1
|
Di Carlo E, Sorrentino C. The multifaceted role of the stroma in the healthy prostate and prostate cancer. J Transl Med 2024; 22:825. [PMID: 39238004 PMCID: PMC11378418 DOI: 10.1186/s12967-024-05564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Prostate cancer (PC) is an age-related disease and represents, after lung cancer, the second cause of cancer death in males worldwide. Mortality is due to the metastatic disease, which mainly involves the bones, lungs, and liver. In the last 20 years, the incidence of metastatic PC has increased in Western Countries, and a further increase is expected in the near future, due to the population ageing. Current treatment options, including state of the art cancer immunotherapy, need to be more effective to achieve long-term disease control. The most significant anatomical barrier to overcome to improve the effectiveness of current and newly designed drug strategies consists of the prostatic stroma, in particular the fibroblasts and the extracellular matrix, which are the most abundant components of both the normal and tumor prostatic microenvironment. By weaving a complex communication network with the glandular epithelium, the immune cells, the microbiota, the endothelium, and the nerves, in the healthy prostatic microenvironment, the fibroblasts and the extracellular matrix support organ development and homeostasis. However, during inflammation, ageing and prostate tumorigenesis, they undergo dramatic phenotypic and genotypic changes, which impact on tumor growth and progression and on the development of therapy resistance. Here, we focus on the characteristics and functions of the prostate associated fibroblasts and of the extracellular matrix in health and cancer. We emphasize their roles in shaping tumor behavior and the feasibility of manipulating and/or targeting these stromal components to overcome the limitations of current treatments and to improve precision medicine's chances of success.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
2
|
Sayres L, Flockton AR, Ji S, Rey Diaz C, Gumina DL, Su EJ. Angiogenic Function of Human Placental Endothelial Cells in Severe Fetal Growth Restriction Is Not Rescued by Individual Extracellular Matrix Proteins. Cells 2023; 12:2339. [PMID: 37830553 PMCID: PMC10572031 DOI: 10.3390/cells12192339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Severe fetal growth restriction (FGR) is characterized by increased placental vascular resistance resulting from aberrant angiogenesis. Interactions between endothelial cells (ECs) and the extracellular matrix (ECM) are critical to the complex process of angiogenesis. We have previously found that placental stromal abnormalities contribute to impaired angiogenesis in severe FGR. The objective of this research is to better characterize the effect of individual ECM proteins on placental angiogenic properties in the setting of severe FGR. ECs were isolated from human placentae, either control or affected by severe FGR, and subjected to a series of experiments to interrogate the role of ECM proteins on adhesion, proliferation, migration, and apoptosis. We found impaired proliferation and migration of growth-restricted ECs. Although individual substrates did not substantially impact migratory capacity, collagens I, III, and IV partially mitigated proliferative defects seen in FGR ECs. Differences in adhesion and apoptosis between control and FGR ECs were not evident. Our findings demonstrate that placental angiogenic defects that characterize severe FGR cannot be explained by a singular ECM protein, but rather, the placental stroma as a whole. Further investigation of the effects of stromal composition, architecture, stiffness, growth factor sequestration, and capacity for remodeling is essential to better understand the role of ECM in impaired angiogenesis in severe FGR.
Collapse
Affiliation(s)
- Lauren Sayres
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, CO 80045, USA
| | - Amanda R. Flockton
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, CO 80045, USA
| | - Shuhan Ji
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, CO 80045, USA
| | - Carla Rey Diaz
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, CO 80045, USA
| | - Diane L. Gumina
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, CO 80045, USA
| | - Emily J. Su
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, CO 80045, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, CO 80045, USA
| |
Collapse
|
3
|
Resovi A, Persichitti P, Brunelli L, Minoli L, Borsotti P, Garattini G, Tironi M, Dugnani E, Redegalli M, De Simone G, Pastorelli R, Bani MR, Piemonti L, Mosher DF, Giavazzi R, Taraboletti G, Belotti D. Fibronectin fragments generated by pancreatic trypsin act as endogenous inhibitors of pancreatic tumor growth. J Exp Clin Cancer Res 2023; 42:201. [PMID: 37559126 PMCID: PMC10411016 DOI: 10.1186/s13046-023-02778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND The pancreatic microenvironment has a defensive role against cancer but it can acquire tumor-promoting properties triggered by multiple mechanisms including alterations in the equilibrium between proteases and their inhibitors. The identification of proteolytic events, targets and pathways would set the basis for the design of new therapeutic approaches. METHODS AND RESULTS Here we demonstrate that spheroids isolated from human and murine healthy pancreas and co-transplanted orthotopically with pancreatic ductal adenocarcinoma (PDAC) in mouse pancreas inhibited tumor growth. The effect was mediated by trypsin-generated fibronectin (FN) fragments released by pancreatic spheroids. Tumor inhibition was observed also in a model of acute pancreatitis associated with trypsin activation. Mass spectrometry proteomic analysis of fragments and mAb against different FN epitopes identified the FN type III domain as responsible for the activity. By inhibiting integrin α5β1, FAK and FGFR1 signaling, the fragments induced tumor cell detachment and reduced cell proliferation. Consistent with the mutual relationship between the two pathways, FGF2 restored both FGFR1 and FAK signaling and promoted PDAC cell adhesion and proliferation. FAK and FGFR inhibitors additively inhibited PDAC growth in vitro and in orthotopic in vivo models. CONCLUSIONS This study identifies a novel role for pancreatic trypsin and fibronectin cleavage as a mechanism of protection against cancer by the pancreatic microenvironment. The finding of a FAK-FGFR cross-talk in PDAC support the combination of FAK and FGFR inhibitors for PDAC treatment to emulate the protective effect of the normal pancreas against cancer.
