroscience and Developmental Biology, Institute for Regenerative Medicine, UC San Francisco, San Francisco, CA 94158, USA
| | - Samuel J Pleasure
- Department of Neurology, Programs in Neuroscience and Developmental Biology, Institute for Regenerative Medicine, UC San Francisco, San Francisco, CA 94158, USA
| | - Julie A Siegenthaler
- Department of Pediatrics, Section of Developmental Biology, University of Colorado, School of Medicine Aurora, CO 80045, USA.
| |
Collapse
|
13
|
Fernández-Martínez AB, Lucio-Cazaña J. Intracellular EP2 prostanoid receptor promotes cancer-related phenotypes in PC3 cells. Cell Mol Life Sci 2015; 72:3355-73. [PMID: 25828575 PMCID: PMC11113933 DOI: 10.1007/s00018-015-1891-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/10/2015] [Accepted: 03/19/2015] [Indexed: 12/23/2022]
Abstract
Prostaglandin E2 (PGE2) and hypoxia-inducible factor-1α (HIF-1α) affect many mechanisms that have been involved in the pathogenesis of prostate cancer (PC). HIF-1α, which is up-regulated by PGE2 in LNCaP cells and PC3 cells, has been shown to contribute to metastasis and chemo-resistance of castrate-resistant PC (a lethal form of PC) and to promote in PC cells migration, invasion, angiogenesis and chemoresistance. The selective blockade of PGE2-EP2 signaling pathway in PC3 cells results in inhibition of cancer cell proliferation and invasion. PGE2 affects many mechanisms that have been shown to play a role in carcinogenesis such as proliferation, apoptosis, migration, invasion and angiogenesis. Recently, we have found in PC3 cells that most of these PGE2-induced cancer-related features are due to intracellular PGE2 (iPGE2). Here, we aimed to study in PC3 cells the role of iPGE2-intracellular EP2 (iEP2)-HIF-1α signaling in several events linked to PC progression using an experimental approach involving pharmacological inhibition of the prostaglandin uptake transporter and EGFR and pharmacological and genetic modulation of EP2 receptor and HIF-1α. We found that iPGE2 increases HIF-1α expression through iEP2-dependent EGFR transactivation and that inhibition of any of the axis iEP2-EGFR-HIF-1α in cells treated with PGE2 or EP2 agonist results in prevention of the increase in PC3 cell proliferation, adhesion, migration, invasion and angiogenesis in vitro. Of note, PGE2 induced EP2 antagonist-sensitive DNA synthesis in nuclei isolated from PC3 cells, which indicates that they have functional EP2 receptors. These results suggest that PGE2-EP2 dependent intracrine mechanisms involving EGFR and HIF-1α play a role in PC.
Collapse
Affiliation(s)
- Ana Belén Fernández-Martínez
- Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, 28871, Madrid, Spain,
| | | |
Collapse
|
14
|
Fernández-Martínez AB, Lucio-Cazaña FJ. Transactivation of EGFR by prostaglandin E2 receptors: a nuclear story? Cell Mol Life Sci 2015; 72:2187-98. [PMID: 25516021 PMCID: PMC11113541 DOI: 10.1007/s00018-014-1802-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/03/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
The pharmacological modulation of hypoxia-inducible factor-1α (HIF-1α) and HIF-1α-regulated vascular endothelial growth factor-A (VEGF-A) in the kidney has therapeutic interest. Although it is assumed that prostaglandin E(2) (PGE(2)) exerts its biological effects from the extracellular medium through activation of EP receptors located at the cell membrane, we have shown in human renal proximal tubular HK-2 cells (and other cell lines) that intracellular PGE(2) regulates the expression of HIF-1α expression and the production of VEGF-A. Here, we have found--through experiments involving EP receptors agonists, EP receptor gene silencing and inhibition of the prostaglandin uptake transporter--that these biological effects of PGE(2) are mediated by intracellular EP(2) receptors. In sharp contrast with cell membrane EP(2), whose activation results in increased production of cAMP, intracellular EP(2) signaling was independent of cAMP. Instead, it involved c-src-dependent transactivation of epidermal growth factor receptor, which led to p38/ERK1/2-dependent activation of mitogen- and stress-activated kinase-1 (MSK-1) and to MSK-1-dependent-histone H3 phosphorylation and transcriptional up-regulation of retinoic acid receptor-β. Even more important, this signaling pathway was fully reproduced in nuclei isolated from HK-2 cell, which highlights the relevance of nuclear EP receptors in the up-regulation of HIF-1α. These results open the possibility that signal cascades that proceed entirely in the cell nucleus might be responsible for several PGE(2) effects that are assumed to be due to cell membrane EP receptors.
