1
|
Bastianello G, Kidiyoor GR, Lowndes C, Li Q, Bonnal R, Godwin J, Iannelli F, Drufuca L, Bason R, Orsenigo F, Parazzoli D, Pavani M, Cancila V, Piccolo S, Scita G, Ciliberto A, Tripodo C, Pagani M, Foiani M. Mechanical stress during confined migration causes aberrant mitoses and c-MYC amplification. Proc Natl Acad Sci U S A 2024; 121:e2404551121. [PMID: 38990945 PMCID: PMC11260125 DOI: 10.1073/pnas.2404551121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
Confined cell migration hampers genome integrity and activates the ATR and ATM mechano-transduction pathways. We investigated whether the mechanical stress generated by metastatic interstitial migration contributes to the enhanced chromosomal instability observed in metastatic tumor cells. We employed live cell imaging, micro-fluidic approaches, and scRNA-seq to follow the fate of tumor cells experiencing confined migration. We found that, despite functional ATR, ATM, and spindle assembly checkpoint (SAC) pathways, tumor cells dividing across constriction frequently exhibited altered spindle pole organization, chromosome mis-segregations, micronuclei formation, chromosome fragility, high gene copy number variation, and transcriptional de-regulation and up-regulation of c-MYC oncogenic transcriptional signature via c-MYC locus amplifications. In vivo tumor settings showed that malignant cells populating metastatic foci or infiltrating the interstitial stroma gave rise to cells expressing high levels of c-MYC. Altogether, our data suggest that mechanical stress during metastatic migration contributes to override the checkpoint controls and boosts genotoxic and oncogenic events. Our findings may explain why cancer aneuploidy often does not correlate with mutations in SAC genes and why c-MYC amplification is strongly linked to metastatic tumors.
Collapse
Affiliation(s)
- Giulia Bastianello
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Università degli Studi di Milano, Milan20122, Italy
| | - Gururaj Rao Kidiyoor
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Conor Lowndes
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Qingsen Li
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Raoul Bonnal
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Jeffrey Godwin
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Fabio Iannelli
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | | | - Ramona Bason
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Fabrizio Orsenigo
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Dario Parazzoli
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Mattia Pavani
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Science, University of Palermo School of Medicine, Palermo90133, Italy
| | - Stefano Piccolo
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Department of Molecular Medicine, University of Padua, Padua35123, Italy
| | - Giorgio Scita
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Università degli Studi di Milano, Milan20122, Italy
| | - Andrea Ciliberto
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Claudio Tripodo
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Tumor Immunology Unit, Department of Health Science, University of Palermo School of Medicine, Palermo90133, Italy
| | - Massimiliano Pagani
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Università degli Studi di Milano, Milan20122, Italy
| | - Marco Foiani
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Istituto di Genetica Molecolare, Centro Nazionale Ricerca, Pavia27100, Italy
- Cancer Science Institute of Singapore, National University of Singapore, Singapore117599, Singapore
| |
Collapse
|
2
|
Nguyen MT, Ly QK, Kim HJ, Lee W. FLII Modulates the Myogenic Differentiation of Progenitor Cells via Actin Remodeling-Mediated YAP1 Regulation. Int J Mol Sci 2023; 24:14335. [PMID: 37762638 PMCID: PMC10531566 DOI: 10.3390/ijms241814335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
The dynamic rearrangement of the actin cytoskeleton plays an essential role in myogenesis, which is regulated by diverse mechanisms, such as mechanotransduction, modulation of the Hippo signaling pathway, control of cell proliferation, and the influence of morphological changes. Despite the recognized importance of actin-binding protein Flightless-1 (FLII) during actin remodeling, the role played by FLII in the differentiation of myogenic progenitor cells has not been explored. Here, we investigated the roles of FLII in the proliferation and differentiation of myoblasts. FLII was found to be enriched in C2C12 myoblasts, and its expression was stable during the early stages of differentiation but down-regulated in fully differentiated myotubes. Knockdown of FLII in C2C12 myoblasts resulted in filamentous actin (F-actin) accumulation and inhibited Yes-associated protein 1 (YAP1) phosphorylation, which triggers its nuclear translocation from the cytoplasm. Consequently, the expressions of YAP1 target genes, including PCNA, CCNB1, and CCND1, were induced, and the cell cycle and proliferation of myoblasts were promoted. Moreover, FLII knockdown significantly inhibited the expression of myogenic regulatory factors, i.e., MyoD and MyoG, thereby impairing myoblast differentiation, fusion, and myotube formation. Thus, our findings demonstrate that FLII is crucial for the differentiation of myoblasts via modulation of the F-actin/YAP1 axis and suggest that FLII is a putative novel therapeutic target for muscle wasting.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Quoc Kiet Ly
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Hyun-Jung Kim
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Goyang 10326, Republic of Korea
| |
Collapse
|
3
|
Nguyen MT, Lee W. Induction of miR-665-3p Impairs the Differentiation of Myogenic Progenitor Cells by Regulating the TWF1-YAP1 Axis. Cells 2023; 12:cells12081114. [PMID: 37190023 DOI: 10.3390/cells12081114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Actin dynamics are known to orchestrate various myogenic processes in progenitor cells. Twinfilin-1 (TWF1) is an actin-depolymerizing factor that plays a crucial role in the differentiation of myogenic progenitor cells. However, little is known about the mechanisms underlying the epigenetic regulation of TWF1 expression and impaired myogenic differentiation in the background of muscle wasting. This study investigated how miR-665-3p affects TWF1 expression, actin filaments' modulation, proliferation, and myogenic differentiation in progenitor cells. Palmitic acid, the most prevalent saturated fatty acid (SFA) in food, suppressed TWF1 expression and inhibited the myogenic differentiation of C2C12 cells while increasing the level of miR-665-3p expression. Interestingly, miR-665-3p inhibited TWF1 expression by targeting TWF1 3'UTR directly. In addition, miR-665-3p accumulated filamentous actin (F-actin) and enhanced the nuclear translocation of Yes-associated protein 1 (YAP1), consequently promoting cell cycle progression and proliferation. Furthermore, miR-665-3p suppressed the expressions of myogenic factors, i.e., MyoD, MyoG, and MyHC, and consequently impaired myoblast differentiation. In conclusion, this study suggests that SFA-inducible miR-665-3p suppresses TWF1 expression epigenetically and inhibits myogenic differentiation by facilitating myoblast proliferation via the F-actin/YAP1 axis.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
4
|
Nguyen MT, Lee W. Mir-302a/TWF1 Axis Impairs the Myogenic Differentiation of Progenitor Cells through F-Actin-Mediated YAP1 Activation. Int J Mol Sci 2023; 24:ijms24076341. [PMID: 37047312 PMCID: PMC10094299 DOI: 10.3390/ijms24076341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Actin cytoskeleton dynamics have been found to regulate myogenesis in various progenitor cells, and twinfilin-1 (TWF1), an actin-depolymerizing factor, plays a vital role in actin dynamics and myoblast differentiation. Nevertheless, the molecular mechanisms underlying the epigenetic regulation and biological significance of TWF1 in obesity and muscle wasting have not been explored. Here, we investigated the roles of miR-302a in TWF1 expression, actin filament modulation, proliferation, and myogenic differentiation in C2C12 progenitor cells. Palmitic acid, the most prevalent saturated fatty acid (SFA) in the diet, decreased the expression of TWF1 and impeded myogenic differentiation while increasing the miR-302a levels in C2C12 myoblasts. Interestingly, miR-302a inhibited TWF1 expression directly by targeting its 3′UTR. Furthermore, ectopic expression of miR-302a promoted cell cycle progression and proliferation by increasing the filamentous actin (F-actin) accumulation, which facilitated the nuclear translocation of Yes-associated protein 1 (YAP1). Consequently, by suppressing the expressions of myogenic factors, i.e., MyoD, MyoG, and MyHC, miR-302a impaired myoblast differentiation. Hence, this study demonstrated that SFA-inducible miR-302a suppresses TWF1 expression epigenetically and impairs myogenic differentiation by facilitating myoblast proliferation via F-actin-mediated YAP1 activation.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
- Correspondence: ; Tel.: +82-54-770-2409
| |
Collapse
|
5
|
Nguyen MT, Lee W. Kank1 Is Essential for Myogenic Differentiation by Regulating Actin Remodeling and Cell Proliferation in C2C12 Progenitor Cells. Cells 2022; 11:cells11132030. [PMID: 35805114 PMCID: PMC9265739 DOI: 10.3390/cells11132030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023] Open
Abstract
Actin cytoskeleton dynamics are essential regulatory processes in muscle development, growth, and regeneration due to their modulation of mechanotransduction, cell proliferation, differentiation, and morphological changes. Although the KN motif and ankyrin repeat domain-containing protein 1 (Kank1) plays a significant role in cell adhesion dynamics, actin polymerization, and cell proliferation in various cells, the functional significance of Kank1 during the myogenic differentiation of progenitor cells has not been explored. Here, we report that Kank1 acts as a critical regulator of the proliferation and differentiation of muscle progenitor cells. Kank1 was found to be expressed at a relatively high level in C2C12 myoblasts, and its expression was modulated during the differentiation. Depletion of Kank1 by siRNA (siKank1) increased the accumulation of filamentous actin (F-actin). Furthermore, it facilitated the nuclear localization of Yes-associated protein 1 (YAP1) by diminishing YAP1 phosphorylation in the cytoplasm, which activated the transcriptions of YAP1 target genes and promoted proliferation and cell cycle progression in myoblasts. Notably, depletion of Kank1 suppressed the protein expression of myogenic regulatory factors (i.e., MyoD and MyoG) and dramatically inhibited myoblast differentiation and myotube formation. Our results show that Kank1 is an essential regulator of actin dynamics, YAP1 activation, and cell proliferation and that its depletion impairs the myogenic differentiation of progenitor cells by promoting myoblast proliferation triggered by the F-actin-induced nuclear translocation of YAP1.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea;
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea;
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Gyeonggi-do, Goyang 10326, Korea
- Correspondence: ; Tel.: +82-54-770-2409
| |
Collapse
|
6
|
Silencing of RND3/RHOE inhibits the growth of human hepatocellular carcinoma and is associated with reversible senescence. Cancer Gene Ther 2022; 29:437-444. [PMID: 35256752 DOI: 10.1038/s41417-022-00445-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 02/02/2023]
Abstract
Rnd3/RhoE is an atypical Rho GTPase family member, known to be deregulated in many types of cancer. Previously, we showed that RND3 expression is downregulated in hepatocellular carcinoma (HCC) cell lines and tissues. In cancer cells, Rnd3 is involved in the regulation of cell proliferation and cell invasion. The implication of Rnd3 in HCC invasion was importantly studied whereas its role in cell growth needs further investigation. Thus, in this work, we aimed to better understand the impact of Rnd3 on tumor hepatocyte proliferation. Our results indicate that the silencing of RND3 induces a cell growth arrest both in vitro in 2D and 3D culture conditions and in vivo in tumor xenografts. The growth alteration after RND3 silencing in HCC cells is not due to an increase of cell death but to the induction of senescence. This RND3 knockdown-mediated phenomenon is dependent on the decrease of hTERT expression. Interestingly, after re-expression of RND3, these cells are able to bypass senescence and regain the ability to proliferate, with a re-expression of hTERT. Given that a low expression of Rnd3 is linked to the presence of satellite nodules in HCC, the transient senescence state observed might play a role in cancer progression.
