1
|
Liu H, Huang H, Huang Z, Chen Y, Tan D, Wang X, Pang X, Chen S, Liang L, Yang H. D609 Suppresses Antituberculosis Response by Regulating Dendritic Cells Antigen Presentation. Immun Inflamm Dis 2024; 12:e70103. [PMID: 39692711 PMCID: PMC11653942 DOI: 10.1002/iid3.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/18/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
OBJECTIVE To elucidate the role of phosphatidylcholine-specific phospholipase C (PC-PLC) in the antituberculosis (anti-TB) immune response mediated by dendritic cells (DCs). METHODS In vivo, C57BL/6J mice infected with the Mycobacterium tuberculosis strain H37Rv. Before infection, the mice were pretreated with the PC-PLC inhibitor D609. Bacillary loads in lung and spleen tissues were quantified through colony-forming unit (CFU) assays. Hematoxylin and eosin (H&E) staining was performed to assess inflammatory infiltration and tissue damage. Levels of inflammatory mediators in peripheral venous blood were quantified using enzyme-linked immunosorbent assays (ELISAs). Flow cytometry was employed to determine the proportions of conventional DCs (cDCs) and their subsets, cDC1 and cDC2, within lung, spleen, and lymph node tissues. In vitro, mouse bone marrow-derived dendritic cells (BMDCs) pretreated with D609. The expression levels of chemokines and pro-inflammatory cytokines were assessed via quantitative polymerase chain reaction (qPCR) and ELISA. BMDCs were loaded with H37Rv expressing red fluorescent protein (RFP-H37Rv) or DQ-OVA, and flow cytometry was utilized to analyze the impact of D609 on antigen phagocytosis and processing. Furthermore, flow cytometry was employed to evaluate the effect of D609 pretreatment on the expression levels of costimulatory molecules on BMDCs. The capacity of D609-treated BMDCs to activate and proliferate T cells, as well as to induce interferon-gamma (IFN-γ) secretion, was assessed through a DC-T cell coculture system. RESULTS In vivo analysis revealed that mice pretreated with D609 exhibited a marked increase in tissue bacterial load, enhanced inflammatory infiltration, and a reduction in pro-inflammatory mediator expression in peripheral venous blood. There was a notable decrease in the number of cDCs in lung and lymph node tissues, with a pronounced reduction in cDC1 in the lungs and cDC2 in the lymph nodes. In vitro studies demonstrated that D609 pretreated BMDCs displayed a significant decline in inflammatory mediator production, antigen phagocytosis, and antigen processing capabilities, potentially due to altered expression of costimulatory molecules. Coculture experiments indicated that D609 pretreated BMDCs showed a substantial reduction in their ability to stimulate T cell activation, proliferation, and IFN-γ secretion. CONCLUSION Our findings suggest that PC-PLC plays a critical role in the functionality of DCs, including the production of chemokines and pro-inflammatory cytokines, migration to lymph nodes, and antigen presentation to T cells, which collectively contribute to T cell activation and effective clearance of Mycobacterium tuberculosis. Further investigation into the regulatory mechanisms of PC-PLC in DCs may uncover novel therapeutic targets for the development of advanced anti-TB treatments.