Collapse
Affiliation(s)
- Ana B Fernández-Martínez
- Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, 28871, Madrid, Spain,
| | | |
Collapse
|
15
|
Madrigal-Martínez A, Cazaña FJL, Fernández-Martínez YAB. Role of intracellular prostaglandin E₂ in cancer-related phenotypes in PC3 cells. Int J Biochem Cell Biol 2014; 59:52-61. [PMID: 25462156 DOI: 10.1016/j.biocel.2014.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 10/20/2014] [Accepted: 11/03/2014] [Indexed: 11/25/2022]
Abstract
Prostaglandin E2 (PGE2) and hypoxia-inducible factor-1α (HIF-1α) affect many mechanisms that have been shown to play a role in prostate cancer. In PGE2-treated LNCaP cells, up-regulation of HIF-1α requires the internalization of PGE2, which is in sharp contrast with the generally accepted view that PGE2 acts through EP receptors located at the cell membrane. Here we aimed to study in androgen-independent PC3 cells the role of intracellular PGE2 in several events linked to prostate cancer progression. To this end, we used bromocresol green, an inhibitor of prostaglandin uptake that blocked the immediate rise in intracellular immunoreactive PGE2 following treatment with 16,16-dimethyl-PGE2. Bromocresol green prevented the stimulatory effect of 16,16-dimethyl-PGE on cell proliferation, adhesion, migration and invasion and on HIF-1α expression and activity, the latter assessed as the HIF-dependent activation of (i) a hypoxia response element-luciferase plasmid construct, (ii) production of angiogenic factor vascular endothelial growth factor-A and (iii) in vitro angiogenesis. The basal phenotype of PC3 cells was also affected by bromocresol green, that substantially lowered expression of HIF-1α, production of vascular endothelial growth factor-A and cell proliferation. These results, and the fact that we found functional intracellular EP receptors in PC3 cells, suggest that PGE2-dependent intracrine mechanisms play a role in prostate cancer Therefore, inhibition of the prostaglandin uptake transporter might be a novel therapeutic approach for the treatment of prostate cancer.
Collapse
|
16
|
Cha JH, Wee HJ, Seo JH, Ahn BJ, Park JH, Yang JM, Lee SW, Lee OH, Lee HJ, Gelman IH, Arai K, Lo EH, Kim KW. Prompt meningeal reconstruction mediated by oxygen-sensitive AKAP12 scaffolding protein after central nervous system injury. Nat Commun 2014; 5:4952. [PMID: 25229625 DOI: 10.1038/ncomms5952] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 08/11/2014] [Indexed: 11/09/2022] Open
Abstract
The meninges forms a critical epithelial barrier, which protects the central nervous system (CNS), and therefore its prompt reconstruction after CNS injury is essential for reducing neuronal damage. Meningeal cells migrate into the lesion site after undergoing an epithelial-mesenchymal transition (EMT) and repair the impaired meninges. However, the molecular mechanisms of meningeal EMT remain largely undefined. Here we show that TGF-β1 and retinoic acid (RA) released from the meninges, together with oxygen tension, could constitute the mechanism for rapid meningeal reconstruction. AKAP12 is an effector of this mechanism, and its expression in meningeal cells is regulated by integrated upstream signals composed of TGF-β1, RA and oxygen tension. Functionally, AKAP12 modulates meningeal EMT by regulating the TGF-β1-non-Smad-SNAI1 signalling pathway. Collectively, TGF-β1, RA and oxygen tension can modulate the dynamic change in AKAP12 expression, causing prompt meningeal reconstruction after CNS injury by regulating the transition between the epithelial and mesenchymal states of meningeal cells.