Collapse
|
7
|
Nguyen MT, Won YH, Kwon TW, Lee W. Twinfilin-1 is an essential regulator of myogenic differentiation through the modulation of YAP in C2C12 myoblasts. Biochem Biophys Res Commun 2022; 599:17-23. [DOI: 10.1016/j.bbrc.2022.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/28/2022]
|
8
|
Wen D, Gao Y, Ho C, Yu L, Zhang Y, Lyu G, Hu D, Li Q, Zhang Y. Focusing on Mechanoregulation Axis in Fibrosis: Sensing, Transduction and Effecting. Front Mol Biosci 2022; 9:804680. [PMID: 35359592 PMCID: PMC8963247 DOI: 10.3389/fmolb.2022.804680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022] Open
Abstract
Fibrosis, a pathologic process featured by the excessive deposition of connective tissue components, can affect virtually every organ and has no satisfactory therapy yet. Fibrotic diseases are often associated with organ dysfunction which leads to high morbidity and mortality. Biomechanical stmuli and the corresponding cellular response havebeen identified in fibrogenesis, as the fibrotic remodeling could be seen as the incapacity to reestablish mechanical homeostasis: along with extracellular matrix accumulating, the physical property became more “stiff” and could in turn induce fibrosis. In this review, we provide a comprehensive overview of mechanoregulation in fibrosis, from initialing cellular mechanosensing to intracellular mechanotransduction and processing, and ends up in mechanoeffecting. Our contents are not limited to the cellular mechanism, but further expand to the disorders involved and current clinical trials, providing an insight into the disease and hopefully inspiring new approaches for the treatment of tissue fibrosis.
Collapse
Affiliation(s)
- Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chiakang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuguang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guozhong Lyu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Dahai Hu
- Burns Centre of PLA, Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qingfeng Li, ; Yifan Zhang,
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qingfeng Li, ; Yifan Zhang,
| |
Collapse
|
9
|
Nguyen MT, Lee W. MiR-141-3p regulates myogenic differentiation in C2C12 myoblasts via CFL2-YAP-mediated mechanotransduction. BMB Rep 2022. [PMID: 35000671 PMCID: PMC8891624 DOI: 10.5483/bmbrep.2022.55.2.142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Skeletal myogenesis is essential to keep muscle mass and integrity, and impaired myogenesis is closely related to the etiology of muscle wasting. Recently, miR-141-3p has been shown to be induced under various conditions associated with muscle wasting, such as aging, oxidative stress, and mitochondrial dysfunction. However, the functional significance and mechanism of miR-141-3p in myogenic differentiation have not been explored to date. In this study, we investigated the roles of miR-141-3p on CFL2 expression, proliferation, and myogenic differentiation in C2C12 myoblasts. MiR-141-3p appeared to target the 3’UTR of CFL2 directly and suppressed the expression of CFL2, an essential factor for actin filament (F-actin) dynamics. Transfection of miR-141-3p mimic in myoblasts increased F-actin formation and augmented nuclear Yes-associated protein (YAP), a key component of mechanotransduction. Furthermore, miR-141-3p mimic increased myoblast proliferation and promoted cell cycle progression throughout the S and G2/M phases. Consequently, miR-141-3p mimic led to significant suppressions of myogenic factors expression, such as MyoD, MyoG, and MyHC, and hindered the myogenic differentiation of myoblasts. Thus, this study reveals the crucial role of miR-141-3p in myogenic differentiation via CFL2-YAP-mediated mechanotransduction and provides implications of miRNA-mediated myogenic regulation in skeletal muscle homeostasis.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju 38066, Korea
| |
Collapse
|
10
|
Torrino S, Bertero T. Metabo-reciprocity in cell mechanics: feeling the demands/feeding the demand. Trends Cell Biol 2022; 32:624-636. [DOI: 10.1016/j.tcb.2022.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/27/2022]
|
11
|
MiR-320-3p Regulates the Proliferation and Differentiation of Myogenic Progenitor Cells by Modulating Actin Remodeling. Int J Mol Sci 2022; 23:ijms23020801. [PMID: 35054986 PMCID: PMC8775871 DOI: 10.3390/ijms23020801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 12/31/2022] Open
Abstract
Skeletal myogenesis is essential for the maintenance of muscle quality and quantity, and impaired myogenesis is intimately associated with muscle wasting diseases. Although microRNA (miRNA) plays a crucial role in myogenesis and relates to muscle wasting in obesity, the molecular targets and roles of miRNAs modulated by saturated fatty acids (SFA) are largely unknown. In the present study, we investigated the role of miR-320-3p on the differentiation of myogenic progenitor cells. Palmitic acid (PA), the most abundant dietary SFA, suppressed myogenic factors expression and impaired differentiation in C2C12 myoblasts, and these effects were accompanied by CFL2 downregulation and miR-320-3p upregulation. In particular, miR-320-3p appeared to target CFL2 mRNA directly and suppress the expression of CFL2, an essential factor for filamentous actin (F-actin) depolymerization. Transfection of myoblasts with miR-320-3p mimic increased F-actin formation and nuclear translocation of Yes-associated protein 1 (YAP1), a key component of mechanotransduction. Furthermore, miR-320-3p mimic increased myoblast proliferation and markedly impeded the expression of MyoD and MyoG, consequently inhibiting myoblast differentiation. In conclusion, our current study highlights the role of miR-320-3p on CFL2 expression, YAP1 activation, and myoblast differentiation and suggests that PA-inducible miR-320-3p is a significant mediator of muscle wasting in obesity.
Collapse
|
12
|
Lamin A/C-Dependent Translocation of Megakaryoblastic Leukemia-1 and β-Catenin in Cyclic Strain-Induced Osteogenesis. Cells 2021; 10:cells10123518. [PMID: 34944031 PMCID: PMC8700688 DOI: 10.3390/cells10123518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Lamins are intermediate filaments that play a crucial role in sensing mechanical strain in the nucleus of cells. β-catenin and megakaryoblastic leukemia-1 (MKL1) are critical signaling molecules that need to be translocated to the nucleus for their transcription in response to mechanical strain that induces osteogenesis. However, the exact molecular mechanism behind the translocation of these molecules has not been fully investigated. This study used 10% cyclic strain to induce osteogenesis in the murine osteoblast precursor cell line (MC3T3). The translocation of β-catenin and MKL1 was studied by performing knockdown and overexpression of lamin A/C (LMNA). Cyclic strain increased the expression of osteogenic markers such as alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), and enhanced ALP staining after seven days of incubation. Resultantly, MKL1 and β-catenin were translocated in the nucleus from the cytoplasm during the stress-induced osteogenic process. Knockdown of LMNA decreased the accumulation of MKL1 and β-catenin in the nucleus, whereas overexpression of LMNA increased the translocation of these molecules. In conclusion, our study indicates that both MKL1 and β-catenin molecules are dependent on the expression of LMNA during strain-induced osteogenesis.
Collapse
|
13
|
Nguyen MT, Lee W. Role of MiR-325-3p in the Regulation of CFL2 and Myogenic Differentiation of C2C12 Myoblasts. Cells 2021; 10:cells10102725. [PMID: 34685705 PMCID: PMC8534702 DOI: 10.3390/cells10102725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
Skeletal myogenesis is required to maintain muscle mass and integrity, and impaired myogenesis is causally linked to the etiology of muscle wasting. Recently, it was shown that excessive uptake of saturated fatty acids (SFA) plays a significant role in the pathogenesis of muscle wasting. Although microRNA (miRNA) is implicated in the regulation of myogenesis, the molecular mechanism whereby SFA-induced miRNAs impair myogenic differentiation remains largely unknown. Here, we investigated the regulatory roles of miR-325-3p on CFL2 expression and myogenic differentiation in C2C12 myoblasts. PA impeded myogenic differentiation, concomitantly suppressed CFL2 and induced miR-325-3p. Dual-luciferase analysis revealed that miR-325-3p directly targets the 3'UTR of CFL2, thereby suppressing the expression of CFL2, a crucial factor for actin dynamics. Transfection with miR-325-3p mimic resulted in the accumulation of actin filaments (F-actin) and nuclear Yes-associated protein (YAP) in myoblasts and promoted myoblast proliferation and cell cycle progression. Consequently, miR-325-3p mimic significantly attenuated the expressions of myogenic factors and thereby impaired the myogenic differentiation of myoblasts. The roles of miR-325-3p on CFL2 expression, F-actin modulation, and myogenic differentiation suggest a novel miRNA-mediated regulatory mechanism of myogenesis and PA-inducible miR-325-3p may be a critical mediator between obesity and muscle wasting.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea;
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea;
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Goyang 10326, Korea
- Correspondence: ; Tel.: +82-54-770-2409
| |
Collapse
|
14
|
Palmitic Acid-Induced miR-429-3p Impairs Myoblast Differentiation by Downregulating CFL2. Int J Mol Sci 2021; 22:ijms222010972. [PMID: 34681631 PMCID: PMC8535884 DOI: 10.3390/ijms222010972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs are known to play a critical role in skeletal myogenesis and maintenance, and cofilin-2 (CFL2) is necessary for actin cytoskeleton dynamics and myogenic differentiation. Nonetheless, target molecules and the modes of action of miRNAs, especially those responsible for the inhibitory mechanism on the myogenesis by saturated fatty acids (SFA) or obesity, still remain unclear. Here, we reported the role played by miR-429-3p on CFL2 expression, actin filament dynamics, myoblast proliferation, and myogenic differentiation in C2C12 cells. Palmitic acid (PA), the most abundant SFA in diet, inhibited the myogenic differentiation of myoblasts, accompanied by CFL2 reduction and miR-429-3p induction. Interestingly, miR-429-3p suppressed the expression of CFL2 by targeting the 3'UTR of CFL2 mRNA directly. Transfection of miR-429-3p mimic in myoblasts increased F-actin formation and augmented nuclear YAP level, thereby promoting cell cycle progression and myoblast proliferation. Moreover, miR-429-3p mimic drastically suppressed the expressions of myogenic factors, such as MyoD, MyoG, and MyHC, and impaired myogenic differentiation of C2C12 cells. Therefore, this study unveiled the crucial role of miR-429-3p in myogenic differentiation through the suppression of CFL2 and provided implications of SFA-induced miRNA in the regulation of actin dynamics and skeletal myogenesis.