Collapse
Affiliation(s)
- Honglin Liu
- Department of Clinical LaboratoryZhongshan Second People's HospitalZhongshanGuangdongChina
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical UniversityGuangzhouGuangdongChina
| | - Huimin Huang
- Department of Clinical LaboratoryZhongshan Second People's HospitalZhongshanGuangdongChina
| | - Zhen Huang
- Department of Clinical LaboratoryZhongshan Second People's HospitalZhongshanGuangdongChina
| | - Yingxuan Chen
- Department of Clinical LaboratoryZhongshan Second People's HospitalZhongshanGuangdongChina
| | - Deyou Tan
- Department of Clinical LaboratoryZhongshan Second People's HospitalZhongshanGuangdongChina
| | - Xiaoni Wang
- Department of Clinical LaboratoryZhongshan Second People's HospitalZhongshanGuangdongChina
| | - Xiaoni Pang
- Department of Clinical LaboratoryZhongshan Second People's HospitalZhongshanGuangdongChina
| | - Shuwen Chen
- Department of Clinical LaboratoryZhongshan Second People's HospitalZhongshanGuangdongChina
| | - Lianhui Liang
- Department of Clinical LaboratoryZhongshan Second People's HospitalZhongshanGuangdongChina
| | - Haihui Yang
- Department of Clinical LaboratoryZhongshan Second People's HospitalZhongshanGuangdongChina
| |
Collapse
|
2
|
Bhat AH, Dar KB, Khan A, Alshahrani S, Alshehri SM, Ghoneim MM, Alam P, Shakeel F. Tricyclodecan-9-yl-Xanthogenate (D609): Mechanism of Action and Pharmacological Applications. Int J Mol Sci 2022; 23:3305. [PMID: 35328726 PMCID: PMC8954530 DOI: 10.3390/ijms23063305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Tricyclodecan-9-yl xanthogenate (D609) is a synthetic tricyclic compound possessing a xanthate group. This xanthogenate compound is known for its diverse pharmacological properties. Over the last three decades, many studies have reported the biological activities of D609, including antioxidant, antiapoptotic, anticholinergic, anti-tumor, anti-inflammatory, anti-viral, anti-proliferative, and neuroprotective activities. Its mechanism of action is extensively attributed to its ability to cause the competitive inhibition of phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) and sphingomyelin synthase (SMS). The inhibition of PCPLC or SMS affects secondary messengers with a lipidic nature, i.e., 1,2-diacylglycerol (DAG) and ceramide. Various in vitro/in vivo studies suggest that PCPLC and SMS inhibition regulate the cell cycle, block cellular proliferation, and induce differentiation. D609 acts as a pro-inflammatory cytokine antagonist and diminishes Aβ-stimulated toxicity. PCPLC enzymatic activity essentially requires Zn2+, and D609 might act as a potential chelator of Zn2+, thereby blocking PCPLC enzymatic activity. D609 also demonstrates promising results in reducing atherosclerotic plaque formation, post-stroke cerebral infarction, and cancer progression. The present compilation provides a comprehensive mechanistic insight into D609, including its chemistry, mechanism of action, and regulation of various pharmacological activities.
Collapse
Affiliation(s)
- Aashiq Hussain Bhat
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India; (A.H.B.); (K.B.D.)
| | - Khalid Bashir Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India; (A.H.B.); (K.B.D.)
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Sultan M. Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (F.S.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (F.S.)
| |
Collapse
|
3
|
Shao J, Jin Y, Shao C, Fan H, Wang X, Yang G. Serum exosomal pregnancy zone protein as a promising biomarker in inflammatory bowel disease. Cell Mol Biol Lett 2021; 26:36. [PMID: 34376139 PMCID: PMC8353742 DOI: 10.1186/s11658-021-00280-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a kind of intestinal immune dysfunction disease, and its occurrence and prevalence are on the rise worldwide. As a chronic gastrointestinal disease, its pathogenesis is still unknown. Exosomes are vesicles in various body fluids that carry a variety of substances. They can mediate intercellular communication and long-distance transport of multiple media. In this study, we investigated the protein profile of serum exosomes from healthy people and IBD patients to explore a new serological biomarker for IBD. METHODS Initially, exosomes were extracted from serum samples, and the proteins within the exosomes were identified by label-free liquid chromatography/mass spectrometry (LC-MS/MS). Western blot and ELISA were used to assess the identified protein. To further analyze the target protein, an acute colitis mouse model was established, and exosomes in colonic tissue and serum were extracted to investigate the protein in them. RESULTS Firstly, serum exosomes were extracted from samples, and proteins in exosomes were identified by LC-MS/MS. Through statistical analysis, we identified 633 proteins. Among these proteins, pregnancy zone protein (PZP) showed a marked difference between patients with IBD and healthy people, in that its expression level was much higher in the IBD patients This exosomal protein was associated with immunosuppressive effects. Also, the level of PZP in colon tissue exosomes and serum exosomes of acute colitis mice was significantly higher than that of the control group. CONCLUSIONS Our findings indicated that serum exosome PZP was present at a high level in the IBD patients. Hence it might be a promising biomarker and enhance auxiliary diagnosis of IBD.