Collapse
Affiliation(s)
- Jong-Ho Cha
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hee-Jun Wee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Ji Hae Seo
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Bum Ju Ahn
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Ji-Hyeon Park
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Jun-Mo Yang
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Sae-Won Lee
- Department of Internal Medicine, Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul 110-799, Korea
| | - Ok-Hee Lee
- Department of Biomedical Science, CHA University, Seoul 135-081, Korea
| | - Hyo-Jong Lee
- College of Pharmacy, Inje University, Gimhae 621-749, Korea
| | - Irwin H Gelman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, USA
| | - Kyu-Won Kim
- 1] SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea [2] Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
17
|
Liang C, Guo S, Yang L. Effects of all‑trans retinoic acid on VEGF and HIF‑1α expression in glioma cells under normoxia and hypoxia and its anti‑angiogenic effect in an intracerebral glioma model. Mol Med Rep 2014; 10:2713-9. [PMID: 25201493 DOI: 10.3892/mmr.2014.2543] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 05/21/2014] [Indexed: 11/06/2022] Open
Abstract
All‑trans retinoic acid (ATRA) is one of the most potent inducers of differentiation and is capable of inducing differentiation and apoptosis in glioma cells. However, the effect of ATRA on glioma angiogenesis is yet to be elucidated. The present study investigated the effects of ATRA on the expression of vascular endothelial growth factor (VEGF) and hypoxia‑inducible factor‑1α (HIF‑1α) in various glioma cell lines under normoxia and hypoxia. The effect of ATRA on angiogenesis in a rat intracerebral glioma model was also investigated, with the aim of revealing the effect of ATRA on glioma angiogenesis. In the present study, U‑87 MG and SHG44 glioma cells were treated with ATRA at various concentrations (0, 5, 10, 20 and 40 µmol/l) under normoxia or hypoxia. Quantitative polymerase chain reaction and western blot analysis were used to investigate VEGF and HIF‑1α mRNA and protein expression, respectively. An intracerebral glioma model was generated using intracerebral implantation of C6 glioma cells into rats. Tumor‑bearing rats were treated with ATRA at different doses (0, 5 and 10 mg/kg/day) for two weeks, and immunohistochemical assays were performed to detect the cluster of differentiation 34‑positive cells in order to evaluate the microvessel density (MVD) in each group. Following ATRA treatment, the expression of VEGF and HIF‑1α was found to vary among the different concentration groups. In the glioma cells in the lower concentration groups (5 and 10 µmol/l ATRA), a significant increase in VEGF and HIF‑1α expression was observed. Conversely, a significant decrease in VEGF and HIF‑1α expression was found in the glioma cells in the high ATRA concentration group (40 µmol/l), compared with that in the cells in the control group. Furthermore, in the rat intracerebral glioma model, ATRA decreased glioma MVD, particularly in the high‑dose group (10 mg/kg/day), compared with the control group. These results suggest that ATRA may exhibit a dose‑dependent effect on glioma angiogenesis and may inhibit glioma angiogenesis in vivo.
Collapse
Affiliation(s)
- Chen Liang
- Department of Neurosurgery, First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shiwen Guo
- Department of Neurosurgery, First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ling Yang
- Department of Aeromedical Physical Examination, Xi'an Civil Aviation Hospital, Xi'an, Shaanxi 710082, P.R. China
| |
Collapse
|
18
|
Fernández-Martínez AB, Lucio Cazaña FJ. Prostaglandin E2 induces retinoic acid receptor-β up-regulation through MSK1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1997-2004. [PMID: 24953041 DOI: 10.1016/j.bbamcr.2014.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/05/2014] [Accepted: 05/23/2014] [Indexed: 01/30/2023]
Abstract
The pharmacological modulation of putative renoprotective factors hypoxia-inducible factor-1α (HIF-1α) and HIF-1α-regulated vascular endothelial growth factor-A (VEGF-A) in the kidney has therapeutic interest. In human renal proximal tubular HK2 cells, prostaglandin E2 (PGE2) up-regulates HIF-1α and VEGF-A through epidermal growth factor receptor (EGFR)-dependent up-regulation of retinoic acid receptor-β (RARβ). Here we studied the role of mitogen-activated protein kinases (MAPKs) ERK1/2 and p38 and their target kinase, mitogen- and stress activated kinase-1 (MSK1), in the signaling cascade. Treatment of HK2 cells with PGE2 resulted in increased phosphorylation of EGFR, the three studied kinases and the histone H3 (Ser10) at the RARβ gene promoter (the latter has been proposed as a molecular signature of the activated RARβ gene promoter). Prevention of the phosphorylation of EGFR, ERK1/2, p38 MAPK or MSK1 is by incubating, respectively, with AG1478, PD98059, SB203580 or H89 allowed to elucidate the precise phosphorylation order in the signaling cascade triggered by PGE2: first, EGFR; then, ERK1/2 and p38 MAPK and, finally, MSK1. Phosphorylation of MSK1 led to that of Ser10 in histone H3 and to activation of RARβ gene transcription (and the consequent increase in the expression of HIF-1α and VEGF-A), which was suppressed by H89 or by transfecting cells with a vector encoding for a dominant-negative mutant of MSK1. These results highlight the relevance of MSK1 in the up-regulation of RARβ by PGE2. They also may contribute to new therapeutic approaches based upon the pharmacological control of HIF-1α/VEGF-A in the proximal tubule through the modulation of the PGE2/EGFR/MAPK/MSK1/RARβ pathway.