Collapse
|
15
|
Kim MH, Kino-Oka M. Mechanobiological conceptual framework for assessing stem cell bioprocess effectiveness. Biotechnol Bioeng 2021; 118:4537-4549. [PMID: 34460101 DOI: 10.1002/bit.27929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
Fully realizing the enormous potential of stem cells requires developing efficient bioprocesses and optimizations founded in mechanobiological considerations. Here, we emphasize the importance of mechanotransduction as one of the governing principles of stem cell bioprocesses, underscoring the need to further explore the behavioral mechanisms involved in sensing mechanical cues and coordinating transcriptional responses. We identify the sources of intrinsic, extrinsic, and external noise in bioprocesses requiring further study, and discuss the criteria and indicators that may be used to assess and predict cell-to-cell variability resulting from environmental fluctuations. Specifically, we propose a conceptual framework to explain the impact of mechanical forces within the cellular environment, identify key cell state determinants in bioprocesses, and discuss downstream implementation challenges.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| |
Collapse
|
16
|
Tuning the response of fluid filled hydrogel core-shell structures. J Mech Behav Biomed Mater 2021; 120:104605. [PMID: 34023588 DOI: 10.1016/j.jmbbm.2021.104605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Hydrogels are hydrophilic polymer networks that swell upon submersion in water. Thanks to their bio-compatibility, compliance, and ability to undergo large deformations, hydrogels can be used in a wide variety of applications such as in situ sensors for measuring cell-generated forces and drug delivery vehicles. In this work we investigate the equilibrium mechanical responses that can be achieved with hydrogel-based shells filled with a liquid core. Two types of gel shell geometries are considered - a cylinder and a spherical shell. Each shell is filled with either water or oil and subjected to compressive loading. We illustrate the influence of the shell geometry and the core composition on the mechanical response of the structure. We find that all core-shell structures stiffen under increasing compressive loading due to the load-induced expulsion of water molecules from the hydrogel shell. Furthermore, we show that cylindrical core-shell configurations are stiffer then their spherical equivalents. Interestingly, we demonstrate that the compression of a core-shell structure with an aqueous core leads to the transportation of water molecules from the core into the hydrogel. These results will guide the design of novel core-shell structures with tunable properties and mechanical responses.
Collapse
|
17
|
McGinn J, Hallou A, Han S, Krizic K, Ulyanchenko S, Iglesias-Bartolome R, England FJ, Verstreken C, Chalut KJ, Jensen KB, Simons BD, Alcolea MP. A biomechanical switch regulates the transition towards homeostasis in oesophageal epithelium. Nat Cell Biol 2021; 23:511-525. [PMID: 33972733 PMCID: PMC7611004 DOI: 10.1038/s41556-021-00679-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Epithelial cells rapidly adapt their behaviour in response to increasing tissue demands. However, the processes that finely control these cell decisions remain largely unknown. The postnatal period covering the transition between early tissue expansion and the establishment of adult homeostasis provides a convenient model with which to explore this question. Here, we demonstrate that the onset of homeostasis in the epithelium of the mouse oesophagus is guided by the progressive build-up of mechanical strain at the organ level. Single-cell RNA sequencing and whole-organ stretching experiments revealed that the mechanical stress experienced by the growing oesophagus triggers the emergence of a bright Krüppel-like factor 4 (KLF4) committed basal population, which balances cell proliferation and marks the transition towards homeostasis in a yes-associated protein (YAP)-dependent manner. Our results point to a simple mechanism whereby mechanical changes experienced at the whole-tissue level are integrated with those sensed at the cellular level to control epithelial cell fate.
Collapse
Affiliation(s)
- Jamie McGinn
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge and Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Adrien Hallou
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Seungmin Han
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Kata Krizic
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Svetlana Ulyanchenko
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Frances J England
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Kevin J Chalut
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Kim B Jensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin D Simons
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Maria P Alcolea
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Oncology, University of Cambridge and Cancer Research UK Cambridge Centre, Cambridge, UK.
| |
Collapse
|
18
|
CFL2 is an essential mediator for myogenic differentiation in C2C12 myoblasts. Biochem Biophys Res Commun 2020; 533:710-716. [PMID: 33187645 DOI: 10.1016/j.bbrc.2020.11.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 12/29/2022]
Abstract
CFL2, a skeletal muscle-specific member of the actin depolymerizing factor/cofilin protein family, is known to be involved in the regulation of actin filament dynamics. Although the impact of CFL2 has been studied in human myopathy, its functional contribution to myogenic differentiation, in terms of its effects on cell proliferation, cell cycle, and myogenic factor modulation, remains largely unknown. Here, we report that CFL2 is required for the myogenic differentiation of C2C12 myoblasts by regulating proliferation and myogenic transcription factors expressions. CFL2 expression was induced during myogenic progression, and its knockdown by siRNA in myoblasts enhanced phalloidin staining, indicating increased filamentous actin formation. Interestingly, CFL2 depletion stimulated cell proliferation and induced a cell cycle shift from G0/G1 to G2/M phases, which are known to inhibit progenitor cell differentiation. CFL2 knockdown markedly downregulated the protein expressions of myogenic transcription factors (MyoD, MyoG, and MEF2C) and thereby impaired the differentiation and myotube formation of C2C12 myoblasts. Collectively, this study highlights the roles played by CFL2 on cell cycle progression and proliferation and suggests a novel regulatory mechanism of myogenic differentiation mediated by CFL2.
Collapse
|
19
|
Dissecting the Effect of a 3D Microscaffold on the Transcriptome of Neural Stem Cells with Computational Approaches: A Focus on Mechanotransduction. Int J Mol Sci 2020; 21:ijms21186775. [PMID: 32942778 PMCID: PMC7555048 DOI: 10.3390/ijms21186775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
3D cell cultures are becoming more and more important in the field of regenerative medicine due to their ability to mimic the cellular physiological microenvironment. Among the different types of 3D scaffolds, we focus on the Nichoid, a miniaturized scaffold with a structure inspired by the natural staminal niche. The Nichoid can activate cellular responses simply by subjecting the cells to mechanical stimuli. This kind of influence results in different cellular morphology and organization, but the molecular bases of these changes remain largely unknown. Through RNA-Seq approach on murine neural precursors stem cells expanded inside the Nichoid, we investigated the deregulated genes and pathways showing that the Nichoid causes alteration in genes strongly connected to mechanobiological functions. Moreover, we fully dissected this mechanism highlighting how the changes start at a membrane level, with subsequent alterations in the cytoskeleton, signaling pathways, and metabolism, all leading to a final alteration in gene expression. The results shown here demonstrate that the Nichoid influences the biological and genetic response of stem cells thorough specific alterations of cellular signaling. The characterization of these pathways elucidates the role of mechanical manipulation on stem cells, with possible implications in regenerative medicine applications.
Collapse
|
20
|
Li Q, Sun X, Tang Y, Qu Y, Zhou Y, Zhang Y. EZH2 reduction is an essential mechanoresponse for the maintenance of super-enhancer polarization against compressive stress in human periodontal ligament stem cells. Cell Death Dis 2020; 11:757. [PMID: 32934212 PMCID: PMC7493952 DOI: 10.1038/s41419-020-02963-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022]
Abstract
Despite the ubiquitous mechanical cues at both spatial and temporal dimensions, cell identities and functions are largely immune to the everchanging mechanical stimuli. To understand the molecular basis of this epigenetic stability, we interrogated compressive force-elicited transcriptomic changes in mesenchymal stem cells purified from human periodontal ligament (PDLSCs), and identified H3K27me3 and E2F signatures populated within upregulated and weakly downregulated genes, respectively. Consistently, expressions of several E2F family transcription factors and EZH2, as core methyltransferase for H3K27me3, decreased in response to mechanical stress, which were attributed to force-induced redistribution of RB from nucleoplasm to lamina. Importantly, although epigenomic analysis on H3K27me3 landscape only demonstrated correlating changes at one group of mechanoresponsive genes, we observed a genome-wide destabilization of super-enhancers along with aberrant EZH2 retention. These super-enhancers were tightly bounded by H3K27me3 domain on one side and exhibited attenuating H3K27ac deposition and flattening H3K27ac peaks along with compensated EZH2 expression after force exposure, analogous to increased H3K27ac entropy or decreased H3K27ac polarization. Interference of force-induced EZH2 reduction could drive actin filaments dependent spatial overlap between EZH2 and super-enhancers and functionally compromise the multipotency of PDLSC following mechanical stress. These findings together unveil a specific contribution of EZH2 reduction for the maintenance of super-enhancer stability and cell identity in mechanoresponse.
Collapse
Affiliation(s)
- Qian Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xiwen Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yunyi Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yanan Qu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China.
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
21
|
Mor-Yossef Moldovan L, Kislev N, Lustig M, Pomeraniec L, Benayahu D. Biomechanical stimulation effects on the metabolism of adipocyte. J Cell Physiol 2020; 235:8702-8713. [PMID: 32330316 DOI: 10.1002/jcp.29714] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/18/2020] [Accepted: 04/05/2020] [Indexed: 12/30/2022]
Abstract
Adipose tissue plays a leading role in obesity, which, in turn, can lead to Type 2 diabetes. Adipocytes (AD) respond to the biomechanical stimulation experienced in fat tissue under static stretch during prolonged sitting or lying. To investigate the effect of such chronic stimulation on adipocyte cell metabolism, we used an in vitro system to mimic the static stretch conditions. Under in vitro culture stretching, cells were analyzed at the single-cell level and we measured an increase in the projected area of the AD and higher content of lipid droplets. A decrease in the projected area of these cells' nucleus is associated with peroxisome proliferator-activated receptor-gamma expression and heterochromatin. This is the first study to reveal proteins that were altered under static stretch following a mass spectrometry analysis and main pathways that affect cell fate and metabolism. Bioinformatics analysis of the proteins indicated an increase in mitochondrial activity and associated pathways under static stretch stimulation. Quantification of the mitochondrial activity by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay and the ATPase related proteins specifically measured ATP5B indicated an increase in adipogenesis which points to a higher rate of cell metabolism under static stretch. In summary, our results elaborate on the metabolism of AD exposed to biomechanical stimulation, that is, associated with altered cellular protein profile and thereby influenced cell fate. The static stretch stimulation accelerated adipocyte differentiation through increased mitochondrial activity. Hence, in this study, we introduce a new perspective in understanding the molecular regulation of mechano-transduction in adipogenesis.
Collapse
Affiliation(s)
- Lisa Mor-Yossef Moldovan
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nadav Kislev
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maayan Lustig
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Leslie Pomeraniec
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dafna Benayahu
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Abstract
Maturation is the last phase of heart development that prepares the organ for strong, efficient, and persistent pumping throughout the mammal's lifespan. This process is characterized by structural, gene expression, metabolic, and functional specializations in cardiomyocytes as the heart transits from fetal to adult states. Cardiomyocyte maturation gained increased attention recently due to the maturation defects in pluripotent stem cell-derived cardiomyocyte, its antagonistic effect on myocardial regeneration, and its potential contribution to cardiac disease. Here, we review the major hallmarks of ventricular cardiomyocyte maturation and summarize key regulatory mechanisms that promote and coordinate these cellular events. With advances in the technical platforms used for cardiomyocyte maturation research, we expect significant progress in the future that will deepen our understanding of this process and lead to better maturation of pluripotent stem cell-derived cardiomyocyte and novel therapeutic strategies for heart disease.
