1
|
Das S, Patel T, Himaja A, Regula S, Banerjee S, De AK, Qureshi IA, Gayen S, Ghosh B, Adhikari N, Jha T. Derivatives of D(-)-glutamine-based MMP-2 inhibitors as an effective remedy for the management of chronic myeloid leukemia-Part-III: Synthesis, biological screening and in silico binding interaction analysis. Bioorg Chem 2025; 154:108057. [PMID: 39708552 DOI: 10.1016/j.bioorg.2024.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Tyrosine kinase inhibitors (TKIs) have markedly improved the overall survival rate of patients with chronic myeloid leukemia (CML), enabling them to achieve a normal life expectancy. However, toxicity, relapse, and drug resistance continue to pose major challenges in the clinical treatment of CML. The progression of leukemia is directly connected to higher expression levels and enzymatic actions of matrix metalloproteinase-2 (MMP-2). It is also associated with increased expression and enzymatic actions of matrix metalloproteinase-9 (MMP-9). From this perspective, MMP-2 and MMP-9 offers a promising strategy for developing novel therapeutic molecules that could be effective in treating CML. This study is the Part-III of D(-)-glutamine-based MMP-2 inhibitors series for the management of chronic myeloid leukemia. Fourteen newly synthesized p-tosyl-D(-)-glutamine derivatives were examined in cell culture-based antileukemic assays and also evaluated for their ability to inhibit MMPs. The lead compounds 5g and 5j demonstrated the most promising antileukemic potential. Compounds 5g and 5j are safe for normal cells and effectively block gelatinases (MMP-2 and MMP-9). The best active molecule 5g induced significant apoptosis. Compound 5g reduced MMP-2 levels in the K562 cell line. It also had strong antiangiogenic effects in the ACHN cell line. The strongest MMP-2 inhibitor, 5g, had stable binding at the MMP-2 active site, which is linked to its effective inhibition of MMP-2. In conclusion, these p-tosyl-D(-)-glutamine derivatives are promising MMP-2 inhibitors. They have strong anti-CML effects and should be studied more for future CML treatment.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Matrix Metalloproteinase 2/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Matrix Metalloproteinase Inhibitors/pharmacology
- Matrix Metalloproteinase Inhibitors/chemistry
- Matrix Metalloproteinase Inhibitors/chemical synthesis
- Glutamine/chemistry
- Glutamine/metabolism
- Glutamine/pharmacology
- Structure-Activity Relationship
- Molecular Structure
- Drug Screening Assays, Antitumor
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Molecular Docking Simulation
Collapse
Affiliation(s)
- Sanjib Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India; School of Pharmacy, Sister Nivedita University, DG Block (New Town), Action Area 1, 1/2, Newtown, Chakpachuria, Kolkata 700156, India
| | - Tarun Patel
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Ambati Himaja
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Sanjeev Regula
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Asit Kumar De
- Department of Chemistry, Jadavpur University, Kolkata, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India.
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
2
|
Das S, Amin SA, Jha T. Inhibitors of gelatinases (MMP-2 and MMP-9) for the management of hematological malignancies. Eur J Med Chem 2021; 223:113623. [PMID: 34157437 DOI: 10.1016/j.ejmech.2021.113623] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022]
Abstract
Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) are collectively known as gelatinases whereas MMP-2 is gelatinase-A and MMP-9 is termed as gelatinase-B. Gelatinases and other matrix metalloproteinases (MMPs) have long been associated with solid tumor invasion, metastasis and angiogenesis. However, there is paucity of data available regarding the role of gelatinases in hematological malignancies. Recent studies have shown that gelatinases activities or functions are correlated with hematological malignancies. Strategies for designing more specific gelatinase inhibitors like catalytic (CAT) domain inhibitors and hemopexin (PEX) domain inhibitors as well as signaling pathway based or gelatinase expression inhibitors had been reported against hematologic malignant cells. Several substrate based non-selective to non-substrate based relatively selective synthetic matrix metalloproteinase inhibitors (MMPIs) had been developed. Few MMPIs had reached in clinical trials during the period of 1990s-2000s. Unfortunately the anti-tumor and anti-metastatic efficacies of these MMPIs were not justified with patients having several advanced stage solid tumor cancers in any substantial number of clinical trials. Till date not a single MMPI passed phase III clinical trials designed for advanced metastatic cancers due to adverse events as well as lack of ability to show uniformity in disease prolongation. With the best of our knowledge no clinical trial study has been reported with small molecule synthetic inhibitors against hematological malignancies. This review looks at the outcome of clinical trials of MMPIs for advanced stage solid tumors. This can therefore, act as a learning experience for future development of successful gelatinase inhibitors for the management of hematological malignancies.