Collapse
|
19
|
Bi Y, Gong M, He Y, Zhang X, Zhou X, Zhang Y, Nan G, Wei X, Liu Y, Chen J, Li T. AP2α transcriptional activity is essential for retinoid-induced neuronal differentiation of mesenchymal stem cells. Int J Biochem Cell Biol 2014; 46:148-160. [PMID: 24275093 DOI: 10.1016/j.biocel.2013.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/01/2013] [Accepted: 11/10/2013] [Indexed: 11/23/2022]
Abstract
Pre-activation of the retinoid signaling pathway by all-trans retinoic acid facilitates neuronal differentiation of mesenchymal stem cells. Using protein/DNA based screening assays, we identified activator protein 2α as an important downstream target of all-trans retinoic acid. Although all-trans retinoic acid treatment significantly increased activator protein 2α transcriptional activity, it did not affect its expression. Inhibition of activator protein 2α with dominant-negative mutants reduced ATRA-induced differentiation of mesenchymal stem cells into neurons and reversed its associated functional recovery of memory impairment in the cell-based treatment of a hypoxic-ischemic brain damage rat model. Dominant-negative mutants of activator protein 2α inhibited the expression of neuronal markers which were induced by retinoic acid receptor β activation. All-trans retinoic acid treatment increased phosphorylation of activator protein 2α and resulted in its nuclear translocation. This was blocked by siRNA-mediated knockdown of retinoic acid receptor β. Furthermore, we found that retinoic acid receptor β directly interacted with activator protein 2α. In summary, the regulation of all-trans retinoic acid on activator protein 2α transcriptional activity was mediated by activation of retinoic acid receptor β and subsequent phosphorylation and nuclear translocation of activator protein 2α. Our results strongly suggest that activator protein 2α transcriptional activity is essential for all-trans retinoic acid-induced neuronal differentiation of mesenchymal stem cells.
Collapse
Affiliation(s)
- Yang Bi
- Nutritional Research Center, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Chongqing Stem Cell Therapy Engineering Technical Center, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Collaboration Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Min Gong
- Nutritional Research Center, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Chongqing Stem Cell Therapy Engineering Technical Center, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Collaboration Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yun He
- Chongqing Stem Cell Therapy Engineering Technical Center, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Collaboration Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiaojian Zhang
- Nutritional Research Center, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Chongqing Stem Cell Therapy Engineering Technical Center, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Collaboration Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiaoqin Zhou
- Nutritional Research Center, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Chongqing Stem Cell Therapy Engineering Technical Center, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Collaboration Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yun Zhang
- Nutritional Research Center, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Chongqing Stem Cell Therapy Engineering Technical Center, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Collaboration Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Guoxin Nan
- Nutritional Research Center, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Chongqing Stem Cell Therapy Engineering Technical Center, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Collaboration Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiaoping Wei
- Nutritional Research Center, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Chongqing Stem Cell Therapy Engineering Technical Center, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Collaboration Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Youxue Liu
- Nutritional Research Center, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Chongqing Stem Cell Therapy Engineering Technical Center, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Collaboration Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jie Chen