Collapse
Affiliation(s)
- Yuxuan Guo
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - William Pu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
23
|
Daou HN. Exercise as an anti-inflammatory therapy for cancer cachexia: a focus on interleukin-6 regulation. Am J Physiol Regul Integr Comp Physiol 2020; 318:R296-R310. [DOI: 10.1152/ajpregu.00147.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer cachexia is a complicated disorder of extreme, progressive skeletal muscle wasting. It is directed by metabolic alterations and systemic inflammation dysregulation. Numerous studies have demonstrated that increased systemic inflammation promotes this type of cachexia and have suggested that cytokines are implicated in the skeletal muscle loss. Exercise is firmly established as an anti-inflammatory therapy that can attenuate or even reverse the process of muscle wasting in cancer cachexia. The interleukin IL-6 is generally considered to be a key player in the development of the microenvironment of malignancy; it promotes tumor growth and metastasis by acting as a bridge between chronic inflammation and cancerous tissue and it also induces skeletal muscle atrophy and protein breakdown. Paradoxically, a beneficial role for IL-6 has also been identified recently, and that is its status as a “founding member” of the myokine class of proteins. Skeletal muscle is an important source of circulating IL-6 in people who participate in exercise training. IL-6 acts as an anti-inflammatory myokine by inhibiting TNFα and improving glucose uptake through the stimulation of AMPK signaling. This review discusses the action of IL-6 in skeletal muscle tissue dysfunction and the role of IL-6 as an “exercise factor” that modulates the immune system. This review also sheds light on the main considerations related to the treatment of muscle wasting in cancer cachexia.
Collapse
|
24
|
Fearing BV, Jing L, Barcellona MN, Witte SE, Buchowski JM, Zebala LP, Kelly MP, Luhmann S, Gupta MC, Pathak A, Setton LA. Mechanosensitive transcriptional coactivators MRTF-A and YAP/TAZ regulate nucleus pulposus cell phenotype through cell shape. FASEB J 2019; 33:14022-14035. [PMID: 31638828 PMCID: PMC6894097 DOI: 10.1096/fj.201802725rrr] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 09/17/2019] [Indexed: 01/05/2023]
Abstract
Cells of the adult nucleus pulposus (NP) are critically important in maintaining overall disc health and function. NP cells reside in a soft, gelatinous matrix that dehydrates and becomes increasingly fibrotic with age. Such changes result in physical cues of matrix stiffness that may be potent regulators of NP cell phenotype and may contribute to a transition toward a senescent and fibroblastic NP cell with a limited capacity for repair. Here, we investigate the mechanosignaling cues generated from changes in matrix stiffness in directing NP cell phenotype and identify mechanisms that can potentially preserve a biosynthetically active, juvenile NP cell phenotype. Using a laminin-functionalized polyethylene glycol hydrogel, we show that when NP cells form rounded, multicell clusters, they are able to maintain cytosolic localization of myocardin-related transcription factor (MRTF)-A, a coactivator of serum-response factor (SRF), known to promote fibroblast-like behaviors in many cells. Upon preservation of a rounded shape, human NP cells similarly showed cytosolic retention of transcriptional coactivator Yes-associated protein (YAP) and its paralogue PDZ-binding motif (TAZ) with associated decline in activation of its transcription factor TEA domain family member-binding domain (TEAD). When changes in cell shape occur, leading to a more spread, fibrotic morphology associated with stronger F-actin alignment, SRF and TEAD are up-regulated. However, targeted deletion of either cofactor was not sufficient to overcome shape-mediated changes observed in transcriptional activation of SRF or TEAD. Findings show that substrate stiffness-induced promotion of F-actin alignment occurs concomitantly with a flattened, spread morphology, decreased NP marker expression, and reduced biosynthetic activity. This work indicates cell shape is a stronger indicator of SRF and TEAD mechanosignaling pathways than coactivators MRTF-A and YAP/TAZ, respectively, and may play a role in the degeneration-associated loss of NP cellularity and phenotype.-Fearing, B. V., Jing, L., Barcellona, M. N., Witte, S. E., Buchowski, J. M., Zebala, L. P., Kelly, M. P., Luhmann, S., Gupta, M. C., Pathak, A., Setton, L. A. Mechanosensitive transcriptional coactivators MRTF-A and YAP/TAZ regulate nucleus pulposus cell phenotype through cell shape.
Collapse
Affiliation(s)
- Bailey V. Fearing
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Liufang Jing
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Marcos N. Barcellona
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Savannah Est Witte
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jacob M. Buchowski
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lukas P. Zebala
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael P. Kelly
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Scott Luhmann
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Munish C. Gupta
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Amit Pathak
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lori A. Setton
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
25
|
Contour Models of Cellular Adhesion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31612451 DOI: 10.1007/978-3-030-17593-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The development of traction-force microscopy, in the past two decades, has created the unprecedented opportunity of performing direct mechanical measurements on living cells as they adhere or crawl on uniform or micro-patterned substrates. Simultaneously, this has created the demand for a theoretical framework able to decipher the experimental observations, shed light on the complex biomechanical processes that govern the interaction between the cell and the extracellular matrix and offer testable predictions. Contour models of cellular adhesion, represent one of the simplest and yet most insightful approach in this problem. Rooted in the paradigm of active matter, these models allow to explicitly determine the shape of the cell edge and calculate the traction forces experienced by the substrate, starting from the internal and peripheral contractile stresses as well as the passive restoring forces and bending moments arising within the actin cortex and the plasma membrane. In this chapter I provide a general overview of contour models of cellular adhesion and review the specific cases of cells equipped with isotropic and anisotropic actin cytoskeleton as well as the role of bending elasticity.
Collapse
|
26
|
Djemai H, Hassani M, Daou N, Li Z, Sotiropoulos A, Noirez P, Coletti D. Srf KO and wild-type mice similarly adapt to endurance exercise. Eur J Transl Myol 2019; 29:8205. [PMID: 31354926 PMCID: PMC6615070 DOI: 10.4081/ejtm.2019.8205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022] Open
Abstract
Physical exercise has important effects as secondary prevention or intervention against several diseases. Endurance exercise induces local and global effects, resulting in skeletal muscle adaptations to aerobic activity and contributes to an amelioration of muscle performance. Furthermore, it prevents muscle loss. Serum response factor (Srf) is a transcription factor of pivotal importance for muscle tissues and animal models of Srf genetic deletion/over-expression are widely used to study Srf role in muscle homeostasis, physiology and pathology. A global characterisation of exercise adaptation in the absence of Srf has not been reported. We measured body composition, muscle force, running speed, energy expenditure and metabolism in WT and inducible skeletal muscle-specific Srf KO mice, following three weeks of voluntary exercise by wheel running. We found a major improvement in the aerobic capacity and muscle function in WT mice following exercise, as expected, and no major differences were observed in Srf KO mice as compared to WT mice, following exercise. Taken together, these observations suggest that Srf is not required for an early (within 3 weeks) adaptation to spontaneous exercise and that Srf KO mice behave similarly to the WT in terms of spontaneous physical activity and the resulting adaptive responses. Therefore, Srf KO mice can be used in functional muscle studies, without the results being affected by the lack of Srf. Since lack of Srf induces premature sarcopenia, our observations suggest that the modifications due to the absence of Srf take time to occur and that young, Srf KO mice behave similarly to WT in aerobic physical activities.
Collapse
Affiliation(s)
- Haidar Djemai
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,IRMES, INSEP, Paris, France.,= equal contribution
| | - Medhi Hassani
- Sorbonne University, Paris, France.,Sapienza University of Rome, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy.,= equal contribution
| | | | | | - Athanassia Sotiropoulos
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France
| | - Philippe Noirez
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,IRMES, INSEP, Paris, France.,Department of Exercise Science, UQAM, Montréal, Canada
| | - Dario Coletti
- Sorbonne University, Paris, France.,Sapienza University of Rome, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| |
Collapse
|
27
|
Li Q, Han G, Liu D, Zhou Y. Force-induced decline of TEA domain family member 1 contributes to osteoclastogenesis via regulation of Osteoprotegerin. Arch Oral Biol 2019; 100:23-32. [PMID: 30771694 DOI: 10.1016/j.archoralbio.2019.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE This study aims to investigate the responsiveness of transcription factor TEA domain family member 1 (TEAD1) to mechanical force and its impact on osteoclastogenesis as well as expression of Osteoprotegerin (OPG), an inhibitor for osteoclastogenesis playing crucial roles in mechanical stress-induced bone remodeling and orthodontic tooth movement (OTM). METHODS We first analyzed the correlation between several transcription factors and OPG expression in human periodontal ligament cells (PDLCs). Then dynamic expression changes of TEAD1 with force application were analyzed due to its high correlation with OPG. Loss-of-function experiments were performed to demonstrate the role of TEAD1 in regulation of RANKL/OPG, as well as osteoclastogenesis by tartrate-resistant acid phosphatase (TRAP) staining. Combination of bioinformatics analyzes and chromatin immunoprecipitation assay was utilized to investigate occupancy of TEAD1 on the enhancer elements of OPG and the dynamic change in response to force stimuli. Involvement of Hippo signaling in regulation of OPG was further demonstrated by pharmacologic inhibitors of several components. RESULTS Expression of TEAD1 highly correlates with that of OPG and decreases in response to mechanical force in human PDLCs. Knockdown of TEAD1 downregulates expression of OPG and promotes osteoclast differentiation. Mechanical force induced decreased binding of TEAD1 on an enhancer element ˜22 kilobases upstream of OPG promoter. OPG was also affected by pharmaceutical disruption of Hippo signaling pathway. CONCLUSIONS TEAD1 is a novel mechano-responsive gene and plays an important role in force-induced osteoclastogenesis, which is dependent, as least partially, on transcriptional regulation of OPG.