Collapse
Affiliation(s)
- Sanjib Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
3
|
Miller DR, Tzeng CC, Farmer T, Keller ET, Caplan S, Chen YS, Chen YL, Lin MF. Novel CIL-102 derivatives as potential therapeutic agents for docetaxel-resistant prostate cancer. Cancer Lett 2018; 436:96-108. [PMID: 30077739 PMCID: PMC6278836 DOI: 10.1016/j.canlet.2018.07.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/06/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
The standard-of-care treatment for metastatic prostate cancer (PCa) is androgen deprivation therapy (ADT). Nevertheless, most tumors eventually relapse and develop into lethal castration-resistant prostate cancer (CRPC). Docetaxel is a FDA-approved agent for the treatment of CRPC; however, the tumor often quickly develops resistance to this drug. Thus, there is an immediate need for novel therapies to treat docetaxel-resistant PCa. In this study, we modified the structure of CIL-102 and investigated the efficacy of the derivatives against CRPC and docetaxel-resistant PCa. These novel CIL-102 derivatives inhibit CRPC tumorigenicity, including proliferation, migration and colony formation, and importantly, selectively inhibit CRPC cell proliferation over non-cancerous prostate epithelia. Computational modeling indicated the derivatives bind to β-tubulin and immunocytochemistry revealed the depolymerization of microtubules upon treatment. Western blot analyses reveal that pro-apoptotic and anti-oxidant pathways are activated, and MitoSOX and DCF-DA analyses confirmed increased reactive oxygen species (ROS) production upon treatments. Furthermore, CIL-102 derivatives effectively reduce the proliferation of docetaxel-resistant CR PCa cell lines. Our data indicate the potential of these compounds as promising therapeutic agents for CRPC as well as docetaxel-resistant CRPC.
Collapse
Affiliation(s)
- Dannah R Miller
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Cherng-Chyi Tzeng
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Trey Farmer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Evan T Keller
- Department of Urology, University of Michigan Medical School, and Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu-Shuin Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yeh-Long Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Section of Urology, Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA; College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Zou J, Wang N, Liu M, Bai Y, Wang H, Liu K, Zhang H, Xiao X, Wang K. Nucleolin mediated pro-angiogenic role of Hydroxysafflor Yellow A in ischaemic cardiac dysfunction: Post-transcriptional regulation of VEGF-A and MMP-9. J Cell Mol Med 2018; 22:2692-2705. [PMID: 29512890 PMCID: PMC5908102 DOI: 10.1111/jcmm.13552] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/02/2018] [Indexed: 01/22/2023] Open
Abstract
Hydroxysafflor Yellow A (HSYA), a most representative ingredient of Carthamus tinctorius L., had long been used in treating ischaemic cardiovascular diseases in China and exhibited prominently anticoagulant and pro-angiogenic activities, but the underlying mechanisms remained largely unknown. This study aimed to further elucidate the pro-angiogenic effect and mechanism of HSYA on ischaemic cardiac dysfunction. A C57 mouse model of acute myocardial infarction (AMI) was firstly established, and 25 mg/kg HSYA was intraperitoneally injected immediately after operation and given once, respectively, each morning and evening for 2 weeks. It was found that HSYA significantly improved ischaemia-induced cardiac haemodynamics, enhanced the survival rate, alleviated the myocardial injury and increased the expressions of CD31, vascular endothelial growth factor-A (VEGF-A) and nucleolin in the ischaemic myocardium. In addition, HSYA promoted the migration and tube formation of human umbilical vein endothelial cells (HUVECs), enhanced the expressions of nucleolin, VEGF-A and matrix metalloproteinase-9 (MMP-9) in a dose- and time-dependent manner. However, down-regulation of nucleolin expression sharply abrogated the effect mentioned above of HSYA. Further protein-RNA coimmunoprecipitation and immunoprecipitation-RT-PCR assay showed that nucleolin binded to VEGF-A and MMP-9 mRNA and overexpression of nucleolin up-regulated the mRNA expressions of VEGF-A and MMP-9 in the HUVECs through enhancing the stability of VEGF-A and MMP-9 mRNA. Furthermore, HSYA increased the mRNA expressions of VEGF-A and MMP-9 in the extract of antinucleolin antibody-precipitated protein from the heart of AMI mice. Our data revealed that nucleolin mediated the pro-angiogenic effect of HSYA through post-transcriptional regulation of VEGF-A and MMP-9 expression, which contributed to the protective effect of HSYA on ischaemic cardiac dysfunction.
