1
|
Heemskerk T, van de Kamp G, Essers J, Kanaar R, Paul MW. Multi-scale cellular imaging of DNA double strand break repair. DNA Repair (Amst) 2023; 131:103570. [PMID: 37734176 DOI: 10.1016/j.dnarep.2023.103570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Live-cell and high-resolution fluorescence microscopy are powerful tools to study the organization and dynamics of DNA double-strand break repair foci and specific repair proteins in single cells. This requires specific induction of DNA double-strand breaks and fluorescent markers to follow the DNA lesions in living cells. In this review, where we focused on mammalian cell studies, we discuss different methods to induce DNA double-strand breaks, how to visualize and quantify repair foci in living cells., We describe different (live-cell) imaging modalities that can reveal details of the DNA double-strand break repair process across multiple time and spatial scales. In addition, recent developments are discussed in super-resolution imaging and single-molecule tracking, and how these technologies can be applied to elucidate details on structural compositions or dynamics of DNA double-strand break repair.
Collapse
Affiliation(s)
- Tim Heemskerk
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gerarda van de Kamp
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Maarten W Paul
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Pandya P, Braiman A, Isakov N. PICOT (GLRX3) is a positive regulator of stress-induced DNA-damage response. Cell Signal 2019; 62:109340. [PMID: 31176019 DOI: 10.1016/j.cellsig.2019.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/15/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022]
Abstract
Protein kinase C (PKC)-interacting cousin of thioredoxin (PICOT; also termed glutaredoxin 3 (Glrx3)) is a ubiquitously expressed protein that possesses an N-terminal monothiol thioredoxin (Trx) domain and two C-terminal tandem copies of a monothiol Glrx domain. It has an overall highly conserved amino acid sequence and is encoded by a unique gene, both in humans and mice, without having other functional gene homologs in the entire genome. Despite being discovered almost two decades ago, the biological function of PICOT remains largely ill-defined and its ramifications are underestimated considering the fact that PICOT-deficiency in mice results in embryonic lethality. Since classical Glrxs are important regulators of the cellular redox homeostasis, we tested whether PICOT participate in the stress-induced DNA-damage response, focusing on nuclear proteins that function as integral components of the DNA repair machinery. Using wild type versus PICOT-deficient (PICOT-KD) Jurkat T cells we found that the anti-oxidant mechanism in PICOT-deficient cells is impaired, and that these cells respond to genotoxic drugs, such as etoposide and camptothecin, by increased caspase-3 activity, a reduced survival and a slower and diminished phosphorylation of the histone protein, H2AX. Nevertheless, the effect of PICOT on the drug-induced phosphorylation of H2AX was independent of the cellular levels of reactive oxygen species. PICOT-deficient cells also demonstrated reduced and slower γH2AX foci formation in response to radiation. Furthermore, immunofluorescence staining using PICOT- and γH2AX-specific Abs followed by confocal microscopy demonstrated partial localization of PICOT at the γH2AX-containing foci at the site of the DNA double strand breaks. In addition, PICOT knockdown resulted in inhibition of phosphorylation of ATR, Chk1 and Chk2 kinases, which play an essential role in the DNA-damage response and serve as upstream regulators of γH2AX. The present data suggest that PICOT protects cells from DNA damage-inducing agents by operating as an upstream positive regulator of ATR-dependent signaling pathways. By promoting the activity of ATR, PICOT indirectly regulates the phosphorylation and activation of Chk1, Chk2, and γH2AX, which are critical components of the DNA damage repair mechanism and thereby attenuate the stress- and replication-induced genome instability.
Collapse
Affiliation(s)
- Pinakin Pandya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel..