Collapse
Affiliation(s)
- Qian Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China.
| | - Gaofeng Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Dawei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China.
| |
Collapse
|
28
|
Montel L, Sotiropoulos A, Hénon S. The nature and intensity of mechanical stimulation drive different dynamics of MRTF-A nuclear redistribution after actin remodeling in myoblasts. PLoS One 2019; 14:e0214385. [PMID: 30921405 PMCID: PMC6438519 DOI: 10.1371/journal.pone.0214385] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/12/2019] [Indexed: 01/14/2023] Open
Abstract
Serum response factor and its cofactor myocardin-related transcription factor (MRTF) are key elements of muscle-mass adaptation to workload. The transcription of target genes is activated when MRTF is present in the nucleus. The localization of MRTF is controlled by its binding to G-actin. Thus, the pathway can be mechanically activated through the mechanosensitivity of the actin cytoskeleton. The pathway has been widely investigated from a biochemical point of view, but its mechanical activation and the timescales involved are poorly understood. Here, we applied local and global mechanical cues to myoblasts through two custom-built set-ups, magnetic tweezers and stretchable substrates. Both induced nuclear accumulation of MRTF-A. However, the dynamics of the response varied with the nature and level of mechanical stimulation and correlated with the polymerization of different actin sub-structures. Local repeated force induced local actin polymerization and nuclear accumulation of MRTF-A by 30 minutes, whereas a global static strain induced both rapid (minutes) transient nuclear accumulation, associated with the polymerization of an actin cap above the nucleus, and long-term accumulation, with a global increase in polymerized actin. Conversely, high strain induced actin depolymerization at intermediate times, associated with cytoplasmic MRTF accumulation.
Collapse
Affiliation(s)
- Lorraine Montel
- Matière et Systèmes Complexes, CNRS UMR 7057, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Athanassia Sotiropoulos
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sylvie Hénon
- Matière et Systèmes Complexes, CNRS UMR 7057, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
29
|
Théry M, Pende M. Golgi mechanics controls lipid metabolism. Nat Cell Biol 2019; 21:301-302. [PMID: 30718858 DOI: 10.1038/s41556-019-0289-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Manuel Théry
- Université Grenoble-Alpes, CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, France. .,Université Paris Diderot, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CytoMorpho Lab, Paris, France.
| | - Mario Pende
- Institut Necker-Enfants Malades, Paris, France. .,Inserm, U1151, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
30
|
Sharma S, Goswami R, Rahaman SO. The TRPV4-TAZ mechanotransduction signaling axis in matrix stiffness- and TGFβ1-induced epithelial-mesenchymal transition. Cell Mol Bioeng 2018; 12:139-152. [PMID: 31681446 DOI: 10.1007/s12195-018-00565-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Introduction The implantation of biomaterials into soft tissue leads to the development of foreign body response, a non-specific inflammatory condition that is characterized by the presence of fibrotic tissue. Epithelial-mesenchymal transition (EMT) is a key event in development, fibrosis, and oncogenesis. Emerging data support a role for both a mechanical signal and a biochemical signal in EMT. We hypothesized that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive channel, is a mediator of EMT. Methods Normal human primary epidermal keratinocytes (NHEKs) were seeded on collagen-coated plastic plates or varied stiffness polyacrylamide gels in the presence or absence of TGFβ1, Immunofluorescence, immunoblot, and polymerase chain reaction analysis were performed to determine expression level of EMT markers and signaling proteins. Knock-down of TRPV4 function was achieved by siRNA transfection or by GSK2193874 treatment. Results We found that knock-down of TRPV4 blocked both matrix stiffness- and TGFβ1-induced EMT in NHEKs. In a murine skin fibrosis model, TRPV4 deletion resulted in decreased expression of the mesenchymal marker, α-SMA, and increased expression of epithelial marker, E-cadherin. Mechanistically, our data showed that: i) TRPV4 was essential for the nuclear translocation of TAZ in response to matrix stiffness and TGFβ1; ii) Antagonism of TRPV4 inhibited both matrix stiffness-induced and TGFβ1-induced expression of TAZ proteins; and iii) TRPV4 antagonism suppressed both matrix stiffness-induced and TGFβ1-induced activation of Smad2/3, but not of AKT. Conclusions These data identify a novel role for TRPV4-TAZ mechanotransduction signaling axis in regulating EMT in NHEKs in response to both matrix stiffness and TGFβ1.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 USA
| | - Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 USA
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
31
|
Xue Y, Acar M. Mechanisms for the epigenetic inheritance of stress response in single cells. Curr Genet 2018; 64:1221-1228. [PMID: 29846762 PMCID: PMC6215725 DOI: 10.1007/s00294-018-0849-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 12/31/2022]
Abstract
Cells have evolved to dynamically respond to different types of environmental and physiological stress conditions. The information about a previous stress stimulus experience by a mother cell can be passed to its descendants, allowing them to better adapt to and survive in new environments. In recent years, live-cell imaging combined with cell-lineage tracking approaches has elucidated many important principles that guide stress inheritance at the single-cell and population level. In this review, we summarize different strategies that cells can employ to pass the 'memory' of previous stress responses to their descendants. Among these strategies, we focus on a recent discovery of how specific features of Msn2 nucleo-cytoplasmic shuttling dynamics could be inherited across cell lineages. We also discuss how stress response can be transmitted to progenies through changes in chromatin and through partitioning of anti-stress factors and/or damaged macromolecules between mother and daughter cells during cell division. Finally, we highlight how emergent technologies will help address open questions in the field.
Collapse
Affiliation(s)
- Yuan Xue
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - Murat Acar
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA.
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA.
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, CT, 06511, USA.
- Department of Physics, Yale University, Prospect Street, New Haven, CT, 06511, USA.
| |
Collapse
|
32
|
Pomp W, Schakenraad K, Balcıoğlu HE, van Hoorn H, Danen EHJ, Merks RMH, Schmidt T, Giomi L. Cytoskeletal Anisotropy Controls Geometry and Forces of Adherent Cells. PHYSICAL REVIEW LETTERS 2018; 121:178101. [PMID: 30411958 DOI: 10.1103/physrevlett.121.178101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/06/2018] [Indexed: 06/08/2023]
Abstract
We investigate the geometrical and mechanical properties of adherent cells characterized by a highly anisotropic actin cytoskeleton. Using a combination of theoretical work and experiments on micropillar arrays, we demonstrate that the shape of the cell edge is accurately described by elliptical arcs, whose eccentricity expresses the degree of anisotropy of the internal cell stresses. This results in a spatially varying tension along the cell edge, that significantly affects the traction forces exerted by the cell on the substrate. Our work highlights the strong interplay between cell mechanics and geometry and paves the way towards the reconstruction of cellular forces from geometrical data.
Collapse
Affiliation(s)
- Wim Pomp
- Kamerlingh Onnes-Huygens Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, Netherlands
| | - Koen Schakenraad
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, Netherlands
- Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, Netherlands
| | - Hayri E Balcıoğlu
- Toxicology, Leiden Academic Center for Drug Research, Leiden University, Netherlands
| | - Hedde van Hoorn
- Kamerlingh Onnes-Huygens Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, Netherlands
| | - Erik H J Danen
- Toxicology, Leiden Academic Center for Drug Research, Leiden University, Netherlands
| | - Roeland M H Merks
- Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, Netherlands
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA Leiden, Netherlands
| | - Thomas Schmidt
- Kamerlingh Onnes-Huygens Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, Netherlands
| | - Luca Giomi
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, Netherlands
| |
Collapse
|
33
|
Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging. Biophys J 2018; 115:911-923. [PMID: 30122291 PMCID: PMC6127462 DOI: 10.1016/j.bpj.2018.07.027] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/03/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022] Open
Abstract
The mechanical properties of biological tissues are increasingly recognized as important factors in developmental and pathological processes. Most existing mechanical measurement techniques either necessitate destruction of the tissue for access or provide insufficient spatial resolution. Here, we show for the first time to our knowledge a systematic application of confocal Brillouin microscopy to quantitatively map the mechanical properties of spinal cord tissues during biologically relevant processes in a contact-free and nondestructive manner. Living zebrafish larvae were mechanically imaged in all anatomical planes during development and after spinal cord injury. These experiments revealed that Brillouin microscopy is capable of detecting the mechanical properties of distinct anatomical structures without interfering with the animal’s natural development. The Brillouin shift within the spinal cord remained comparable during development and transiently decreased during the repair processes after spinal cord transection. By taking into account the refractive index distribution, we explicitly determined the apparent longitudinal modulus and viscosity of different larval zebrafish tissues. Importantly, mechanical properties differed between tissues in situ and in excised slices. The presented work constitutes the first step toward an in vivo assessment of spinal cord tissue mechanics during regeneration, provides a methodical basis to identify key determinants of mechanical tissue properties, and allows us to test their relative importance in combination with biochemical and genetic factors during developmental and regenerative processes.
Collapse
|
34
|
Gegenfurtner FA, Jahn B, Wagner H, Ziegenhain C, Enard W, Geistlinger L, Rädler JO, Vollmar AM, Zahler S. Micropatterning as a tool to identify regulatory triggers and kinetics of actin-mediated endothelial mechanosensing. J Cell Sci 2018; 131:jcs.212886. [PMID: 29724912 DOI: 10.1242/jcs.212886] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
Developmental processes, such as angiogenesis, are associated with a constant remodeling of the actin cytoskeleton in response to different mechanical stimuli. The mechanosensitive transcription factors MRTF-A (MKL1) and YAP (also known as YAP1) are important mediators of this challenging adaptation process. However, it is as yet unknown whether both pathways respond in an identical or in a divergent manner to a given microenvironmental guidance cue. Here, we use a micropatterning approach to dissect single aspects of cellular behavior in a spatiotemporally controllable setting. Using the exemplary process of angiogenesis, we show that cell-cell contacts and adhesive surface area are shared regulatory parameters of MRTF and YAP on rigid 2D surfaces. By analyzing MRTF and YAP under laminar flow conditions and during cell migration on dumbbell-shaped microstructures, we demonstrate that they exhibit different translocation kinetics. In conclusion, our work promotes the application of micropatterning techniques as a cell biological tool to study mechanosensitive signaling in the context of angiogenesis.
Collapse
Affiliation(s)
- Florian A Gegenfurtner
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Center for Drug Research, 81377 Munich, Germany
| | - Berenice Jahn
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Center for Drug Research, 81377 Munich, Germany
| | - Helga Wagner
- ibidi GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany
| | - Christoph Ziegenhain
- Ludwig-Maximilians-University Munich, Department of Biology II, Anthropology and Human Genomics, 82152 Martinsried, Germany
| | - Wolfgang Enard
- Ludwig-Maximilians-University Munich, Department of Biology II, Anthropology and Human Genomics, 82152 Martinsried, Germany
| | - Ludwig Geistlinger
- Ludwig-Maximilians-University Munich, Institute for Informatics, Teaching and Research Unit Bioinformatics, 80333 Munich, Germany
| | - Joachim O Rädler
- Ludwig-Maximilians-University Munich, Faculty of Physics, Soft Condensed Matter Group, 80539 Munich, Germany
| | - Angelika M Vollmar
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Center for Drug Research, 81377 Munich, Germany
| | - Stefan Zahler
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Center for Drug Research, 81377 Munich, Germany
| |
Collapse
|
35
|
Makhija E, Jagielska A, Zhu L, Bost AC, Ong W, Chew SY, Shivashankar GV, Van Vliet KJ. Mechanical Strain Alters Cellular and Nuclear Dynamics at Early Stages of Oligodendrocyte Differentiation. Front Cell Neurosci 2018; 12:59. [PMID: 29559894 PMCID: PMC5845683 DOI: 10.3389/fncel.2018.00059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/19/2018] [Indexed: 11/13/2022] Open
Abstract
Mechanical and physical stimuli including material stiffness and topography or applied mechanical strain have been demonstrated to modulate differentiation of glial progenitor and neural stem cells. Recent studies probing such mechanotransduction in oligodendrocytes have focused chiefly on the biomolecular components. However, the cell-level biophysical changes associated with such responses remain largely unknown. Here, we explored mechanotransduction in oligodendrocyte progenitor cells (OPCs) during the first 48 h of differentiation induction by quantifying the biophysical state in terms of nuclear dynamics, cytoskeleton organization, and cell migration. We compared these mechanophenotypic changes in OPCs exposed to both chemical cues (differentiation factors) and mechanical cues (static tensile strain of 10%) with those exposed to only those chemical cues. We observed that mechanical strain significantly hastened the dampening of nuclear fluctuations and decreased OPC migration, consistent with the progression of differentiation. Those biophysical changes were accompanied by increased production of the intracellular microtubule network. These observations provide insights into mechanisms by which mechanical strain of physiological magnitude could promote differentiation of progenitor cells to oligodendrocytes via inducing intracellular biophysical responses over hours to days post induction.