Collapse
Affiliation(s)
- Jing Shao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Chunhong Shao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hui Fan
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xiaorui Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Guang Yang
- Department of General Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, Shandong, China.
| |
Collapse
|
4
|
Synergistic Effect of the Long-Term Overexpression of Bcl-2 and BDNF Lentiviral in Cell Protecting against Death and Generating TH Positive and CHAT Positive Cells from MSC. Int J Mol Sci 2021; 22:ijms22137086. [PMID: 34209365 PMCID: PMC8268627 DOI: 10.3390/ijms22137086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSC) are potentially a good material for transplantation in many diseases, including neurodegenerative diseases. The main problem with using them is the low percentage of surviving cells after the transplant procedure and the naturally poor ability of MSC to spontaneously differentiate into certain types of cells, which results in their poor integration with the host cells. The aim and the novelty of this work consists in the synergistic overexpression of two genes, BCL2 and BDNF, using lentiviral vectors. According to our hypothesis, the overexpression of the BCL2 gene is aimed at increasing the resistance of cells to stressors and toxic factors. In turn, the overexpression of the BDNF gene is suspected to direct the MSC into the neural differentiation pathway. As a result, it was shown that the overexpression of both genes and the overproduction of proteins is permanent and persists for at least 60 days. The synergistically transduced MSC were significantly more resistant to the action of staurosporine; 12 days after transduction, the synergistically transduced MSC had a six-times greater survival rate. The overexpression of the Bcl-2 and BDNF proteins was sufficient to stimulate a significant overexpression of the CHAT gene, and under specific conditions, the TH, TPH1, and SYP genes were also overexpressed. Modified MSC are able to differentiate into cholinergic and dopaminergic neurons, and the release of acetylcholine and dopamine may indicate their functionality.
Collapse
|
5
|
Kang YH, Shivakumar SB, Son YB, Bharti D, Jang SJ, Heo KS, Park WU, Byun JH, Park BW, Rho GJ. Comparative analysis of three different protocols for cholinergic neuron differentiation in vitro using mesenchymal stem cells from human dental pulp. Anim Cells Syst (Seoul) 2019; 23:275-287. [PMID: 31489249 PMCID: PMC6711138 DOI: 10.1080/19768354.2019.1626280] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/14/2022] Open
Abstract
A decrease in the activity of choline acetyltransferase, the enzyme responsible for acetylcholine synthesis in the cholinergic neurons cause neurological disorders involving a decline in cognitive abilities, such as Alzheimer's disease. Mesenchymal stem cells (MSCs) can be used as an efficient therapeutic agents due to their neuronal differentiation potential. Different source derived MSCs may have different differentiation potential under different inductions. Various in vitro protocols have been developed to differentiate MSCs into specific neurons but the comparative effect of different protocols utilizing same source derived MSCs, is not known. To address this issue, dental pulp derived MSCs (DPSCs) were differentiated into cholinergic neurons using three different protocols. In protocol I, DPSCs were pre-induced with serum-free ADMEM containing 1 mM of β-mercaptoethanol for 24 h and then incubated with 100 ng/ml nerve growth factor (NGF) for 6 days. Under protocol II, DPSCs were cultured in serum-free ADMEM containing 15 µg/ml of D609 (tricyclodecan-9-yl-xanthogenate) for 4 days. Under protocol III, the DPSCs were cultured in serum-free ADMEM containing 10 ng/ml of basic fibroblast growth factor (bFGF), 50 µM of forskolin, 250 ng/ml of sonic hedgehog (SHH), and 0.5 µM of retinoic acid (RA) for 7 days. The DPSCs were successfully trans-differentiated under all the protocols, exhibited neuron-like morphologies with upregulated cholinergic neuron-specific markers such as ChAT, HB9, ISL1, BETA-3, and MAP2 both at mRNA and protein levels in comparison to untreated cells. However, protocol III-induced cells showed the highest expression of the cholinergic markers and secreted the highest level of acetylcholine.