Collapse
Affiliation(s)
- Andrea Resovi
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo and Milan, Italy
| | - Perla Persichitti
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo and Milan, Italy
| | - Laura Brunelli
- Department of Environmental Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Lucia Minoli
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo and Milan, Italy
| | - Patrizia Borsotti
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo and Milan, Italy
| | - Giulia Garattini
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo and Milan, Italy
| | - Matteo Tironi
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Erica Dugnani
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Miriam Redegalli
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo and Milan, Italy
| | - Giulia De Simone
- Department of Environmental Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Roberta Pastorelli
- Department of Environmental Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Maria Rosa Bani
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo and Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Deane F Mosher
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI, USA
| | - Raffaella Giavazzi
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo and Milan, Italy
| | - Giulia Taraboletti
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo and Milan, Italy
| | - Dorina Belotti
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo and Milan, Italy.
| |
Collapse
|
4
|
Cocola C, Magnaghi V, Abeni E, Pelucchi P, Martino V, Vilardo L, Piscitelli E, Consiglio A, Grillo G, Mosca E, Gualtierotti R, Mazzaccaro D, La Sala G, Di Pietro C, Palizban M, Liuni S, DePedro G, Morara S, Nano G, Kehler J, Greve B, Noghero A, Marazziti D, Bussolino F, Bellipanni G, D'Agnano I, Götte M, Zucchi I, Reinbold R. Transmembrane Protein TMEM230, a Target of Glioblastoma Therapy. Front Cell Neurosci 2021; 15:703431. [PMID: 34867197 PMCID: PMC8636015 DOI: 10.3389/fncel.2021.703431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Glioblastomas (GBM) are the most aggressive tumors originating in the brain. Histopathologic features include circuitous, disorganized, and highly permeable blood vessels with intermittent blood flow. These features contribute to the inability to direct therapeutic agents to tumor cells. Known targets for anti-angiogenic therapies provide minimal or no effect in overall survival of 12–15 months following diagnosis. Identification of novel targets therefore remains an important goal for effective treatment of highly vascularized tumors such as GBM. We previously demonstrated in zebrafish that a balanced level of expression of the transmembrane protein TMEM230/C20ORF30 was required to maintain normal blood vessel structural integrity and promote proper vessel network formation. To investigate whether TMEM230 has a role in the pathogenesis of GBM, we analyzed its prognostic value in patient tumor gene expression datasets and performed cell functional analysis. TMEM230 was found necessary for growth of U87-MG cells, a model of human GBM. Downregulation of TMEM230 resulted in loss of U87 migration, substratum adhesion, and re-passaging capacity. Conditioned media from U87 expressing endogenous TMEM230 induced sprouting and tubule-like structure formation of HUVECs. Moreover, TMEM230 promoted vascular mimicry-like behavior of U87 cells. Gene expression analysis of 702 patients identified that TMEM230 expression levels distinguished high from low grade gliomas. Transcriptomic analysis of patients with gliomas revealed molecular pathways consistent with properties observed in U87 cell assays. Within low grade gliomas, elevated TMEM230 expression levels correlated with reduced overall survival independent from tumor subtype. Highest level of TMEM230 correlated with glioblastoma and ATP-dependent microtubule kinesin motor activity, providing a direction for future therapeutic intervention. Our studies support that TMEM230 has both glial tumor and endothelial cell intracellular and extracellular functions. Elevated levels of TMEM230 promote glial tumor cell migration, extracellular scaffold remodeling, and hypervascularization and abnormal formation of blood vessels. Downregulation of TMEM230 expression may inhibit both low grade glioma and glioblastoma tumor progression and promote normalization of abnormally formed blood vessels. TMEM230 therefore is both a promising anticancer and antiangiogenic therapeutic target for inhibiting GBM tumor cells and tumor-driven angiogenesis.
Collapse
Affiliation(s)
- Cinzia Cocola
- Institute for Biomedical Technologies, National Research Council, Milan, Italy.,Consorzio Italbiotec, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Edoardo Abeni
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Paride Pelucchi
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Valentina Martino
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Laura Vilardo
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Eleonora Piscitelli
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Arianna Consiglio
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Giorgio Grillo
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Ettore Mosca
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Roberta Gualtierotti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Mazzaccaro
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Gina La Sala
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Mira Palizban
- Department of Gynecology and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Sabino Liuni
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Giuseppina DePedro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Giovanni Nano
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - James Kehler
- National Institutes of Health, NIDDK, Laboratory of Cell and Molecular Biology, Bethesda, MD, United States
| | - Burkhard Greve
- Department of Radiation Therapy and Radiation Oncology, University Hospital of Münster, Münster, Germany
| | - Alessio Noghero
- Lovelace Biomedical Research Institute, Albuquerque, NM, United States.,Department of Oncology, University of Turin, Orbassano, Italy
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Federico Bussolino
- Department of Oncology, University of Turin, Orbassano, Italy.,Laboratory of Vascular Oncology Candiolo Cancer Institute - IRCCS, Candiolo, Italy
| | - Gianfranco Bellipanni
- Department of Biology, Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States
| | - Igea D'Agnano
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Ileana Zucchi
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Rolland Reinbold
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| |
Collapse
|
5
|
Hackethal J, Dungel P, Teuschl AH. Frequently used strategies to isolate ECM proteins from human placenta and adipose tissue. Tissue Eng Part C Methods 2021; 27:649-660. [PMID: 34751590 DOI: 10.1089/ten.tec.2021.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The natural extracellular matrix (ECM) provides the optimal environment for cells. Many enzymatic or non-enzymatic based strategies to extract ECM proteins from tissues were published over the last years. However, every single isolation strategy reported so far is associated with specific bottlenecks. Experiment: In this study, frequently used strategies to isolate extracellular matrix (ECM) from human placenta or adipose tissue using Tris-, serum, or pepsin-based buffers were compared. The resulting ECM proteins were biochemically characterized by analysis of cellular remnants using HOECHST DNA staining, glycosaminoglycan (GAG) content by dimethylemethylene blue (DMMB), visualization of protein bands using SDS PAGE analysis combined with amino acid quantification and assessment of the pro-angiogenic profile using an angiogenesis array. RESULTS Tris-NaCl extracted ECM proteins showed a high heterogenic degree of extracted proteins, bioactive growth factors and GAGS, but no collagen-I. Active serum extracted ECM showed significant lower DNA remnants when compared to the Tris-NaCl isolation strategy. Pepsin-extracted ECM was rich in collagen-I and low amounts of remaining bioactive growth factors. This strategy was most effective to reduce DNA amounts when compared to the other isolation strategies. Pepsin-extracted ECM from both tissues easily gelled at 37°C, whereas the other extracted ECM strategies did not gel at 37°C (Tris-NaCl: liquid; serum: sponge). CONCLUSIONS All relevant characteristics (DNA residues, ECM diversity and bioactivity, shape) of the extracted ECM proteins highly depend on its isolation strategy and could still be optimized.