Collapse
Affiliation(s)
- Ekta Makhija
- BioSystems and Micromechanics Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, CREATE, Singapore, Singapore
| | - Anna Jagielska
- BioSystems and Micromechanics Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, CREATE, Singapore, Singapore.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Lena Zhu
- BioSystems and Micromechanics Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, CREATE, Singapore, Singapore.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Alexander C Bost
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - William Ong
- NTU Institute for Health Technologies (Health Tech NTU), Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sing Y Chew
- BioSystems and Micromechanics Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, CREATE, Singapore, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - G V Shivashankar
- BioSystems and Micromechanics Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, CREATE, Singapore, Singapore.,Mechanobiology Institute, Singapore, Singapore.,The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Krystyn J Van Vliet
- BioSystems and Micromechanics Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, CREATE, Singapore, Singapore.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
36
|
Li YF, Altman RB. Systematic target function annotation of human transcription factors. BMC Biol 2018; 16:4. [PMID: 29325558 PMCID: PMC5795274 DOI: 10.1186/s12915-017-0469-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 12/06/2017] [Indexed: 01/03/2023] Open
Abstract
Background Transcription factors (TFs), the key players in transcriptional regulation, have attracted great experimental attention, yet the functions of most human TFs remain poorly understood. Recent capabilities in genome-wide protein binding profiling have stimulated systematic studies of the hierarchical organization of human gene regulatory network and DNA-binding specificity of TFs, shedding light on combinatorial gene regulation. We show here that these data also enable a systematic annotation of the biological functions and functional diversity of TFs. Result We compiled a human gene regulatory network for 384 TFs covering the 146,096 TF–target gene (TF–TG) relationships, extracted from over 850 ChIP-seq experiments as well as the literature. By integrating this network of TF–TF and TF–TG relationships with 3715 functional concepts from six sources of gene function annotations, we obtained over 9000 confident functional annotations for 279 TFs. We observe extensive connectivity between TFs and Mendelian diseases, GWAS phenotypes, and pharmacogenetic pathways. Further, we show that TFs link apparently unrelated functions, even when the two functions do not share common genes. Finally, we analyze the pleiotropic functions of TFs and suggest that the increased number of upstream regulators contributes to the functional pleiotropy of TFs. Conclusion Our computational approach is complementary to focused experimental studies on TF functions, and the resulting knowledge can guide experimental design for the discovery of unknown roles of TFs in human disease and drug response. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0469-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Fuga Li
- Stanford Genome Technology Center, Stanford, CA, USA. .,Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Present address: Department of Bioinformatics, Illumina Inc., San Diego, CA, USA.
| | - Russ B Altman
- Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
37
|
Tschumperlin DJ, Ligresti G, Hilscher MB, Shah VH. Mechanosensing and fibrosis. J Clin Invest 2018; 128:74-84. [PMID: 29293092 DOI: 10.1172/jci93561] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tissue injury disrupts the mechanical homeostasis that underlies normal tissue architecture and function. The failure to resolve injury and restore homeostasis gives rise to progressive fibrosis that is accompanied by persistent alterations in the mechanical environment as a consequence of pathological matrix deposition and stiffening. This Review focuses on our rapidly growing understanding of the molecular mechanisms linking the altered mechanical environment in injury, repair, and fibrosis to cellular activation. In particular, our focus is on the mechanisms by which cells transduce mechanical signals, leading to transcriptional and epigenetic responses that underlie both transient and persistent alterations in cell state that contribute to fibrosis. Translation of these mechanobiological insights may enable new approaches to promote tissue repair and arrest or reverse fibrotic tissue remodeling.
Collapse
Affiliation(s)
| | | | - Moira B Hilscher
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
38
|
Cheng B, Lin M, Huang G, Li Y, Ji B, Genin GM, Deshpande VS, Lu TJ, Xu F. Cellular mechanosensing of the biophysical microenvironment: A review of mathematical models of biophysical regulation of cell responses. Phys Life Rev 2017; 22-23:88-119. [PMID: 28688729 PMCID: PMC5712490 DOI: 10.1016/j.plrev.2017.06.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 12/11/2022]
Abstract
Cells in vivo reside within complex microenvironments composed of both biochemical and biophysical cues. The dynamic feedback between cells and their microenvironments hinges upon biophysical cues that regulate critical cellular behaviors. Understanding this regulation from sensing to reaction to feedback is therefore critical, and a large effort is afoot to identify and mathematically model the fundamental mechanobiological mechanisms underlying this regulation. This review provides a critical perspective on recent progress in mathematical models for the responses of cells to the biophysical cues in their microenvironments, including dynamic strain, osmotic shock, fluid shear stress, mechanical force, matrix rigidity, porosity, and matrix shape. The review highlights key successes and failings of existing models, and discusses future opportunities and challenges in the field.
Collapse
Affiliation(s)
- Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuhui Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Baohua Ji
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Mechanical Engineering & Materials Science, and NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis 63130, MO, USA
| | - Vikram S Deshpande
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Tian Jian Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
39
|
Ekpenyong AE, Toepfner N, Fiddler C, Herbig M, Li W, Cojoc G, Summers C, Guck J, Chilvers ER. Mechanical deformation induces depolarization of neutrophils. SCIENCE ADVANCES 2017; 3:e1602536. [PMID: 28630905 PMCID: PMC5470826 DOI: 10.1126/sciadv.1602536] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The transition of neutrophils from a resting state to a primed state is an essential requirement for their function as competent immune cells. This transition can be caused not only by chemical signals but also by mechanical perturbation. After cessation of either, these cells gradually revert to a quiescent state over 40 to 120 min. We use two biophysical tools, an optical stretcher and a novel microcirculation mimetic, to effect physiologically relevant mechanical deformations of single nonadherent human neutrophils. We establish quantitative morphological analysis and mechanical phenotyping as label-free markers of neutrophil priming. We show that continued mechanical deformation of primed cells can cause active depolarization, which occurs two orders of magnitude faster than by spontaneous depriming. This work provides a cellular-level mechanism that potentially explains recent clinical studies demonstrating the potential importance, and physiological role, of neutrophil depriming in vivo and the pathophysiological implications when this deactivation is impaired, especially in disorders such as acute lung injury.
Collapse
Affiliation(s)
- Andrew E. Ekpenyong
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Biotechnology Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Physics, Creighton University, Omaha, NE 68178, USA
| | - Nicole Toepfner
- Klinik und Poliklinik für Kinder-und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Medicine, Addenbrooke’s and Papworth Hospitals, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Christine Fiddler
- Department of Medicine, Addenbrooke’s and Papworth Hospitals, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Maik Herbig
- Biotechnology Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Wenhong Li
- Biotechnology Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Gheorghe Cojoc
- Biotechnology Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Charlotte Summers
- Department of Medicine, Addenbrooke’s and Papworth Hospitals, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Jochen Guck
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Biotechnology Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
- Corresponding author.
| | - Edwin R. Chilvers
- Department of Medicine, Addenbrooke’s and Papworth Hospitals, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| |
Collapse
|
40
|
Peng T, Liu L, MacLean AL, Wong CW, Zhao W, Nie Q. A mathematical model of mechanotransduction reveals how mechanical memory regulates mesenchymal stem cell fate decisions. BMC SYSTEMS BIOLOGY 2017; 11:55. [PMID: 28511648 PMCID: PMC5434622 DOI: 10.1186/s12918-017-0429-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/26/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Mechanical and biophysical properties of the cellular microenvironment regulate cell fate decisions. Mesenchymal stem cell (MSC) fate is influenced by past mechanical dosing (memory), but the mechanisms underlying this process have not yet been well defined. We have yet to understand how memory affects specific cell fate decisions, such as the differentiation of MSCs into neurons, adipocytes, myocytes, and osteoblasts. RESULTS We study a minimal gene regulatory network permissive of multi-lineage MSC differentiation into four cell fates. We present a continuous model that is able to describe the cell fate transitions that occur during differentiation, and analyze its dynamics with tools from multistability, bifurcation, and cell fate landscape analysis, and via stochastic simulation. Whereas experimentally, memory has only been observed during osteogenic differentiation, this model predicts that memory regions can exist for each of the four MSC-derived cell lineages. We can predict the substrate stiffness ranges over which memory drives differentiation; these are directly testable in an experimental setting. Furthermore, we quantitatively predict how substrate stiffness and culture duration co-regulate the fate of a stem cell, and we find that the feedbacks from the differentiating MSC onto its substrate are critical to preserve mechanical memory. Strikingly, we show that re-seeding MSCs onto a sufficiently soft substrate increases the number of cell fates accessible. CONCLUSIONS Control of MSC differentiation is crucial for the success of much-lauded regenerative therapies based on MSCs. We have predicted new memory regions that will directly impact this control, and have quantified the size of the memory region for osteoblasts, as well as the co-regulatory effects on cell fates of substrate stiffness and culture duration. Taken together, these results can be used to develop novel strategies to better control the fates of MSCs in vitro and following transplantation.