Collapse
Affiliation(s)
- Young-Hoon Kang
- Department of Dentistry, Gyeongsang National University School of Medicine and Institute of Health Science, Jinju, Republic of Korea.,Department of Oral and Maxillofacial Surgery, Changwon Gyeongsang National University Hospital, Changwon, Republic of Korea
| | - Sharath Belame Shivakumar
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Bum Son
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Kang-Sun Heo
- Department of Oral and Maxillofacial Surgery, Changwon Gyeongsang National University Hospital, Changwon, Republic of Korea
| | - Won-Uk Park
- Department of Dental Technology, Jinju Health College, Jinju, Republic of Korea
| | - June-Ho Byun
- Department of Dentistry, Gyeongsang National University School of Medicine and Institute of Health Science, Jinju, Republic of Korea
| | - Bong-Wook Park
- Department of Dentistry, Gyeongsang National University School of Medicine and Institute of Health Science, Jinju, Republic of Korea.,Department of Oral and Maxillofacial Surgery, Changwon Gyeongsang National University Hospital, Changwon, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
6
|
Jang S, Kang YH, Ullah I, Shivakumar SB, Rho GJ, Cho YC, Sung IY, Park BW. Cholinergic Nerve Differentiation of Mesenchymal Stem Cells Derived from Long-Term Cryopreserved Human Dental Pulp In Vitro and Analysis of Their Motor Nerve Regeneration Potential In Vivo. Int J Mol Sci 2018; 19:ijms19082434. [PMID: 30126144 PMCID: PMC6122009 DOI: 10.3390/ijms19082434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/14/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
The reduction of choline acetyltransferase, caused by the loss of cholinergic neurons, leads to the absence of acetylcholine (Ach), which is related to motor nerve degeneration. The aims of the present study were to evaluate the in vitro cholinergic nerve differentiation potential of mesenchymal stem cells from cryopreserved human dental pulp (hDPSCs-cryo) and to analyze the scale of in vivo motor nerve regeneration. The hDPSCs-cryo were isolated and cultured from cryopreserved dental pulp tissues, and thereafter differentiated into cholinergic neurons using tricyclodecane-9-yl-xanthogenate (D609). Differentiated cholinergic neurons (DF-chN) were transplanted into rats to address sciatic nerve defects, and the scale of in vivo motor nerve regeneration was analyzed. During in vitro differentiation, the cells showed neuron-like morphological changes including axonal fibers and neuron body development, and revealed high expression of cholinergic neuron-specific markers at both the messenger RNA (mRNA) and protein levels. Importantly, DF-chN showed significant Ach secretion ability. At eight weeks after DF-chN transplantation in rats with sciatic nerve defects, notably increased behavioral activities were detected with an open-field test, with enhanced low-affinity nerve growth factor receptor (p75NGFR) expression detected using immunohistochemistry. These results demonstrate that stem cells from cryopreserved dental pulp can successfully differentiate into cholinergic neurons in vitro and enhance motor nerve regeneration when transplanted in vivo. Additionally, this study suggests that long-term preservation of dental pulp tissue is worthwhile for use as an autologous cell resource in the field of nerve regeneration, including cholinergic nerves.
Collapse
Affiliation(s)
- Soomi Jang
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Ulsan, Ulsan 44033, Korea.
| | - Young-Hoon Kang
- Department of Dentistry, Gyeongsang National University School of Medicine and Institute of Health Science, Jinju 52727, Korea.
- Department of Oral and Maxillofacial Surgery, Changwon Gyeongsang National University Hospital, Changwon 51472, Korea.
| | - Imran Ullah
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Sharath Belame Shivakumar
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Yeong-Cheol Cho
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Ulsan, Ulsan 44033, Korea.
| | - Iel-Yong Sung
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Ulsan, Ulsan 44033, Korea.
| | - Bong-Wook Park
- Department of Dentistry, Gyeongsang National University School of Medicine and Institute of Health Science, Jinju 52727, Korea.