Collapse
Affiliation(s)
- Johannes Hackethal
- THT Biomaterials, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria;
| | - Peter Dungel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 497572, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria;
| | - Andreas Herbert Teuschl
- University of Applied Sciences Technikum Wien, Department of Biochemical Engineering, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria;
| |
Collapse
|
6
|
Hackethal J, Weihs AM, Karner L, Metzger M, Dungel P, Hennerbichler S, Redl H, Teuschl-Woller AH. Novel Human Placenta-Based Extract for Vascularization Strategies in Tissue Engineering. Tissue Eng Part C Methods 2021; 27:616-632. [PMID: 34714165 DOI: 10.1089/ten.tec.2021.0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is critical unmet need for new vascularized tissues to support or replace injured tissues and organs. Various synthetic and natural materials were already established for use of two-dimensional (2D) and three-dimensional (3D) in vitro neovascularization assays, however, they still cannot mimic the complex functions of the sum of the extracellular matrix (ECM) in native intact tissue. Currently, this issue is only addressed by artificial products such as Matrigel™, which comprises a complex mixture of ECM proteins, extracted from animal tumor tissue. Despite its outstanding bioactivity, the isolation from tumor tissue hinders its translation into clinical applications. Since nonhuman ECM proteins may cause immune reactions, as are frequently observed in clinical trials, human ECM proteins represent the best option when aiming for clinical applications. Here, we describe an effective method of isolating a human placenta substrate (hpS) that induces the spontaneous formation of an interconnected network of green fluorescence-labeled human umbilical vein endothelial cells (gfpHUVECs) in vitro. The substrate was biochemically characterized by using a combination of bicinchoninic acid (BCA) assay, DNA, and glycosaminoglycan (GAG) content assays, sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) analysis and Western blot, angiogenesis arrays, chromatographic thrombin detection, high performance liquid chromatography (HPLC)-based amino acid quantification analysis, and assessment of antimicrobial properties. 2D in vitro cell culture experiments have been performed to determine the vasculogenic potential of hpS, which demonstrated that cell networks developed on hpS show a significantly higher degree of complexity (number of tubules/junctions; total/mean tube length) when compared with Matrigel. As 3D cell culture techniques represent a more accurate representation of the in vivo condition, the substrate was 3D solidified using various natural polymers. 3D in vitro vasculogenesis assays have been performed by seeding gfpHUVECs in an hpS-fibrinogen clot. In conclusion, hpS provides a potent human/material-based alternative to xenogenic-material-based biomaterials for vascularization strategies in tissue engineering.
Collapse
Affiliation(s)
- Johannes Hackethal
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Trauma Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Anna Maria Weihs
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Lisa Karner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Trauma Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Magdalena Metzger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Trauma Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Peter Dungel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Trauma Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Simone Hennerbichler
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Trauma Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas Herbert Teuschl-Woller
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| |
Collapse
|
7
|
Rother S, Ruiz-Gómez G, Balamurugan K, Koehler L, Fiebig KM, Galiazzo VD, Hempel U, Moeller S, Schnabelrauch M, Waltenberger J, Pisabarro MT, Scharnweber D, Hintze V. Hyaluronan/Collagen Hydrogels with Sulfated Glycosaminoglycans Maintain VEGF165 Activity and Fine-Tune Endothelial Cell Response. ACS APPLIED BIO MATERIALS 2020; 4:494-506. [DOI: 10.1021/acsabm.0c01001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| | - Gloria Ruiz-Gómez
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, Dresden 01307, Germany
| | | | - Linda Koehler
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| | - Karen M. Fiebig
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| | - Vanessa D. Galiazzo
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| | - Ute Hempel
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, TU Dresden, Fiedlerstraße 42, 01307 Dresden, Germany
| | - Stephanie Moeller
- Biomaterials Department, INNOVENT e.V., Prüssingstr. 27B, 07745 Jena, Germany
| | | | - Johannes Waltenberger
- Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - M. Teresa Pisabarro
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, Dresden 01307, Germany
| | - Dieter Scharnweber
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| |
Collapse
|
8
|
Brézillon S, Untereiner V, Mohamed HT, Ahallal E, Proult I, Nizet P, Boulagnon-Rombi C, Sockalingum GD. Label-Free Infrared Spectral Histology of Skin Tissue Part II: Impact of a Lumican-Derived Peptide on Melanoma Growth. Front Cell Dev Biol 2020; 8:377. [PMID: 32548117 PMCID: PMC7273845 DOI: 10.3389/fcell.2020.00377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
Melanoma is the most aggressive type of cutaneous malignancies. In addition to its role as a regulator of extracellular matrix (ECM) integrity, lumican, a small leucine-rich proteoglycan, also exhibits anti-tumor properties in melanoma. This work focuses on the use of infrared spectral imaging (IRSI) and histopathology (IRSH) to study the effect of lumican-derived peptide (L9Mc) on B16F1 melanoma primary tumor growth. Female C57BL/6 mice were injected with B16F1 cells treated with L9Mc (n = 10) or its scrambled peptide (n = 8), and without peptide (control, n = 9). The melanoma primary tumors were subjected to histological and IR imaging analysis. In addition, immunohistochemical staining was performed using anti-Ki-67 and anti-cleaved caspase-3 antibodies. The IR images were analyzed by common K-means clustering to obtain high-contrast IRSH that allowed identifying different ECM tissue regions from the epidermis to the tumor area, which correlated well with H&E staining. Furthermore, IRSH showed good correlation with immunostaining data obtained with anti-Ki-67 and anti-cleaved caspase-3 antibodies, whereby the L9Mc peptide inhibited cell proliferation and increased strongly apoptosis of B16F1 cells in this mouse model of melanoma primary tumors.