- Nutritional Research Center, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Chongqing Stem Cell Therapy Engineering Technical Center, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Collaboration Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| | - Tingyu Li
- Nutritional Research Center, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Chongqing Stem Cell Therapy Engineering Technical Center, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Collaboration Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| |
Collapse
|
20
|
Fernández-Martínez AB, Lucio Cazaña FJ. Epidermal growth factor receptor transactivation by intracellular prostaglandin E2-activated prostaglandin E2 receptors. Role in retinoic acid receptor-β up-regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2029-38. [PMID: 23644172 DOI: 10.1016/j.bbamcr.2013.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 12/21/2022]
Abstract
The pharmacological modulation of renoprotective factor vascular endothelial growth factor-A (VEGF-A) in the proximal tubule has therapeutic interest. In human proximal tubular HK-2 cells, treatment with all-trans retinoic acid or prostaglandin E2 (PGE2) triggers the production of VEGF-A. The pathway involves an initial increase in intracellular PGE2, followed by activation of EP receptors (PGE2 receptors, most likely an intracellular subset) and increase in retinoic acid receptor-β (RARβ) expression. RARβ then up-regulates transcription factor hypoxia-inducible factor-1α (HIF-1α), which increases the transcription and production of VEGF-A. Here we studied the role in this pathway of epidermal growth factor receptor (EGFR) transactivation by EP receptors. We found that EGFR inhibitor AG1478 prevented the increase in VEGF-A production induced by PGE2- and all-trans retinoic acid. This effect was due to the inhibition of the transcriptional up-regulation of RARβ, which resulted in loss of the RARβ-dependent transcriptional up-regulation of HIF-1α. PGE2 and all-trans retinoic acid also increased EGFR phosphorylation and this effect was sensitive to antagonists of EP receptors. The role of intracellular PGE2 was indicated by two facts; i) PGE2-induced EGFR phosphorylation was substantially prevented by inhibitor of prostaglandin uptake transporter bromocresol green and ii) all-trans retinoic acid treatment, which enhanced intracellular but not extracellular PGE2, had lower effect on EGFR phosphorylation upon pre-treatment with cyclooxygenase inhibitor diclofenac. Thus, EGFR transactivation by intracellular PGE2-activated EP receptors results in the sequential activation of RARβ and HIF-1α leading to increased production of VEGF-A and it may be a target for the therapeutic modulation of HIF-1α/VEGF-A.
Collapse
|
21
|
Ortega A, Fernández A, Arenas MI, López-Luna P, Muñóz-Moreno C, Arribas I, Olea N, García-Bermejo L, Lucio-Cazana J, Bosch RJ. Outcome of acute renal injury in diabetic mice with experimental endotoxemia: role of hypoxia-inducible factor-1 α. J Diabetes Res 2013; 2013:254529. [PMID: 23984430 PMCID: PMC3747493 DOI: 10.1155/2013/254529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 07/05/2013] [Indexed: 11/22/2022] Open
Abstract
The role of diabetic nephropathy in the outcome of acute renal injury (AKI) is not well defined. Herein we evaluate the outcome of lipopolysaccharide- (LPS-) induced AKI in streptozotocin-induced diabetes, as well as the potential role of Hypoxia Inducible Factor (HIF-1 α ) in this condition. Although 6 h after LPS injection all mice developed a decrease in renal function, proteinuric diabetic mice showed a better recovery of this parameter throughout the study (72 h). Both HIF-1 α and vascular endothelium growth factor (VEGF) were found to be upregulated in diabetic mice. After LPS injection, all animals showed an upregulation of these factors, although it was higher in the diabetic group. Glycated albumin (GA) was found to upregulate HIF-1 α in HK-2 cells, which resulted in increased production of VEGF. Interestingly, LPS cooperated with GA to induce HIF-1 α upregulation. In conclusion, diabetic mice display a better recovery of AKI after experimental endotoxemia. Moreover, these animals showed an increased expression of both HIF-1 α and VEGF that was reproduced by incubating renal cells with GA. Since VEGF is considered a survival factor for tubular cells, our findings suggest that diabetes displays HIF-1 α upregulation that might function as a "precondition state" offering protection from endotoxic AKI.