Collapse
Affiliation(s)
- Tao Peng
- Department of Mathematics, Center for Complex Biological Systems, and Center for Mathematical and Computational Biology, University of California, Irvine, CA, 92697, USA
| | - Linan Liu
- Department of Pharmaceutical Sciences, Department of Biomedical Engineering, Department of Biological Chemistry, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center & Edwards Life sciences Center for Advanced Cardiovascular Technology, University of California, 845 Health Sciences Road, Irvine, CA, 92697, USA
| | - Adam L MacLean
- Department of Mathematics, Center for Complex Biological Systems, and Center for Mathematical and Computational Biology, University of California, Irvine, CA, 92697, USA
| | - Chi Wut Wong
- Department of Pharmaceutical Sciences, Department of Biomedical Engineering, Department of Biological Chemistry, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center & Edwards Life sciences Center for Advanced Cardiovascular Technology, University of California, 845 Health Sciences Road, Irvine, CA, 92697, USA
| | - Weian Zhao
- Department of Pharmaceutical Sciences, Department of Biomedical Engineering, Department of Biological Chemistry, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center & Edwards Life sciences Center for Advanced Cardiovascular Technology, University of California, 845 Health Sciences Road, Irvine, CA, 92697, USA
| | - Qing Nie
- Department of Mathematics, Center for Complex Biological Systems, and Center for Mathematical and Computational Biology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
41
|
Abstract
Osteoarthritis (OA) is a multi-factorial and highly prevalent joint disorder worldwide. Since the establishment of murine surgical knee OA models in 2005, many of the key molecules and signalling pathways responsible for OA development have been identified. Here we review the roles of two multi-functional signalling pathways in OA development: Notch and nuclear factor kappa-light-chain-enhancer of activated B cells. Previous studies have identified various aspects of articular chondrocyte regulation by these pathways. However, comprehensive understanding of the molecular networks regulating articular cartilage homeostasis and OA pathogenesis is needed.
Collapse
Affiliation(s)
- Taku Saito
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan. .,Bone and Cartilage Regenerative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Sakae Tanaka
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
42
|
Jagielska A, Lowe AL, Makhija E, Wroblewska L, Guck J, Franklin RJM, Shivashankar GV, Van Vliet KJ. Mechanical Strain Promotes Oligodendrocyte Differentiation by Global Changes of Gene Expression. Front Cell Neurosci 2017; 11:93. [PMID: 28473753 PMCID: PMC5397481 DOI: 10.3389/fncel.2017.00093] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/20/2017] [Indexed: 11/13/2022] Open
Abstract
Differentiation of oligodendrocyte progenitor cells (OPC) to oligodendrocytes and subsequent axon myelination are critical steps in vertebrate central nervous system (CNS) development and regeneration. Growing evidence supports the significance of mechanical factors in oligodendrocyte biology. Here, we explore the effect of mechanical strains within physiological range on OPC proliferation and differentiation, and strain-associated changes in chromatin structure, epigenetics, and gene expression. Sustained tensile strain of 10-15% inhibited OPC proliferation and promoted differentiation into oligodendrocytes. This response to strain required specific interactions of OPCs with extracellular matrix ligands. Applied strain induced changes in nuclear shape, chromatin organization, and resulted in enhanced histone deacetylation, consistent with increased oligodendrocyte differentiation. This response was concurrent with increased mRNA levels of the epigenetic modifier histone deacetylase Hdac11. Inhibition of HDAC proteins eliminated the strain-mediated increase of OPC differentiation, demonstrating a role of HDACs in mechanotransduction of strain to chromatin. RNA sequencing revealed global changes in gene expression associated with strain. Specifically, expression of multiple genes associated with oligodendrocyte differentiation and axon-oligodendrocyte interactions was increased, including cell surface ligands (Ncam, ephrins), cyto- and nucleo-skeleton genes (Fyn, actinins, myosin, nesprin, Sun1), transcription factors (Sox10, Zfp191, Nkx2.2), and myelin genes (Cnp, Plp, Mag). These findings show how mechanical strain can be transmitted to the nucleus to promote oligodendrocyte differentiation, and identify the global landscape of signaling pathways involved in mechanotransduction. These data provide a source of potential new therapeutic avenues to enhance OPC differentiation in vivo.
Collapse
Affiliation(s)
- Anna Jagielska
- Department of Materials Science and Engineering, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Alexis L Lowe
- Department of Neuroscience, Wellesley CollegeWellesley, MA, USA
| | - Ekta Makhija
- Mechanobiology Institute, National University of SingaporeSingapore, Singapore
| | - Liliana Wroblewska
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Jochen Guck
- Biotechnology Center, Technische Universität DresdenDresden, Germany
| | - Robin J M Franklin
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of CambridgeCambridge, UK
| | - G V Shivashankar
- Mechanobiology Institute, National University of SingaporeSingapore, Singapore
| | - Krystyn J Van Vliet
- Department of Materials Science and Engineering, Massachusetts Institute of TechnologyCambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of TechnologyCambridge, MA, USA.,BioSystems and Micromechanics Inter-Disciplinary Research Group, Singapore-MIT Alliance for Research and TechnologySingapore, Singapore
| |
Collapse
|
43
|
Elsaadany M, Yan KC, Yildirim-Ayan E. Predicting cell viability within tissue scaffolds under equiaxial strain: multi-scale finite element model of collagen-cardiomyocytes constructs. Biomech Model Mechanobiol 2017; 16:1049-1063. [PMID: 28093648 DOI: 10.1007/s10237-017-0872-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022]
Abstract
Successful tissue engineering and regenerative therapy necessitate having extensive knowledge about mechanical milieu in engineered tissues and the resident cells. In this study, we have merged two powerful analysis tools, namely finite element analysis and stochastic analysis, to understand the mechanical strain within the tissue scaffold and residing cells and to predict the cell viability upon applying mechanical strains. A continuum-based multi-length scale finite element model (FEM) was created to simulate the physiologically relevant equiaxial strain exposure on cell-embedded tissue scaffold and to calculate strain transferred to the tissue scaffold (macro-scale) and residing cells (micro-scale) upon various equiaxial strains. The data from FEM were used to predict cell viability under various equiaxial strain magnitudes using stochastic damage criterion analysis. The model validation was conducted through mechanically straining the cardiomyocyte-encapsulated collagen constructs using a custom-built mechanical loading platform (EQUicycler). FEM quantified the strain gradients over the radial and longitudinal direction of the scaffolds and the cells residing in different areas of interest. With the use of the experimental viability data, stochastic damage criterion, and the average cellular strains obtained from multi-length scale models, cellular viability was predicted and successfully validated. This methodology can provide a great tool to characterize the mechanical stimulation of bioreactors used in tissue engineering applications in providing quantification of mechanical strain and predicting cellular viability variations due to applied mechanical strain.
Collapse
Affiliation(s)
| | - Karen Chang Yan
- Department of Mechanical Engineering, The College of New Jersey, Ewing, NJ, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering, University of Toledo, Toledo, OH, USA.
- Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH, USA.
| |
Collapse
|
44
|
Under Pressure: Mechanical Stress Management in the Nucleus. Cells 2016; 5:cells5020027. [PMID: 27314389 PMCID: PMC4931676 DOI: 10.3390/cells5020027] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 12/23/2022] Open
Abstract
Cells are constantly adjusting to the mechanical properties of their surroundings, operating a complex mechanochemical feedback, which hinges on mechanotransduction mechanisms. Whereas adhesion structures have been shown to play a central role in mechanotransduction, it now emerges that the nucleus may act as a mechanosensitive structure. Here, we review recent advances demonstrating that mechanical stress emanating from the cytoskeleton can activate pathways in the nucleus which eventually impact both its structure and the transcriptional machinery.
Collapse
|
45
|
Swärd K, Stenkula KG, Rippe C, Alajbegovic A, Gomez MF, Albinsson S. Emerging roles of the myocardin family of proteins in lipid and glucose metabolism. J Physiol 2016; 594:4741-52. [PMID: 27060572 DOI: 10.1113/jp271913] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/17/2016] [Indexed: 12/20/2022] Open
Abstract
Members of the myocardin family bind to the transcription factor serum response factor (SRF) and act as coactivators controlling genes of relevance for myogenic differentiation and motile function. Binding of SRF to DNA is mediated by genetic elements called CArG boxes, found often but not exclusively in muscle and growth controlling genes. Studies aimed at defining the full spectrum of these CArG elements in the genome (i.e. the CArGome) have in recent years, unveiled unexpected roles of the myocardin family proteins in lipid and glucose homeostasis. This coactivator family includes the protein myocardin (MYOCD), the myocardin-related transcription factors A and B (MRTF-A/MKL1 and MRTF-B/MKL2) and MASTR (MAMSTR). Here we discuss growing evidence that SRF-driven transcription is controlled by extracellular glucose through activation of the Rho-kinase pathway and actin polymerization. We also describe data showing that adipogenesis is influenced by MLK activity through actions upstream of peroxisome proliferator-activated receptor γ with consequences for whole body fat mass and insulin sensitivity. The recently demonstrated involvement of myocardin coactivators in the biogenesis of caveolae, Ω-shaped membrane invaginations of importance for lipid and glucose metabolism, is finally discussed. These novel roles of myocardin proteins may open the way for new unexplored strategies to combat metabolic diseases such as diabetes, which, at the current incidence, is expected to reach 333 million people worldwide by 2025. This review highlights newly discovered roles of myocardin-related transcription factors in lipid and glucose metabolism as well as novel insights into their well-established role as mediators of stretch-dependent effects in smooth muscle. As co-factors for serum response factor (SRF), MKLs regulates transcription of genes involved in the contractile function of smooth muscle cells. In addition to mechanical stimuli, this regulation has now been found to be promoted by extracellular glucose levels in smooth muscle. Recent reports also suggest that MKLs can regulate a subset of genes involved in the formation of lipid-rich invaginations in the cell membrane called caveolae. Finally, a potential role of MKLs in non-muscle cells has been discovered as they negatively influence adipocyte differentiation.