Collapse
Affiliation(s)
- Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | | | - Hossam Taha Mohamed
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France.,Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.,Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Estelle Ahallal
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Isabelle Proult
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Pierre Nizet
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Camille Boulagnon-Rombi
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France.,CHU de Reims, Laboratoire Central d'Anatomie et de Cytologie Pathologique, Reims, France
| | | |
Collapse
|
9
|
CCN-Based Therapeutic Peptides Modify Pancreatic Ductal Adenocarcinoma Microenvironment and Decrease Tumor Growth in Combination with Chemotherapy. Cells 2020; 9:cells9040952. [PMID: 32294968 PMCID: PMC7226963 DOI: 10.3390/cells9040952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/23/2022] Open
Abstract
The prominent desmoplastic stroma of pancreatic ductal adenocarcinoma (PDAC) is a determinant factor in tumor progression and a major barrier to the access of chemotherapy. The PDAC microenvironment therefore appears to be a promising therapeutic target. CCN2/CTGF is a profibrotic matricellular protein, highly present in the PDAC microenvironment and associated with disease progression. Here we have investigated the therapeutic value of the CCN2-targeting BLR100 and BLR200, two modified synthetic peptides derived from active regions of CCN3, an endogenous inhibitor of CCN2. In a murine orthotopic PDAC model, the two peptides, administered as monotherapy at low doses (approximating physiological levels of CCN3), had tumor inhibitory activity that increased with the dose. The peptides affected the tumor microenvironment, inhibiting fibrosis and vessel formation and reducing necrosis. Both peptides were active in preventing ascites formation. An increased activity was obtained in combination regimens, administering BLR100 or BLR200 with the chemotherapeutic drug gemcitabine. Pharmacokinetic analysis indicated that the improved activity of the combination was not mainly determined by the substantial increase in gemcitabine delivery to tumors, suggesting other effects on the tumor microenvironment. The beneficial remodeling of the tumor stroma supports the potential value of these CCN3-derived peptides for targeting pathways regulated by CCN2 in PDAC.
Collapse
|
10
|
Extracellular matrix: the gatekeeper of tumor angiogenesis. Biochem Soc Trans 2020; 47:1543-1555. [PMID: 31652436 DOI: 10.1042/bst20190653] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
The extracellular matrix is a network of secreted macromolecules that provides a harmonious meshwork for the growth and homeostatic development of organisms. It conveys multiple signaling cascades affecting specific surface receptors that impact cell behavior. During cancer growth, this bioactive meshwork is remodeled and enriched in newly formed blood vessels, which provide nutrients and oxygen to the growing tumor cells. Remodeling of the tumor microenvironment leads to the formation of bioactive fragments that may have a distinct function from their parent molecules, and the balance among these factors directly influence cell viability and metastatic progression. Indeed, the matrix acts as a gatekeeper by regulating the access of cancer cells to nutrients. Here, we will critically evaluate the role of selected matrix constituents in regulating tumor angiogenesis and provide up-to-date information concerning their primary mechanisms of action.
Collapse
|
11
|
N D, Manikantan Syamala K. Effects of structural distinction in neodymium nanoparticle for therapeutic application in aberrant angiogenesis. Colloids Surf B Biointerfaces 2019; 181:450-460. [PMID: 31176117 DOI: 10.1016/j.colsurfb.2019.05.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/23/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
In the present study we analyzed the effect of structural distinction in neodymium nanostructures for modulating angiogenic process as the strategy for identifying biocompatible Nano therapeutics for biomedical applications. We observed structural dependence of Nd nanoparticles on biocompatibility, the spherical polymorphs showed better biocompatibility when compared with cuboidal and nanorod shaped polymorphs of neodymium. The Nd nanopolymorphs in spherical morphology exhibited least redox modulating effect compared to cuboidal shaped that was higher when compared to Nd nanorods. The efficacy of the Nd Nanopolymorphs to induce biological effect in particular on angiogenic process was observed to be directly related to the polymorphs ability to modulate redox signaling. The redox signaling was observed to be via PKM2-NOX4 signaling pathways. Further the results demonstrated that ROS generated by cuboid and rod shaped nanopolymorphs activated the pro-angiogenic factors namely VE-cadherin, HIF 1α, VEGF and VEGFR-2 to facilitate the angiogenic process. The manuscript highlights the importance of rare earth metal nanoparticles in modulating biological process for therapeutic interventions. The present study opens up a new domain in developing novel biocompatible therapeutics based on rare earth metal nanoparticles for regulating disease pathophysiology.
Collapse
Affiliation(s)
- Duraipandy N
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 20, India; Academy of Scientific and Innovative Research, CSIR-CLRI, Chennai, 20, India
| | - Kiran Manikantan Syamala
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 20, India; Academy of Scientific and Innovative Research, CSIR-CLRI, Chennai, 20, India.
| |
Collapse
|
12
|
Duraipandy N, Dharunya G, Lakra R, Korapatti PS, Syamala Kiran M. Fabrication of plumbagin on silver nanoframework for tunable redox modulation: Implications for therapeutic angiogenesis. J Cell Physiol 2018; 234:13110-13127. [PMID: 30556909 DOI: 10.1002/jcp.27981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
The redox state of the endothelial cells plays a key role in the regulation of the angiogenic process. The modulation of the redox state of endothelial cells (ECs) could be a viable target to alter angiogenic response. In the present work, we synthesized a redox modulator by caging 5-hydroxy 2-methyl 1, 4-napthoquinone (Plumbagin) on silver nano framework (PCSN) for tunable reactive oxygen species (ROS) inductive property and tested its role in ECs during angiogenic response in physiological and stimulated conditions. In physiological conditions, the redox modulators induced the angiogenic response by establishing ECs cell-cell contact in tube formation model, chorio allontoic membrane, and aortic ring model. The molecular mechanism of angiogenic response was induced by vascular endothelial growth factor receptor 2 (VEGFR2)/p42-mitogen-activated protein kinase signaling pathway. Under stimulation, by mimicking tumor angiogenic conditions it induced cytotoxicity by generation of excessive ROS and inhibited the angiogenic response by the loss of spatiotemporal regulation of matrix metalloproteases, which prevents the tubular network formation in ECs and poly-ADP ribose modification of VEGF. The mechanism of opposing effects of PCSN was due to modulation of PKM2 enzyme activity, which increased the EC sensitivity to ROS and inhibited EC survival in stimulated condition. In normal conditions, the endogenous reactive states of NOX4 enzyme helped the EC survival. The results indicated that a threshold ROS level exists in ECs that promote angiogenesis and any significant enhancement in its level by redox modulator inhibits angiogenesis. The study provides the cues for the development of redox-based therapeutic molecules to cure the disease-associated aberrant angiogenesis.