| |
Collapse
|
3
|
Wilson MD, Durocher D. Reading chromatin signatures after DNA double-strand breaks. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0280. [PMID: 28847817 DOI: 10.1098/rstb.2016.0280] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2017] [Indexed: 12/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are DNA lesions that must be accurately repaired in order to preserve genomic integrity and cellular viability. The response to DSBs reshapes the local chromatin environment and is largely orchestrated by the deposition, removal and detection of a complex set of chromatin-associated post-translational modifications. In particular, the nucleosome acts as a central signalling hub and landing platform in this process by organizing the recruitment of repair and signalling factors, while at the same time coordinating repair with other DNA-based cellular processes. While current research has provided a descriptive overview of which histone marks affect DSB repair, we are only beginning to understand how these marks are interpreted to foster an efficient DSB response. Here we review how the modified chromatin surrounding DSBs is read, with a focus on the insights gleaned from structural and biochemical studies.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Marcus D Wilson
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Daniel Durocher
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| |
Collapse
|
4
|
Shahmohammadi Beni M, Krstic D, Nikezic D, Yu KN. Realistic dosimetry for studies on biological responses to X-rays and γ-rays. JOURNAL OF RADIATION RESEARCH 2017; 58:729-736. [PMID: 28444359 PMCID: PMC5737577 DOI: 10.1093/jrr/rrx019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/20/2016] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
A calibration coefficient R (= DA/DE) for photons was employed to characterize the photon dose in radiobiological experiments, where DA was the actual dose delivered to cells and DE was the dose recorded by an ionization chamber. R was determined using the Monte Carlo N-Particle version 5 (MCNP-5) code. Photons with (i) discrete energies, and (ii) continuous-energy distributions under different beam conditioning were considered. The four studied monoenergetic photons had energies E = 0.01, 0.1, 1 and 2 MeV. Photons with E = 0.01 MeV gave R values significantly different from unity, while those with E > 0.1 MeV gave R ≈ 1. Moreover, R decreased monotonically with increasing thickness of water medium above the cells for E = 0.01, 1 or 2 MeV due to energy loss of photons in the medium. For E = 0.1 MeV, the monotonic pattern no longer existed due to the dose delivered to the cells by electrons created through the photoelectric effect close to the medium-cell boundary. The continuous-energy distributions from the X-Rad 320 Biological Irradiator (voltage = 150 kV) were also studied under three different beam conditions: (a) F0: no filter used, (b) F1: using a 2 mm-thick Al filter, and (c) F2: using a filter made of (1.5 mm Al + 0.25 mm Cu + 0.75 mm Sn), giving mean output photon energies of 47.4, 57.3 and 102 keV, respectively. R varied from ~1.04 to ~1.28 for F0, from ~1.13 to ~1.21 for F1, and was very close to unity for F2.
Collapse
Affiliation(s)
- Mehrdad Shahmohammadi Beni
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | | | - Dragoslav Nikezic
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
- Faculty of Science, University of Kragujevac, Serbia
| | - Kwan Ngok Yu
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| |
Collapse
|
5
|
Suchánková J, Legartová S, Ručková E, Vojtěšek B, Kozubek S, Bártová E. Mutations in the TP53 gene affected recruitment of 53BP1 protein to DNA lesions, but level of 53BP1 was stable after γ-irradiation that depleted MDC1 protein in specific TP53 mutants. Histochem Cell Biol 2017; 148:239-255. [PMID: 28397142 DOI: 10.1007/s00418-017-1567-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2017] [Indexed: 11/30/2022]
Abstract
53BP1 is a very well-known protein that is recruited to DNA lesions. The focal accumulation of p53 binding protein, 53BP1, is a main feature indicating the repair of spontaneous or irradiation-induced foci (IRIF). Thus, here, we addressed the question of whether mutations in the TP53 gene, which often affect the level of p53 protein, can change the recruitment of 53BP1 to γ- or UVA-irradiated chromatin. In various TP53 mutants, we observed a distinct accumulation of 53BP1 protein to UV-induced DNA lesions: in R273C mutants, 53BP1 appeared transiently at DNA lesions, during 10-30 min after irradiation; the mutation R282W was responsible for accumulation of 53BP1 immediately after UVA-damage; and in L194F mutants, the first appearance of 53BP1 protein at the lesions occurred during 60-70 min. These results showed that specific mutations in the TP53 gene stand behind not only different levels of p53 protein, but also affect the localized kinetics of 53BP1 protein in UVA-damaged chromatin. However, after γ-irradiation, only G245S mutation in TP53 gene was associated with surprisingly decreased level of 53BP1 protein. In other mutant cell lines, levels of 53BP1 were not affected by γ-rays. To these effects, we conversely found a distinct number of 53BP1-positive irradiation-induced foci in various TP53 mutants. The R280K, G245S, L194F mutations, or TP53 deletion were also characterized by radiation-induced depletion in MDC1 protein. Moreover, in mutant cells, an interaction between MDC1 and 53BP1 proteins was abrogated when compared with wild-type counterpart. Together, the kinetics of 53BP1 accumulation at UV-induced DNA lesions is different in various TP53 mutant cells. After γ-irradiation, despite changes in a number and a volume of 53BP1-positive foci, levels of 53BP1 protein were relatively stable. Here, we showed a link between the status of MDC1 protein and TP53 gene, which specific mutations caused radiation-induced MDC1 down-regulation. This observation is significant, especially with regard to radiotherapy of tumors with abrogated function of TP53 gene.