Collapse
Affiliation(s)
- Jiang Zou
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
| | - Nian Wang
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
| | - Manting Liu
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
| | - Yongping Bai
- Department of Geriatric MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Hao Wang
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
| | - Ke Liu
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
| | - Huali Zhang
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
| | - Xianzhong Xiao
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
| | - Kangkai Wang
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
- Department of Laboratory AnimalsXiangya School of MedicineCentral South UniversityChangshaChina
| |
Collapse
|
5
|
Mukherjee A, Adhikari N, Jha T. A pentanoic acid derivative targeting matrix metalloproteinase-2 (MMP-2) induces apoptosis in a chronic myeloid leukemia cell line. Eur J Med Chem 2017; 141:37-50. [DOI: 10.1016/j.ejmech.2017.09.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/13/2017] [Accepted: 09/25/2017] [Indexed: 01/18/2023]
|
6
|
Amin SA, Adhikari N, Jha T. Is dual inhibition of metalloenzymes HDAC-8 and MMP-2 a potential pharmacological target to combat hematological malignancies? Pharmacol Res 2017; 122:8-19. [DOI: 10.1016/j.phrs.2017.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/17/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022]
|
7
|
Huang WS, Kuo YH, Kuo HC, Hsieh MC, Huang CY, Lee KC, Lee KF, Shen CH, Tung SY, Teng CC. CIL-102-Induced Cell Cycle Arrest and Apoptosis in Colorectal Cancer Cells via Upregulation of p21 and GADD45. PLoS One 2017; 12:e0168989. [PMID: 28068431 PMCID: PMC5221879 DOI: 10.1371/journal.pone.0168989] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 12/09/2016] [Indexed: 01/19/2023] Open
Abstract
CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone) is a well-known, major active agent of the alkaloid derivative of Camptotheca acuminata with valuable biological properties, including anti-tumorigenic activity. In this study, we investigated the molecular mechanisms by which CIL-102 mediated the induction of cell death, and we performed cell cycle G2/M arrest to clarify molecular changes in colorectal cancer cells (CRC). Treatment of DLD-1 cells with CIL-102 resulted in triggering the extrinsic apoptosis pathway through the activation of Fas-L, caspase-8 and the induction of Bid cleavage and cytochrome c release in a time-dependent manner. In addition, CIL-102 mediated apoptosis and G2/M arrest by phosphorylation of the Jun N-terminus kinase (JNK1/2) signaling pathway. This resulted in the expression of NFκB p50, p300 and CREB-binding protein (CBP) levels, and in the induction of p21 and GADD45 as well as the decreased association of cdc2/cyclin B. Furthermore, treatment with the JNK1/2 (SP600125), NFκB (PDTI) or the p300/CBP (C646) inhibitors abolished CIL-102-induced cell cycle G2/M arrest and reversed the association of cdc2 with cyclin B. Therefore, we demonstrated that there was an increase in the cellular levels of p21 and GADD45 by CIL-102 reduction in cell viability and cell cycle arrest via the activation of the JNK1/2, NFκB p50, p300 and CBP signaling modules. Collectively, our results demonstrated that CIL-102 induced cell cycle arrest and apoptosis of colon cancer cells by upregulating p21 and GADD45 expression and by activating JNK1/2, NFκB p50 and p300 to provide a new mechanism for CIL-102 treatment.