- Department of Oral and Maxillofacial Surgery, Changwon Gyeongsang National University Hospital, Changwon 51472, Korea.
| |
Collapse
|
7
|
Xu R, Chen W, Zhang Z, Qiu Y, Wang Y, Zhang B, Lu W. Integrated data analysis identifies potential inducers and pathways during the endothelial differentiation of bone-marrow stromal cells by DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine. Gene 2018. [PMID: 29514045 DOI: 10.1016/j.gene.2018.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bone-Marrow Stromal Cells (BMSCs)-derived vascular endothelial cells (VECs) is regarded as an important therapeutic strategy for spinal cord injury, disc degeneration, cerebral ischemic disease and diabetes. The change in DNA methylation level is essential for stem cell differentiation. However, the DNA methylation related mechanisms underlying the endothelial differentiation of BMSCs are not well understood. In this study, DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5-aza-dC) significantly elevated the endothelial markers expression (CD31/PECAM1, CD105/ENG, eNOS and VE-cadherin), as well as promoted the capacity of angiogenesis on Matrigel. The result of Alexa 488-Ac-LDL uptake assay indicated that the differentiation ratio of BMSCs into VECs was 68.7% in 5-azaz-dC induced differentiation. And then we screened differentiation inducers with altered expression patterns and DNA methylation levels in four important families (VEGF, ANG, FGF and ETS). By integrating these data, five endothelial differentiation inducers (VEGFA, ANGPT2, FGF2, FGF9 and ETS1) which were directly upregulated by 5-aza-dC and five indirect factors (FGF1, FGF3, ETS2, ETV1 and ETV4) were identified. These data suggested that 5-aza-dC is an excellent chemical molecule for BMSCs differentiation into functional VECs and also provided essential clues for DNA methylation related signaling during 5-aza-dC induced endothelial differentiation of BMSCs.
Collapse
Affiliation(s)
- Rui Xu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Wenbin Chen
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Zhifen Zhang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Yang Qiu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Yong Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Bingchang Zhang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Wei Lu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
8
|
The New Role of CD163 in the Differentiation of Bone Marrow Stromal Cells into Vascular Endothelial-Like Cells. Stem Cells Int 2016; 2016:2539781. [PMID: 26880943 PMCID: PMC4736601 DOI: 10.1155/2016/2539781] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 01/22/2023] Open
Abstract
Bone marrow stromal cells (BMSCs) can differentiate into vascular endothelial cells (VECs). It is regarded as an important solution to cure many diseases, such as ischemic diseases and diabetes. However, the mechanisms underlying BMSC differentiation into VECs are not well understood. Recent reports showed that CD163 expression was associated with angiogenesis. In this study, overexpression of CD163 in BMSCs elevated the protein level of the endothelial-associated markers CD31, Flk-1, eNOS, and VE-cadherin, significantly increased the proportion of Alexa Fluor 488-acetylated-LDL-positive VECs, and promoted angiogenesis on Matrigel. Furthermore, we demonstrated that CD163 acted downstream homeobox containing 1 (Hmbox1) and upstream fibroblast growth factor 2 (FGF-2). These data suggested that CD163 was involved in Hmbox1/CD163/FGF-2 signal pathway in BMSC differentiation into vascular endothelial-like cells. We found a new signal pathway and a novel target for further investigating the gene control of BMSC differentiation into a VEC lineage.
Collapse
|
9
|
Li B, Li H, Wang Z, Wang Y, Gao A, Cui Y, Liu Y, Chen G. Evidence for the role of phosphatidylcholine-specific phospholipase in experimental subarachnoid hemorrhage in rats. Exp Neurol 2015; 272:145-51. [DOI: 10.1016/j.expneurol.2015.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/15/2015] [Accepted: 02/19/2015] [Indexed: 12/21/2022]
|
10
|
Cholinergic differentiation of neural stem cells generated from cell aggregates-derived from Human Bone marrow stromal cells. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-014-0019-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
11
|
Fonovich T, Magnarelli G. Phosphoinositide and phospholipid phosphorylation and hydrolysis pathways<br/>—Organophosphate and organochlorine pesticides effects<br>. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abc.2013.33a004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|