Collapse
Affiliation(s)
- A. Ortega
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit,
University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - A. Fernández
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit,
University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - M. I. Arenas
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit,
University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - P. López-Luna
- Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - C. Muñóz-Moreno
- Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - I. Arribas
- Department of Clinical Chemistry University Hospital “Príncipe de Asturias”, University of Alcalá, Alcalá de Henares, Spain
| | - N. Olea
- Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - L. García-Bermejo
- Cell Response to Ischemia Laboratory, Department of Systems Disorders and Cancer, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - J. Lucio-Cazana
- Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - R. J. Bosch
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit,
University of Alcalá, Alcalá de Henares, Madrid, Spain
- Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
- *R. J. Bosch:
| |
Collapse
|
22
|
Effects of exposure to a DNA damaging agent on the hypoxia inducible factors in organogenesis stage mouse limbs. PLoS One 2012; 7:e51937. [PMID: 23251655 PMCID: PMC3522594 DOI: 10.1371/journal.pone.0051937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/13/2012] [Indexed: 11/19/2022] Open
Abstract
Hypoxia plays a critical role in coordinating cell survival, differentiation and death in normal embryogenesis; during limb pattern formation, hypoxia affects two key processes, chondrogenesis and cell death. Hypoxia promotes chondrocyte differentiation and cartilage matrix synthesis and suppresses terminal differentiation. Depending on the context, hypoxia may induce cell cycle arrest, pro- or anti-apoptotic genes, or autophagy. The response to hypoxia is controlled by hypoxia inducible transcription factors, specifically Hif1a, Hif2a and Hif3a. Under normoxia, the hypoxia-inducible factors respond to a variety of stimuli that include several well established teratogens, such as retinoic acid, heavy metals and hyperglycemia. We hypothesize that teratogenic exposures disrupt limb development by altering the hypoxia signalling pathway. To test this hypothesis, we assessed the effects of a DNA damaging alkylating agent, 4-hydroperoxycyclophosphamide, on the hypoxia inducible factor (HIF) transcription factors and on hypoxia in the murine limb bud culture system. 4-Hydroperoxycyclophosphamide exposure increased HIF1 DNA binding activity and HIF1A and HIF2A, but not HIF3A, protein concentrations. HIF1A and HIF2A immunoreactivities were detected in the apical ectodermal ridge and interdigital regions, where cell death sculpts the limb; 4-hydroperoxycyclophosphamide treatment enhanced their immunoreactivities, specifically in these regions. In contrast, hypoxia was localized to areas of chondrogenesis, the cartilaginous anlagen of the developing long bone and phalanges, and was not enhanced by drug exposure. Thus, the exposure of limb buds in vitro to a DNA damaging teratogen triggered a hypoxia signalling response that was associated with cell death. During limb development the HIFs have oxygen-independent functions.
Collapse
|
23
|
Fernández-Martínez AB, Jiménez MIA, Manzano VM, Lucio-Cazaña FJ. Intracrine prostaglandin E(2) signalling regulates hypoxia-inducible factor-1α expression through retinoic acid receptor-β. Int J Biochem Cell Biol 2012; 44:2185-93. [PMID: 22964004 DOI: 10.1016/j.biocel.2012.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 07/30/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022]
Abstract
We have previously found in human renal proximal tubular HK-2 cells that hypoxia- and all-trans retinoic acid-induced hypoxia-inducible factor-1α up-regulation is accompanied by retinoic acid receptor-β up-regulation. Here we first investigated whether hypoxia-inducible factor-1α expression is dependent on retinoic acid receptor-β and our results confirmed it since (i) hypoxia-inducible factor-1α-inducing agents hypoxia, hypoxia-mimetic agent desferrioxamine, all-trans retinoic acid and interleukin-1β increased retinoic acid receptor-β expression, (ii) hypoxia-inducible factor-1α up-regulation was prevented by retinoic acid receptor-β antagonist LE-135 or siRNA retinoic acid receptor-β and (iii) there was direct binding of retinoic acid receptor-β to the retinoic acid response element in hypoxia-inducible factor-1α promoter upon treatment with all-trans retinoic acid and 16,16-dimethyl-prostaglandin E(2). Since intracellular prostaglandin E(2) mediates hypoxia-inducible factor-1α up-regulation in normoxia in HK-2 cells, we next investigated and confirmed, its role in the up-regulation of retinoic acid receptor-β in normoxia by hypoxia-inducible factor-1α-inducing agents all-trans retinoic acid, interleukin-1β and 16,16-dimethyl-prostaglandin E(2) by inhibiting cyclooxygenases, prostaglandin influx transporter or EP receptors. Interestingly, the hypoxia-induced increase in retinoic acid receptor-β expression and accumulation of hypoxia-inducible factor-1α was also blocked by the inhibitors tested. This is the first time, to our knowledge, that retinoic acid receptor-β signalling is involved in the control of the expression of transcription factor hypoxia-inducible factor-1α in both normoxia and hypoxia and that retinoic acid receptor-β expression is found to be strictly regulated by intracellular prostaglandin E(2). Given the relevance of hypoxia-inducible factor-1α in the kidney in terms of tumorigenesis, progressive renal failure, production of erythropoietin and protection in several models of renal disease, our results open new therapeutic opportunities on the control of hypoxia-inducible factor-1α based upon the pharmacological modulation of retinoic acid receptor-β, either directly or through the control of intracellular prostaglandin E(2) levels/signalling.