Collapse
Affiliation(s)
- Karl Swärd
- Department of Experimental Medical Science, BMC D12, Lund University, Lund, Sweden
| | - Karin G Stenkula
- Department of Experimental Medical Science, BMC D12, Lund University, Lund, Sweden
| | - Catarina Rippe
- Department of Experimental Medical Science, BMC D12, Lund University, Lund, Sweden
| | - Azra Alajbegovic
- Department of Experimental Medical Science, BMC D12, Lund University, Lund, Sweden
| | - Maria F Gomez
- Department of Clinical Sciences, CRC, Lund University, Malmö, Sweden
| | - Sebastian Albinsson
- Department of Experimental Medical Science, BMC D12, Lund University, Lund, Sweden
| |
Collapse
|
46
|
Dent JE, Devescovi V, Li H, Di Lena P, Lu Y, Liu Y, Nardini C. Mechanotransduction map: simulation model, molecular pathway, gene set. ACTA ACUST UNITED AC 2014; 31:1053-9. [PMID: 25429059 DOI: 10.1093/bioinformatics/btu776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 11/17/2014] [Indexed: 01/07/2023]
Abstract
MOTIVATION Mechanotransduction--the ability to output a biochemical signal from a mechanical input--is related to the initiation and progression of a broad spectrum of molecular events. Yet, the characterization of mechanotransduction lacks some of the most basic tools as, for instance, it can hardly be recognized by enrichment analysis tools, nor could we find any pathway representation. This greatly limits computational testing and hypothesis generation on mechanotransduction biological relevance and involvement in disease or physiological mechanisms. RESULTS We here present a molecular map of mechanotransduction, built in CellDesigner to warrant that maximum information is embedded in a compact network format. To validate the map's necessity we tested its redundancy in comparison with existing pathways, and to estimate its sufficiency, we quantified its ability to reproduce biological events with dynamic simulations, using Signaling Petri Networks. AVAILABILITY AND IMPLEMENTATION SMBL language map is available in the Supplementary Data: core_map.xml, basic_map.xml. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jennifer E Dent
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, People's Republic of China, Quintiles, Global Biostatistics, Reading, Berkshire, UK and Department of Computer Science and Engineering - DISI, University of Bologna, Bologna, Italy Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, People's Republic of China, Quintiles, Global Biostatistics, Reading, Berkshire, UK and Department of Computer Science and Engineering - DISI, University of Bologna, Bologna, Italy
| | - Valentina Devescovi
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, People's Republic of China, Quintiles, Global Biostatistics, Reading, Berkshire, UK and Department of Computer Science and Engineering - DISI, University of Bologna, Bologna, Italy
| | - Han Li
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, People's Republic of China, Quintiles, Global Biostatistics, Reading, Berkshire, UK and Department of Computer Science and Engineering - DISI, University of Bologna, Bologna, Italy
| | - Pietro Di Lena
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, People's Republic of China, Quintiles, Global Biostatistics, Reading, Berkshire, UK and Department of Computer Science and Engineering - DISI, University of Bologna, Bologna, Italy
| | - Youtao Lu
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, People's Republic of China, Quintiles, Global Biostatistics, Reading, Berkshire, UK and Department of Computer Science and Engineering - DISI, University of Bologna, Bologna, Italy
| | - Yuanhua Liu
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, People's Republic of China, Quintiles, Global Biostatistics, Reading, Berkshire, UK and Department of Computer Science and Engineering - DISI, University of Bologna, Bologna, Italy
| | - Christine Nardini
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, People's Republic of China, Quintiles, Global Biostatistics, Reading, Berkshire, UK and Department of Computer Science and Engineering - DISI, University of Bologna, Bologna, Italy
| |
Collapse
|
47
|
Siani A, Tirelli N. Myofibroblast differentiation: main features, biomedical relevance, and the role of reactive oxygen species. Antioxid Redox Signal 2014; 21:768-85. [PMID: 24279926 DOI: 10.1089/ars.2013.5724] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Myofibroblasts are prototypical fibrotic cells, which are involved in a number of more or less pathological conditions, from foreign body reactions to scarring, from liver, kidney, or lung fibrosis to neoplastic phenomena. The differentiation of precursor cells (not only of fibroblastic nature) is characterized by a complex interplay between soluble factors (growth factors such as transforming growth factor β1, reactive oxygen species [ROS]) and material properties (matrix stiffness). RECENT ADVANCES The last 15 years have seen very significant advances in the identification of appropriate differentiation markers, in the understanding of the differentiation mechanism, and above all, the involvement of ROS as causative and persistence factors. CRITICAL ISSUES The specific mechanisms of action of ROS remain largely unknown, although evidence suggests that both intracellular and extracellular phenomena play a role. FUTURE DIRECTIONS Approaches based on antioxidant (ROS-scavenging) principles and on the potentiation of nitric oxide signaling hold much promise in view of a pharmacological therapy of fibrotic phenomena. However, how to make the active principles available at the target sites is yet a largely neglected issue.
Collapse
Affiliation(s)
- Alessandro Siani
- 1 School of Pharmacy and Pharmaceutical Sciences, University of Manchester , Manchester, United Kingdom
| | | |
Collapse
|
48
|
Pinney JR, Du KT, Ayala P, Fang Q, Sievers RE, Chew P, Delrosario L, Lee RJ, Desai TA. Discrete microstructural cues for the attenuation of fibrosis following myocardial infarction. Biomaterials 2014; 35:8820-8828. [PMID: 25047625 DOI: 10.1016/j.biomaterials.2014.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/02/2014] [Indexed: 01/14/2023]
Abstract
Chronic fibrosis caused by acute myocardial infarction (MI) leads to increased morbidity and mortality due to cardiac dysfunction. We have developed a therapeutic materials strategy that aims to mitigate myocardial fibrosis by utilizing injectable polymeric microstructures to mechanically alter the microenvironment. Polymeric microstructures were fabricated using photolithographic techniques and studied in a three-dimensional culture model of the fibrotic environment and by direct injection into the infarct zone of adult rats. Here, we show dose-dependent down-regulation of expression of genes associated with the mechanical fibrotic response in the presence of microstructures. Injection of this microstructured material into the infarct zone decreased levels of collagen and TGF-β, increased elastin deposition and vascularization in the infarcted region, and improved functional outcomes after six weeks. Our results demonstrate the efficacy of these discrete anti-fibrotic microstructures and suggest a potential therapeutic materials approach for combatting pathologic fibrosis.
Collapse
Affiliation(s)
- James R Pinney
- UC Berkeley - UCSF Graduate Group in Bioengineering, 1700 4th Street, QB3 Byers Hall, Room 203, San Francisco, CA 94158, USA; UCSF Medical Scientist Training Program, 1700 4th Street, QB3 Byers Hall, Room 203, San Francisco, CA 94158, USA
| | - Kim T Du
- UCSF Department of Medicine, Cardiovascular Research Institute and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Box 1354, 513 Parnassus Ave, MS Room 1136, San Francisco, CA 94143, USA
| | - Perla Ayala
- UC Berkeley - UCSF Graduate Group in Bioengineering, 1700 4th Street, QB3 Byers Hall, Room 203, San Francisco, CA 94158, USA; Beth Israel Deaconess Medical Center, Department of Surgery, Center for Life Science Surgery/BIDMC, 11th Floor, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Qizhi Fang
- UCSF Department of Medicine, Cardiovascular Research Institute and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Box 1354, 513 Parnassus Ave, MS Room 1136, San Francisco, CA 94143, USA
| | - Richard E Sievers
- UCSF Department of Medicine, Cardiovascular Research Institute and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Box 1354, 513 Parnassus Ave, MS Room 1136, San Francisco, CA 94143, USA
| | - Patrick Chew
- UCSF Bioengineering and Therapeutic Sciences, 1700 4th Street, Byers Hall Room 203, San Francisco, CA 94158, USA
| | - Lawrence Delrosario
- UCSF School of Medicine, 513 Parnassus Ave, MS Room 1136, San Francisco, CA 94143, USA
| | - Randall J Lee
- UC Berkeley - UCSF Graduate Group in Bioengineering, 1700 4th Street, QB3 Byers Hall, Room 203, San Francisco, CA 94158, USA; UCSF Department of Medicine, Cardiovascular Research Institute and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Box 1354, 513 Parnassus Ave, MS Room 1136, San Francisco, CA 94143, USA
| | - Tejal A Desai
- UC Berkeley - UCSF Graduate Group in Bioengineering, 1700 4th Street, QB3 Byers Hall, Room 203, San Francisco, CA 94158, USA; UCSF Bioengineering and Therapeutic Sciences, 1700 4th Street, Byers Hall Room 203, San Francisco, CA 94158, USA.
| |
Collapse
|
49
|
Pagliari S, Jelinek J, Grassi G, Forte G. Targeting pleiotropic signaling pathways to control adult cardiac stem cell fate and function. Front Physiol 2014; 5:219. [PMID: 25071583 PMCID: PMC4076671 DOI: 10.3389/fphys.2014.00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/26/2014] [Indexed: 11/13/2022] Open
Abstract
The identification of different pools of cardiac progenitor cells resident in the adult mammalian heart opened a new era in heart regeneration as a means to restore the loss of functional cardiac tissue and overcome the limited availability of donor organs. Indeed, resident stem cells are believed to participate to tissue homeostasis and renewal in healthy and damaged myocardium although their actual contribution to these processes remain unclear. The poor outcome in terms of cardiac regeneration following tissue damage point out at the need for a deeper understanding of the molecular mechanisms controlling CPC behavior and fate determination before new therapeutic strategies can be developed. The regulation of cardiac resident stem cell fate and function is likely to result from the interplay between pleiotropic signaling pathways as well as tissue- and cell-specific regulators. Such a modular interaction-which has already been described in the nucleus of a number of different cells where transcriptional complexes form to activate specific gene programs-would account for the unique responses of cardiac progenitors to general and tissue-specific stimuli. The study of the molecular determinants involved in cardiac stem/progenitor cell regulatory mechanisms may shed light on the processes of cardiac homeostasis in health and disease and thus provide clues on the actual feasibility of cardiac cell therapy through tissue-specific progenitors.
Collapse
Affiliation(s)
- Stefania Pagliari
- Integrated Center for Cell Therapy and Regenerative Medicine (ICCT), International Clinical Research Center, St. Anne's University HospitalBrno, Czech Republic
| | - Jakub Jelinek
- Integrated Center for Cell Therapy and Regenerative Medicine (ICCT), International Clinical Research Center, St. Anne's University HospitalBrno, Czech Republic
| | - Gabriele Grassi
- Department of Life Sciences, University of TriesteTrieste, Italy
| | - Giancarlo Forte
- Integrated Center for Cell Therapy and Regenerative Medicine (ICCT), International Clinical Research Center, St. Anne's University HospitalBrno, Czech Republic
| |
Collapse
|
50
|
Bertrand AT, Ziaei S, Ehret C, Duchemin H, Mamchaoui K, Bigot A, Mayer M, Quijano-Roy S, Desguerre I, Lainé J, Ben Yaou R, Bonne G, Coirault C. Cellular micro-environments reveal defective mechanosensing responses and elevated YAP signaling in LMNA-mutated muscle precursors. J Cell Sci 2014; 127:2873-84. [DOI: 10.1242/jcs.144907] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The mechanisms underlying cell response to mechanical forces are critical for muscle development and functionality. We aim to determine whether mutations of the LMNA gene causing congenital muscular dystrophy impair the ability of muscle precursors to sense tissue stiffness and to respond to mechanical challenge. We found that LMNA-mutated myoblasts (LMNA) embedded in soft matrix did not align along the gel axis whereas control myoblasts did. LMNA myoblasts were unable to tune their cytoskeletal tension to the tissue stiffness as attested by inappropriate cell-matrix adhesion sites and cytoskeletal tension in soft versus rigid substrates or after mechanical challenge. Importantly, in soft 2D and/or static 3D conditions, LMNA myoblasts demonstrated enhanced activation of Yes-Associated Protein (YAP) signaling pathway that was paradoxically reduced after cyclic stretch. SiRNA-mediated downregulation of YAP reduced adhesion and actin stress fibers in LMNA myoblasts. This is the first demonstration that human myoblasts with LMNA mutations have mechanosensing defects through a YAP-dependent pathway. In addition, our data emphasize the crucial role of biophysical attributes of cellular microenvironment to the response of mechanosensing pathways in lamin A/C mutated myoblasts.
Collapse
|