Collapse
Affiliation(s)
- Wen-Shih Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Hung Kuo
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Chiayi, Taiwan
| | - Hsing-Chun Kuo
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Chronic Diseases and Health Promotion Research Center, CGUST, Chiayi, Taiwan
| | - Meng-Chiao Hsieh
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Chiayi, Taiwan
| | - Cheng-Yi Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ko-Chao Lee
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kam-Fai Lee
- Department of Pathology, Chang Gung Memorial Hospital at Chiayi, Taiwan
| | - Chien-Heng Shen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Chiayi, Taiwan
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Shui-Yi Tung
- Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chih-Chuan Teng
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Chronic Diseases and Health Promotion Research Center, CGUST, Chiayi, Taiwan
| |
Collapse
|
8
|
Yu CC, Liu SP, Hsu JL, Hsu JT, Kudryavtsev KV, Guh JH. KUD773, a phenylthiazole derivative, displays anticancer activity in human hormone-refractory prostate cancers through inhibition of tubulin polymerization and anti-Aurora A activity. J Biomed Sci 2015; 22:2. [PMID: 25563361 PMCID: PMC4304192 DOI: 10.1186/s12929-014-0107-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 12/17/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Hormone-refractory prostate cancer (HRPC), which is resistant to hormone therapy, is a major obstacle in clinical treatment. An approach to inhibit HRPC growth and ultimately to kill cancers is highly demanded. RESULTS KUD773 induced the anti-proliferative effect and subsequent apoptosis in PC-3 and DU-145 (two HRPC cell lines); whereas, it showed less active in normal prostate cells. Further examination showed that KUD773 inhibited tubulin polymerization and induced an increase of mitotic phosphoproteins and polo-like kinase 1 (PLK1) phosphorylation, indicating a mitotic arrest of the cell cycle through an anti-tubulin action. The kinase assay demonstrated that KUD773 inhibited Aurora A activity. KUD773 induced an increase of Cdk1 phosphorylation at Thr(161) (a stimulatory phosphorylation site) and a decrease of phosphorylation at Tyr(15) (an inhibitory phosphorylation site), suggesting the activation of Cdk1. The data were substantiated by an up-regulation of cyclin B1 (a Cdk1 partner). Furthermore, KUD773 induced the phosphorylation and subsequent down-regulation of Bcl-2 and activation of caspase cascades. CONCLUSIONS The data suggest that KUD773 induces apoptotic signaling in a sequential manner. It inhibits tubulin polymerization associated with an anti-Aurora A activity, leading to Cdk1 activation and mitotic arrest of the cell cycle that in turn induces Bcl-2 degradation and a subsequent caspase activation in HRPCs.
Collapse
Affiliation(s)
- Chia-Chun Yu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan.
| | - Shih-Ping Liu
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jui-Ling Hsu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan.
| | - John Ta Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan.
| | - Konstantin V Kudryavtsev
- Department of Medicinal Chemistry, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation. .,Institute of Physiologically Active Compounds, Russian Academy of Sciences, Moscow region, Russian Federation.
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Liu WH, Chen YJ, Chien JH, Chang LS. Amsacrine suppresses matrix metalloproteinase-2 (MMP-2)/MMP-9 expression in human leukemia cells. J Cell Physiol 2014; 229:588-98. [PMID: 24122234 DOI: 10.1002/jcp.24481] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 09/27/2013] [Indexed: 11/10/2022]
Abstract
This study explores the suppression mechanism of amsacrine (4-(9-Acridinylamino)-N-(methanesulfonyl)-m-anisidine hydrochloride) on matrix metalloproteinase-2 (MMP-2) and MMP-9 expression in human leukemia cells. Amsacrine attenuated cell invasion with decreased MMP-2/MMP-9 protein expression and mRNA levels in U937, Jurkat, HL-60, K562, KU812, and MEG-01 cells. Moreover, amsacrine reduced both MMP-2/MMP-9 promoter luciferase activity and MMP-2/MMP-9 mRNA stability in leukemia cells. Studies on amsacrine-treated U937 cells revealed that amsacrine-elicited ROS generation induced JNK and p38 MAPK activation but reduced the phospho-ERK level. Amsacrine-induced ERK inactivation and p38 MAPK/JNK activation were demonstrated to suppress MMP-2/MMP-9 promoter luciferase activity and promote MMP-2/MMP-9 mRNA decay, respectively. p38 MAPK/JNK activation led to up-regulation of protein phosphatase 2A catalytic subunit α (PP2Acα) in amsacrine-treated U937 cells. Okadaic acid (PP2A inhibitor) treatment increased MMP-2/MMP-9 mRNA stability in amsacrine-treated cells, whereas PP2Acα over-expression increased MMP-2/MMP-9 mRNA decay. Amsacrine-induced MMP-2/MMP-9 down-regulation was also related to PP2Acα up-regulation on Jurkat, HL-60, K562, KU812, and MEG-01 cells. Collectively, our data indicate that amsacrine induces MMP-2/MMP-9 down-regulation via simultaneous suppression of genetic transcription and mRNA stability in human leukemia cells.
Collapse
Affiliation(s)
- Wen-Hsin Liu
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
10
|
Liu WH, Chen YJ, Cheng TL, Lin SR, Chang LS. Cross talk between p38MAPK and ERK is mediated through MAPK-mediated protein phosphatase 2A catalytic subunit α and MAPK phosphatase-1 expression in human leukemia U937 cells. Cell Signal 2013; 25:1845-51. [DOI: 10.1016/j.cellsig.2013.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 05/11/2013] [Indexed: 10/26/2022]
|