Collapse
Affiliation(s)
- Natarajan Duraipandy
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai, India.,Academy of Scientific and Innovative Research, CSIR-CLRI, Chennai, India
| | - Govindarajan Dharunya
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai, India
| | - Rachita Lakra
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai, India.,Academy of Scientific and Innovative Research, CSIR-CLRI, Chennai, India
| | - Purna Sai Korapatti
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai, India.,Academy of Scientific and Innovative Research, CSIR-CLRI, Chennai, India
| | | |
Collapse
|
13
|
Steinebach C, Ambrożak A, Dosa S, Beedie SL, Strope JD, Schnakenburg G, Figg WD, Gütschow M. Synthesis, Structural Characterization, and Antiangiogenic Activity of Polyfluorinated Benzamides. ChemMedChem 2018; 13:2080-2089. [PMID: 30134015 DOI: 10.1002/cmdc.201800263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/17/2018] [Indexed: 11/09/2022]
Abstract
The introduction of fluorine into bioactive molecules is a matter of importance in medicinal chemistry. In this study, representatives of various chemical entities of fluoroaromatic compounds were synthesized. Depending on the reaction conditions, either tetrafluorophthalimides or ammonium tetrafluorophthalamates are accessible from tetrafluorophthalic anhydride and primary amines. Tetrafluorophthalamic acids undergo thermal decarboxylation to yield tetrafluorobenzamides. These could be successfully converted upon treatment with primary amines, in the course of an aromatic nucleophilic substitution, to 2,3,5-trifluorobenzamides with respective amino substituents at the 4-position. The five structure types were characterized by means of spectroscopic and crystallographic methods. The synthesized compounds were evaluated as inhibitors of angiogenesis by measuring microvessel outgrowth in a rat aortic ring assay. The biological activity was maintained throughout these different polyfluorinated chemotypes.
Collapse
Affiliation(s)
- Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Agnieszka Ambrożak
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Stefan Dosa
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Shaunna L Beedie
- Molecular Pharmacology Section, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jonathan D Strope
- Molecular Pharmacology Section, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - William D Figg
- Molecular Pharmacology Section, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| |
Collapse
|
14
|
The development of an extra-anatomic tissue-engineered artery with collateral arteries for therapeutic angiogenesis in ischemic hind limb. Sci Rep 2018; 8:4627. [PMID: 29545563 PMCID: PMC5854599 DOI: 10.1038/s41598-018-22799-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/01/2018] [Indexed: 01/12/2023] Open
Abstract
To develop tissue-engineered arteries (TEAs) with collateral arteries(CAs) in ischemic hind limb goat models(IHLMs). The IHLMs created by removing femoral arteries were divided into non-treated control group(NG); non-catheter group (NCG) in which TEA was anastomosed to external iliac artery(EIA), and surrounded with collagen sponge containing autologous MSCs and VEGF-gelatin microspheres, the distal end of TEA was ligated; catheter group(CG) which received the same procedure as NCG, also received heparin infusion through catheter in EIA. TEA patency was assessed weekly by Ultrasound. The TEA and CAs were assessed by angiography, gross examination, histology and electron microscopy. In CG, TEAs remained patent for 1 month, but became partly occluded 1 week after catheter withdrawn. In NCG, TEAs were occluded 1 week after implantation. Angiography demonstrated that communication between CAs arising from the TEAs and the native vessels was established in both groups. NCG had fewer CAs than CG (P < 0.01). At 40 days, TEAs in CG demonstrated of endothelium formation, smooth muscle cells infiltration and collagen regeneration. The CG had more capillaries and mature vessels in adventia of TEAs than NCG (P < 0.01). CG group also had more vessels around TEAs than NCG (P < 0.01) or NG (P < 0.001).
Collapse
|
15
|
Stunova A, Vistejnova L. Dermal fibroblasts—A heterogeneous population with regulatory function in wound healing. Cytokine Growth Factor Rev 2018; 39:137-150. [DOI: 10.1016/j.cytogfr.2018.01.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023]
|
16
|
Sainio A, Järveläinen H. Extracellular Matrix Macromolecules as Potential Targets of Cardiovascular Pharmacotherapy. ADVANCES IN PHARMACOLOGY 2018; 81:209-240. [DOI: 10.1016/bs.apha.2017.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Lumican delays melanoma growth in mice and drives tumor molecular assembly as well as response to matrix-targeted TAX2 therapeutic peptide. Sci Rep 2017; 7:7700. [PMID: 28794454 PMCID: PMC5550434 DOI: 10.1038/s41598-017-07043-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
Lumican is a small leucine-rich proteoglycan (SLRP) being known as a key regulator of collagen fibrillogenesis. However, little attention has been given so far in studying its influence on tumor-associated matrix architecture. Here, we investigate the role of host lumican on tumor matrix organization as well as on disease progression considering an immunocompetent model of melanoma implanted in Lum -/- vs. wild type syngeneic mice. Conjointly, lumican impact on tumor response to matrix-targeted therapy was evaluated considering a previously validated peptide, namely TAX2, that targets matricellular thrombospondin-1. Analysis of available genomics and proteomics databases for melanoma first established a correlation between lumican expression and patient outcome. In the B16 melanoma allograft model, endogenous lumican inhibits tumor growth and modulates response to TAX2 peptide. Indeed, IHC analyses revealed that lumican deficiency impacts intratumoral distribution of matricellular proteins, growth factor and stromal cells. Besides, innovative imaging approaches helped demonstrating that lumican host expression drives biochemical heterogeneity of s.c. tumors, while modulating intratumoral collagen deposition as well as organization. Altogether, the results obtained present lumican as a strong endogenous inhibitor of tumor growth, while identifying for the first time this proteoglycan as a major driver of tumor matrix coherent assembly.