Collapse
Affiliation(s)
- Jana Suchánková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 00, Brno, Czech Republic
| | - Soňa Legartová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 00, Brno, Czech Republic
| | - Eva Ručková
- Masaryk Memorial Cancer Institute, Žlutý kopec 543/7, 656 53, Brno, Czech Republic
| | - Bořivoj Vojtěšek
- Masaryk Memorial Cancer Institute, Žlutý kopec 543/7, 656 53, Brno, Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 00, Brno, Czech Republic
| | - Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 00, Brno, Czech Republic.
| |
Collapse
|
6
|
Kong EY, Cheng SH, Yu KN. Biphasic and triphasic dose responses in zebrafish embryos to low-dose 150 kV X-rays with different levels of hardness. JOURNAL OF RADIATION RESEARCH 2016; 57:363-9. [PMID: 26951078 PMCID: PMC4973647 DOI: 10.1093/jrr/rrw026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/26/2016] [Accepted: 02/09/2016] [Indexed: 05/22/2023]
Abstract
The in vivo low-dose responses of zebrafish (Danio rerio) embryos to 150 kV X-rays with different levels of hardness were examined through the number of apoptotic events revealed at 24 h post fertilization by vital dye acridine orange staining. Our results suggested that a triphasic dose response was likely a common phenomenon in living organisms irradiated by X-rays, which comprised an ultra-low-dose inhibition, low-dose stimulation and high-dose inhibition. Our results also suggested that the hormetic zone (or the stimulation zone) was shifted towards lower doses with application of filters. The non-detection of a triphasic dose response in previous experiments could likely be attributed to the use of hard X-rays, which shifted the hormetic zone into an unmonitored ultra-low-dose region. In such cases where the subhormetic zone was missed, a biphasic dose response would be reported instead.
Collapse
Affiliation(s)
- Eva Yi Kong
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
| | - Shuk Han Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong
| | - Kwan Ngok Yu
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong
| |
Collapse
|
7
|
The ubiquitin ligases RNF8 and RNF168 display rapid but distinct dynamics at DNA repair foci in living cells. Int J Biochem Cell Biol 2014; 57:27-34. [PMID: 25304081 DOI: 10.1016/j.biocel.2014.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 01/15/2023]
Abstract
Rapid assembly of DNA damage response (DDR) proteins at nuclear "repair" foci is a hallmark response of ionizing radiation (IR)-treated cells. The ubiquitin E3 ligases RNF8 and RNF168 are critical for foci formation, and here we aim to determine their dynamic mobility and abundance at individual foci in living cells. To this end, YFP-tagged RNF8 and RNF168 were expressed at physiological levels in MCF-7 cells, then analyzed by fluorescence recovery after photobleaching (FRAP) assays, nuclear retention measurement, and virus-like particles (VLPs)-based quantification. The results showed that RNF8 and RNF168 were both highly dynamic at IR-induced foci. Intriguingly, RNF8 displayed remarkably faster in vivo association/dissociation rates than RNF168, and RNF8-positive IR-foci were less resistant to detergent extraction. In addition, copy number assay revealed that RNF168 was two-fold more abundant than RNF8 at foci. Collectively, we show for the first time that RNF8 moves on-and-off nuclear DNA repair foci more than six-fold as quickly as RNF168. The faster kinetics of RNF8 recruitment explains why RNF8 is generally observed at DNA-breaks prior to RNF168. Moreover, our finding that RNF8 is less abundant than RNF168 identifies RNF8 as a rate-limiting determinant of focal repair complex assembly.
Collapse
|
8
|
Lai Z, Moravcová S, Canitrot Y, Andrzejewski LP, Walshe DM, Rea S. Msl2 is a novel component of the vertebrate DNA damage response. PLoS One 2013; 8:e68549. [PMID: 23874665 PMCID: PMC3706407 DOI: 10.1371/journal.pone.0068549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/30/2013] [Indexed: 01/20/2023] Open
Abstract
hMSL2 (male-specific lethal 2, human) is a RING finger protein with ubiquitin ligase activity. Although it has been shown to target histone H2B at lysine 34 and p53 at lysine 351, suggesting roles in transcription regulation and apoptosis, its function in these and other processes remains poorly defined. To further characterize this protein, we have disrupted the Msl2 gene in chicken DT40 cells. Msl2−/− cells are viable, with minor growth defects. Biochemical analysis of the chromatin in these cells revealed aberrations in the levels of several histone modifications involved in DNA damage response pathways. DNA repair assays show that both Msl2−/− chicken cells and hMSL2-depleted human cells have defects in non-homologous end joining (NHEJ) repair. DNA damage assays also demonstrate that both Msl2 and hMSL2 proteins are modified and stabilized shortly after induction of DNA damage. Moreover, hMSL2 mediates modification, presumably ubiquitylation, of a key DNA repair mediator 53BP1 at lysine 1690. Similarly, hMSL1 and hMOF (males absent on the first) are modified in the presence of hMSL2 shortly after DNA damage. These data identify a novel role for Msl2/hMSL2 in the cellular response to DNA damage. The kinetics of its stabilization suggests a function early in the NHEJ repair pathway. Moreover, Msl2 plays a role in maintaining normal histone modification profiles, which may also contribute to the DNA damage response.
Collapse
Affiliation(s)
- Zheng Lai
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Simona Moravcová
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland
| | | | - Lukasz P. Andrzejewski
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Dervla M. Walshe
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Stephen Rea
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland
- * E-mail:
| |
Collapse
|