Collapse
|
24
|
Rodríguez-Jiménez FJ, Moreno-Manzano V. Modulation of hypoxia-inducible factors (HIF) from an integrative pharmacological perspective. Cell Mol Life Sci 2012; 69:519-34. [PMID: 21984597 PMCID: PMC11115032 DOI: 10.1007/s00018-011-0813-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/17/2011] [Accepted: 09/01/2011] [Indexed: 12/11/2022]
Abstract
Oxygen homeostasis determines the activity and expression of a multitude of cellular proteins and the interplay of pathways that affect crucial cellular processes for development, physiology, and pathophysiology. Hypoxia-inducible factors (HIFs) are transcription factors that respond to changes in available oxygen in the cellular environment and drives cellular adaptation to such conditions. Selective gene expression under hypoxic conditions is the result of an exquisite regulation of HIF, from the pre-transcriptional stage of the HIF gene to the final transcriptional activity of HIF protein. We provide a dissected analysis of HIF modulation with special focus on hypoxic conditions and HIF pharmacological interventions that can guide the application of any future HIF-mediated therapy.
Collapse
|
25
|
Fernández-Martínez AB, Arenas Jiménez MI, Lucio Cazaña FJ. Retinoic acid increases hypoxia-inducible factor-1α through intracrine prostaglandin E(2) signaling in human renal proximal tubular cells HK-2. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:672-83. [PMID: 22306363 DOI: 10.1016/j.bbalip.2012.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/27/2011] [Accepted: 01/14/2012] [Indexed: 12/17/2022]
Abstract
We have previously shown in HK-2 cells that ATRA (all-trans-retinoic acid) up-regulates HIF-1α (hypoxia-inducible factor-1α) in normoxia, which results in increased production of renal protector VEGF-A (vascular endothelial growth factor-A). Here we investigated the role of COXs (cyclooxygenases) in these effects and we found that, i) ATRA increased the expression of COX-1 and COX-2 mRNA and protein and the intracellular levels (but not the extracellular ones) of PGE(2). Furthermore, inhibitors of COX isoenzymes blocked ATRA-induced increase in intracellular PGE(2), HIF-1α up-regulation and increased VEGF-A production. Immunofluorescence analysis found intracellular staining for EP1-4 receptors (PGE(2) receptors). These results indicated that COX activity is critical for ATRA-induced HIF-1α up-regulation and suggested that intracellular PGE(2) could mediate the effects of ATRA; ii) Treatment with PGE(2) analog 16,16-dimethyl-PGE(2) resulted in up-regulation of HIF-1α and antagonists of EP1-4 receptors inhibited 16,16-dimethyl-PGE(2)- and ATRA-induced HIF-1α up-regulation. These results confirmed that PGE(2) mediates the effects of ATRA on HIF-1α expression; iii) Prostaglandin uptake transporter inhibitor bromocresol green blocked the increase in HIF-1α expression induced by PGE(2) or by PGE(2)-increasing cytokine interleukin-1β, but not by ATRA. Therefore only intracellular PGE(2) is able to increase HIF-1α expression. In conclusion, intracellular PGE(2) increases HIF-1α expression and mediates ATRA-induced HIF-1α up-regulation.
Collapse
|