Collapse
|
18
|
Extracellular Matrix, a Hard Player in Angiogenesis. Int J Mol Sci 2016; 17:ijms17111822. [PMID: 27809279 PMCID: PMC5133823 DOI: 10.3390/ijms17111822] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/30/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a complex network of proteins, glycoproteins, proteoglycans, and polysaccharides. Through multiple interactions with each other and the cell surface receptors, not only the ECM determines the physical and mechanical properties of the tissues, but also profoundly influences cell behavior and many physiological and pathological processes. One of the functions that have been extensively explored is its impingement on angiogenesis. The strong impact of the ECM in this context is both direct and indirect by virtue of its ability to interact and/or store several growth factors and cytokines. The aim of this review is to provide some examples of the complex molecular mechanisms that are elicited by these molecules in promoting or weakening the angiogenic processes. The scenario is intricate, since matrix remodeling often generates fragments displaying opposite effects compared to those exerted by the whole molecules. Thus, the balance will tilt towards angiogenesis or angiostasis depending on the relative expression of pro- or anti-angiogenetic molecules/fragments composing the matrix of a given tissue. One of the vital aspects of this field of research is that, for its endogenous nature, the ECM can be viewed as a reservoir to draw from for the development of new more efficacious therapies to treat angiogenesis-dependent pathologies.
Collapse
|
19
|
Chiu WC, Chiou TJ, Chung MJ, Chiang AN. β2-Glycoprotein I Inhibits Vascular Endothelial Growth Factor-Induced Angiogenesis by Suppressing the Phosphorylation of Extracellular Signal-Regulated Kinase 1/2, Akt, and Endothelial Nitric Oxide Synthase. PLoS One 2016; 11:e0161950. [PMID: 27579889 PMCID: PMC5006999 DOI: 10.1371/journal.pone.0161950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is the process of new blood vessel formation, and it plays a key role in various physiological and pathological conditions. The β2-glycoprotein I (β2-GPI) is a plasma glycoprotein with multiple biological functions, some of which remain to be elucidated. This study aimed to identify the contribution of 2-GPI on the angiogenesis induced by vascular endothelial growth factor (VEGF), a pro-angiogenic factor that may regulate endothelial remodeling, and its underlying mechanism. Our results revealed that β2-GPI dose-dependently decreased the VEGF-induced increase in endothelial cell proliferation, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and the bromodeoxyuridine (BrdU) incorporation assays. Furthermore, incubation with both β2-GPI and deglycosylated β2-GPI inhibited the VEGF-induced tube formation. Our results suggest that the carbohydrate residues of β2-GPI do not participate in the function of anti-angiogenesis. Using in vivo Matrigel plug and angioreactor assays, we show that β2-GPI remarkably inhibited the VEGF-induced angiogenesis at a physiological concentration. Moreover, β2-GPI inhibited the VEGF-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, and endothelial nitric oxide synthase (eNOS). In summary, our in vitro and in vivo data reveal for the first time that β2-GPI inhibits the VEGF-induced angiogenesis and highlights the potential for β2-GPI in anti-angiogenic therapy.
Collapse
Affiliation(s)
- Wen-Chin Chiu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzeon-Jye Chiou
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Meng-Ju Chung
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - An-Na Chiang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
20
|
Integrating computational and chemical biology tools in the discovery of antiangiogenic small molecule ligands of FGF2 derived from endogenous inhibitors. Sci Rep 2016; 6:23432. [PMID: 27000667 PMCID: PMC4802308 DOI: 10.1038/srep23432] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/07/2016] [Indexed: 01/22/2023] Open
Abstract
The FGFs/FGFRs system is a recognized actionable target for therapeutic approaches aimed at inhibiting tumor growth, angiogenesis, metastasis, and resistance to therapy. We previously identified a non-peptidic compound (SM27) that retains the structural and functional properties of the FGF2-binding sequence of thrombospondin-1 (TSP-1), a major endogenous inhibitor of angiogenesis. Here we identified new small molecule inhibitors of FGF2 based on the initial lead. A similarity-based screening of small molecule libraries, followed by docking calculations and experimental studies, allowed selecting 7 bi-naphthalenic compounds that bound FGF2 inhibiting its binding to both heparan sulfate proteoglycans and FGFR-1. The compounds inhibit FGF2 activity in in vitro and ex vivo models of angiogenesis, with improved potency over SM27. Comparative analysis of the selected hits, complemented by NMR and biochemical analysis of 4 newly synthesized functionalized phenylamino-substituted naphthalenes, allowed identifying the minimal stereochemical requirements to improve the design of naphthalene sulfonates as FGF2 inhibitors.
Collapse
|
21
|
Jeanne A, Schneider C, Martiny L, Dedieu S. Original insights on thrombospondin-1-related antireceptor strategies in cancer. Front Pharmacol 2015; 6:252. [PMID: 26578962 PMCID: PMC4625054 DOI: 10.3389/fphar.2015.00252] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/15/2015] [Indexed: 01/04/2023] Open
Abstract
Thrombospondin-1 (TSP-1) is a large matricellular glycoprotein known to be overexpressed within tumor stroma in several cancer types. While mainly considered as an endogenous angiogenesis inhibitor, TSP-1 exhibits multifaceted functionalities in a tumor context depending both on TSP-1 concentration as well as differential receptor expression by cancer cells and on tumor-associated stromal cells. Besides, the complex modular structure of TSP-1 along with the wide variety of its soluble ligands and membrane receptors considerably increases the complexity of therapeutically targeting interactions involving TSP-1 ligation of cell-surface receptors. Despite the pleiotropic nature of TSP-1, many different antireceptor strategies have been developed giving promising results in preclinical models. However, transition to clinical trials often led to nuanced outcomes mainly due to frequent severe adverse effects. In this review, we will first expose the intricate and even sometimes opposite effects of TSP-1-related signaling on tumor progression by paying particular attention to modulation of angiogenesis and tumor immunity. Then, we will provide an overview of current developments and prospects by focusing particularly on the cell-surface molecules CD47 and CD36 that function as TSP-1 receptors; including antibody-based approaches, therapeutic gene modulation and the use of peptidomimetics. Finally, we will discuss original approaches specifically targeting TSP-1 domains, as well as innovative combination strategies with a view to producing an overall anticancer response.
Collapse
Affiliation(s)
- Albin Jeanne
- Laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne Reims, France ; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369 Reims, France ; SATT Nord Lille, France
| | - Christophe Schneider
- Laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne Reims, France ; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369 Reims, France
| | - Laurent Martiny
- Laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne Reims, France ; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369 Reims, France
| | - Stéphane Dedieu
- Laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne Reims, France ; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369 Reims, France
| |
Collapse
|
22
|
Järveläinen H, Sainio A, Wight TN. Pivotal role for decorin in angiogenesis. Matrix Biol 2015; 43:15-26. [PMID: 25661523 DOI: 10.1016/j.matbio.2015.01.023] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 01/05/2023]
Abstract
Angiogenesis, the formation of new blood vessels from preexisting vessels, is a highly complex process. It is regulated in a finely-tuned manner by numerous molecules including not only soluble growth factors such as vascular endothelial growth factor and several other growth factors, but also a diverse set of insoluble molecules, particularly collagenous and non-collagenous matrix constituents. In this review we have focused on the role and potential mechanisms of a multifunctional small leucine-rich proteoglycan decorin in angiogenesis. Depending on the cellular and molecular microenvironment where angiogenesis occurs, decorin can exhibit either a proangiogenic or an antiangiogenic activity. Nevertheless, in tumorigenesis-associated angiogenesis and in various inflammatory processes, particularly foreign body reactions and scarring, decorin exhibits an antiangiogenic activity, thus providing a potential basis for the development of decorin-based therapies in these pathological situations.
Collapse
Affiliation(s)
- Hannu Järveläinen
- Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland; Department of Medicine, Division of Endocrinology, Turku University Hospital, Turku, Finland.
| | - Annele Sainio
- Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
23
|
Fibromodulin Enhances Angiogenesis during Cutaneous Wound Healing. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2015; 2:e275. [PMID: 25587509 PMCID: PMC4292257 DOI: 10.1097/gox.0000000000000243] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/06/2014] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Fibromodulin (FMOD) plays a critical role in the wound-healing process. Our previous studies revealed that FMOD deficiency led to marked alterations in adult wound healing characterized by delayed dermal cell migration, postponed wound closure, and increased scar formation, all accompanied by impeded angiogenesis. Therefore, the aim of this study was to reveal the effect of FMOD on angiogenesis during the wound-healing process. Methods: In vivo angiogenic effects of FMOD were assessed by a chick embryo chorioallantoic membrane assay, a Matrigel (BD Bioscience, Franklin Lakes, N.J.) plug implant assay, and rodent primary closure wound models. In vitro angiogenic effects of FMOD were recorded by cell invasion and dimensional and topological parameters of human umbilical vein endothelial cells. Results: We provided evidence that FMOD significantly enhanced vascularization: first, FMOD boosted blood vessel formation on the chorioallantoic membrane; second, FMOD markedly stimulated capillary infiltration into Matrigel plugs subcutaneously implanted in adult mice; and finally, FMOD robustly promoted angiogenesis in multiple adult rodent cutaneous wound models. Furthermore, FMOD administration restored the vascularity of fmod−/− mouse wounds. In support of this, FMOD endorsed an angiogenesis-favored microenvironment in adult rodent wounds not only by upregulating angiogenic genes but also by downregulating angiostatic genes. In addition, FMOD significantly enhanced human umbilical vein endothelial cell invasion and tube-like structure formation in vitro. Conclusions: Altogether, we demonstrated that in addition to reducing scar formation, FMOD also promotes angiogenesis. As blood vessels organize and regulate wound healing, its potent angiogenic properties will further expand the clinical application of FMOD for cutaneous healing of poorly vascularized wounds.
Collapse
|
24
|
Finley SD, Chu LH, Popel AS. Computational systems biology approaches to anti-angiogenic cancer therapeutics. Drug Discov Today 2014; 20:187-97. [PMID: 25286370 DOI: 10.1016/j.drudis.2014.09.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/05/2014] [Accepted: 09/29/2014] [Indexed: 01/06/2023]
Abstract
Angiogenesis is an exquisitely regulated process that is required for physiological processes and is also important in numerous diseases. Tumors utilize angiogenesis to generate the vascular network needed to supply the cancer cells with nutrients and oxygen, and many cancer drugs aim to inhibit tumor angiogenesis. Anti-angiogenic therapy involves inhibiting multiple cell types, molecular targets, and intracellular signaling pathways. Computational tools are useful in guiding treatment strategies, predicting the response to treatment, and identifying new targets of interest. Here, we describe progress that has been made in applying mathematical modeling and bioinformatics approaches to study anti-angiogenic therapeutics in cancer.
Collapse
Affiliation(s)
- Stacey D Finley
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Liang-Hui Chu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Resovi A, Pinessi D, Chiorino G, Taraboletti G. Current understanding of the thrombospondin-1 interactome. Matrix Biol 2014; 37:83-91. [PMID: 24476925 DOI: 10.1016/j.matbio.2014.01.012] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/20/2014] [Accepted: 01/20/2014] [Indexed: 12/24/2022]
Abstract
The multifaceted action of thrombospondin-1 (TSP-1) depends on its ability to physically interact with different ligands, including structural components of the extracellular matrix, other matricellular proteins, cell receptors, growth factors, cytokines and proteases. Through this network, TSP-1 regulates the ligand activity, availability and structure, ultimately tuning the cell response to environmental stimuli in a context-dependent manner, contributing to physiological and pathological processes. Complete mapping of the TSP-1 interactome is needed to understand its diverse functions and to lay the basis for the rational design of TSP-1-based therapeutic approaches. So far, large-scale approaches to identify TSP-1 ligands have been rarely used, but many interactions have been identified in small-scale studies in defined biological systems. This review, based on information from protein interaction databases and the literature, illustrates current knowledge of the TSP-1 interactome map.
Collapse
Affiliation(s)
- Andrea Resovi
- Tumor Angiogenesis Unit, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 24126 Bergamo, Italy
| | - Denise Pinessi
- Tumor Angiogenesis Unit, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 24126 Bergamo, Italy
| | - Giovanna Chiorino
- Fondo Edo ed Elvo Tempia Valenta, Laboratory of Cancer Genomics, 13900 Biella, Italy
| | - Giulia Taraboletti
- Tumor Angiogenesis Unit, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 24126 Bergamo, Italy.
| |
Collapse
|
26
|
Simunovic F, Steiner D, Pfeifer D, Stark GB, Finkenzeller G, Lampert F. Increased extracellular matrix and proangiogenic factor transcription in endothelial cells after cocultivation with primary human osteoblasts. J Cell Biochem 2013; 114:1584-94. [PMID: 23334902 DOI: 10.1002/jcb.24500] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 01/08/2013] [Indexed: 12/12/2022]
Abstract
The most promising strategies in bone engineering have concentrated on providing sufficient vascularization to support the newly forming tissue. In this context, recent research in the field has focused on studying the complex interactions between bone forming and endothelial cells. Our previous work has demonstrated that direct contact cocultivation of human umbilical vein endothelial cells (HUVECs) with primary human osteoblasts (hOBs) induces the osteogenic phenotype and survival of hOBs. In order to investigate the mechanisms that lead to this effect, we performed microarray gene expression profiling on HUVECs following cocultivation with hOBs. Our data reveal profound transcriptomic changes that are dependent on direct cell contact between these cell populations. Pathway analysis using the MetaCore™ platform and literature research suggested a striking upregulation of transcripts related to extracellular matrix and cell-matrix interactions. Upregulation of a number of major angiogenetic factors confirms previous observations that HUVECs enter a proangiogenic state upon cocultivation with osteoblasts. Interestingly, the downregulated transcripts clustered predominantly around cell cycle-related processes. The microarray data were confirmed by quantitative real-time RT-PCR on selected genes. Taken together, this study provides a platform for further inquiries in complex interactions between endothelial cells and osteoblasts.
Collapse
Affiliation(s)
- F Simunovic
- Department of Plastic and Hand Surgery, Freiburg University Medical Center, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Pharmacokinetics and antineoplastic activity of galectin-1-targeting OTX008 in combination with sunitinib. Cancer Chemother Pharmacol 2013; 72:879-87. [DOI: 10.1007/s00280-013-2270-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/10/2013] [Indexed: 12/13/2022]
|
28
|
Zeng KW, Li N, Dong X, Ma ZZ, Jiang Y, Jin HW, Tu PF. Sprengerinin C exerts anti-tumorigenic effects in hepatocellular carcinoma via inhibition of proliferation and angiogenesis and induction of apoptosis. Eur J Pharmacol 2013; 714:261-73. [DOI: 10.1016/j.ejphar.2013.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 11/30/2022]
|
29
|
Jian J, Zheng Z, Zhang K, Rackohn TM, Hsu C, Levin A, Enjamuri DR, Zhang X, Ting K, Soo C. Fibromodulin promoted in vitro and in vivo angiogenesis. Biochem Biophys Res Commun 2013; 436:530-535. [PMID: 23770359 DOI: 10.1016/j.bbrc.2013.06.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 12/20/2022]
Abstract
Fibromodulin (FMOD) is an extracellular matrix (ECM) small leucine-rich proteoglycan (SLRP) that plays an important role in cell fate determination. Previous studies revealed that not only is FMOD critical in fetal-type scarless wound healing, but it also promotes adult wound closure and reduces scar formation. In addition, FMOD-deficient mice exhibit significantly reduced blood vessel regeneration in granulation tissues during wound healing. In this study, we investigated the effects of FMOD on angiogenesis, which is an important event in wound healing as well as embryonic development and tumorigenesis. We found that FMOD accelerated human umbilical vein endothelial HUVEC-CS cell adhesion, spreading, actin stress fiber formation, and eventually tube-like structure (TLS) network establishment in vitro. On a molecular level, by increasing expression of collagen I and III, angiopoietin (Ang)-2, and vascular endothelial growth factor (VEGF), as well as reducing the ratio of Ang-1/Ang-2, FMOD provided a favorable network to mobilize quiescent endothelial cells to an angiogenic phenotype. Moreover, we also confirmed that FMOD enhanced angiogenesis in vivo by using an in ovo chick embryo chorioallantoic membrane (CAM) assay. Therefore, our data demonstrate that FMOD is a pro-angiogenic and suggest a potential therapeutic role of FMOD in the treatment of conditions related to impaired angiogenesis.
Collapse
Affiliation(s)
- Jia Jian
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhong Zheng
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kermit Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Todd Matthew Rackohn
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chingyun Hsu
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrew Levin
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dwarak Reddy Enjamuri
- Department of Psychobiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xinli Zhang
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kang Ting
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Department of Surgery and Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
30
|
Current World Literature. Curr Opin Oncol 2013; 25:99-104. [DOI: 10.1097/cco.0b013e32835c1381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Kanapathipillai M, Mammoto A, Mammoto T, Kang JH, Jiang E, Ghosh K, Korin N, Gibbs A, Mannix R, Ingber DE. Inhibition of mammary tumor growth using lysyl oxidase-targeting nanoparticles to modify extracellular matrix. NANO LETTERS 2012; 12:3213-3217. [PMID: 22554317 DOI: 10.1021/nl301206p] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A cancer nanotherapeutic has been developed that targets the extracellular matrix (ECM)-modifying enzyme lysyl oxidase (LOX) and alters the ECM structure. Poly(d,l-lactide-co-glycolide) nanoparticles (∼220 nm) coated with a LOX inhibitory antibody bind to ECM and suppress mammary cancer cell growth and invasion in vitro as well as tumor expansion in vivo, with greater efficiency than soluble anti-LOX antibody. This nanomaterials approach opens a new path for treating cancer with higher efficacy and decreased side effects.
Collapse
Affiliation(s)
- Mathumai Kanapathipillai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|