1
|
Mohamed MM, Zaki HF, Kamel AS. Possible Interaction of Suramin with Thalamic P2X Receptors and NLRP3 Inflammasome Activation Alleviates Reserpine-Induced Fibromyalgia-Like Symptoms. J Neuroimmune Pharmacol 2025; 20:51. [PMID: 40329125 PMCID: PMC12055955 DOI: 10.1007/s11481-025-10207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 04/16/2025] [Indexed: 05/08/2025]
Abstract
The high pain sensitivity in fibromyalgia (FM) is processed by the thalamus that presents as a key component in the pain pathway in FM patients. Noteworthy, Purinergic receptors, specifically P2X, are implicated in pain signaling and neuroinflammation via inflammasome signaling. However, there is no available data on the impact of pharmacological intervention on the P2X receptor in thalamic pain transmission in FM. To investigate this aspect, the clinically tested P2X inhibitor, Suramin (SURM), was utilized. FM was induced over three days using Reserpine (1 mg/kg/day, s.c.), followed by a single dose of SURM (100 mg/kg, i.p.). At the molecular level, SURM countered the overexpression of P2X7 and P2X4 receptors accompanied by reduced NLRP3 inflammasome complex and pyroptotic markers like gasdermin-D. This was associated with the suppression of the p38-MAPK and NF-κB pathways, along with a decrease in pro-inflammatory cytokines and tumor necrosis factor-α as observed by increased CD86 expression on M1 microglia phenotype, a neuroinflammatory marker. Concurrently, blocking the P2X receptor shifted microglia polarization towards the M2 phenotype, marked by elevated CD163 expression, as a neuroprotective mechanism. This was outlined by increased neurotrophic and anti-inflammatory IL-10 with normalization of disturbed neurotransmitters. Behaviorally, SURM ameliorated the heightened pain processing, as observed in mechanical and thermal pain tests. Furthermore, it lowered Reserpine-induced motor impairment in the rotarod and open-field tests. This improvement in the somatosensory experience was reflected in alleviating depressive-like behavior in the forced swimming test. These findings highlight the therapeutic potential of blocking thalamic P2X receptors in alleviating fibromyalgia symptoms.
Collapse
Affiliation(s)
- Maram M Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
2
|
Takasu M, Kishi S, Nagasu H, Kidokoro K, Brooks CR, Kashihara N. The Role of Mitochondria in Diabetic Kidney Disease and Potential Therapeutic Targets. Kidney Int Rep 2025; 10:328-342. [PMID: 39990900 PMCID: PMC11843125 DOI: 10.1016/j.ekir.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 02/25/2025] Open
Abstract
Diabetic kidney disease (DKD) is recognized worldwide as a leading cause of end-stage renal failure. Although therapies that target glomerular hemodynamics and can inhibit disease progression have been developed, there is currently no fundamental cure for the disease. Mitochondria play an important role in cellular respiration, producing adenosine triphosphate (ATP) by oxidative phosphorylation, and are essential for renal function, especially in proximal tubular cells (PTCs). In diabetic conditions, maintaining mitochondrial health is vital for preserving renal function. Under diabetic conditions, excessive reactive oxygen species (ROS) can damage mitochondrial DNA (mtDNA), leading to renal dysfunction. Strategies targeting mitochondrial function, such as AMP-activated protein kinase (AMPK) activation and modulation of nitric oxide (NO) availability, are promising for suppressing diabetic nephropathy. The immune response to DKD, initiated by detecting damage- and pathogen-associated molecular patterns, has a significant impact on the progression of DKD, including leakage of mtDNA and RNA, leading to inflammation through various pathways. This contributes to renal impairment characterized by hyperfiltration, endothelial dysfunction, and albuminuria. Mitochondrial energy metabolism and dynamics induced by hyperglycemia precede the onset of albuminuria and histological changes in the kidneys. The increased mitochondrial fission and decreased fusion that occur under diabetic conditions result in ATP depletion and exacerbate cellular dysfunction. Therapeutic strategies focused on restoring mitochondrial function are promising for slowing the progression of DKD and reduce the adverse effects on renal function. Sodium-glucose cotransporter-2 inhibitors (SGLT2is) and glucagon-like peptide-1 (GLP-1) receptor agonists, already in clinical use, have been shown to be protective for mitochondria, and nuclear factor erythroid 2-related factor 2 (Nrf2) activation and mitochondrial dynamics are promising drug discovery targets for further research.
Collapse
Affiliation(s)
- Masanobu Takasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Seiji Kishi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Craig R. Brooks
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Naoki Kashihara
- Department of Medical Science, Kawasaki Medical School, Kurashiki, Japan
- Kawasaki Geriatric Medical Center, Kawasaki Medical School, Okayama, Japan
| |
Collapse
|
3
|
Bhupesh S, Chauhan N, Jyoti V, Ankit K, Sonia S, Bhupendra S. A Narrative Review of Signaling Pathway and Treatment Options for Diabetic Nephropathy. Curr Mol Med 2025; 25:113-131. [PMID: 37497682 DOI: 10.2174/1566524023666230727093911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Diabetic nephropathy is a progressive kidney disease that frequently results in end-stage renal disorders and is characterized by proteinuria, albuminuria, decreased filtration, and renal fibrosis. Despite the fact that there are a number of therapeutic alternatives available, DN continues to be the main contributor to end-stage renal disease. Therefore, significant innovation is required to enhance outcomes in DN patients. METHODS Information was collected from online search engines like, Google Scholar, Web of Science, PubMed, Scopus, and Sci-Hub databases using keywords like diabetes, nephropathy, kidney disease, autophagy, etc. Results: Natural compounds have anti-inflammatory and antioxidant properties and impact various signaling pathways. They ameliorate kidney damage by decreasing oxidative stress, inflammatory process, and fibrosis and enhance the antioxidant system, most likely by activating and deactivating several signaling pathways. This review focuses on the role of metabolic memory and various signaling pathways involved in the pathogenesis of DN and therapeutic approaches available for the management of DN. Special attention is given to the various pathways modulated by the phytoconstituents.
Collapse
Affiliation(s)
- Semwal Bhupesh
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Neha Chauhan
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Verma Jyoti
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Kumar Ankit
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Singh Sonia
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Singh Bhupendra
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| |
Collapse
|
4
|
Li X, Liu S, Huangfu J, Lai N, Shang Y. Clinical significance of NLRP3 inflammasome and related cell molecules in early diabetic kidney disease in elderly population. J Med Biochem 2024; 43:828-834. [PMID: 39876912 PMCID: PMC11771978 DOI: 10.5937/jomb0-45950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/23/2024] [Indexed: 01/31/2025] Open
Abstract
Background The paper aims to investigate the expression level of NLRP3 inflammasome and its related cell molecules in early diabetes kidney disease (EDKD) in the elderly and its clinical application value. Methods From October 2021 to April 2023, 50 elderly patients with T2DM (T2DM group), 50 elderly patients with EDKD (EDKD group) and 50 elderly people who passed the health check-up (healthy group) were chosen as the study subjects. Plasma NLRP3 inflammasome and related cells (blood leukocyte count, monocyte count, lymphocyte count) molecular (NT-proBNP and others) levels are tested, and Pearson correlation analysis is utilized to explore the correlation among plasma NLRP3 inflammasome and related cells, molecules, and renal function indicators (UACR, BUN, Ucr) in elderly patients with EDKD. Results (1) The three groups' comparison in HbA1c, FIns, HOMA-IR, UACR, BUN, Ucr, SOD, MCP-1, and TNF-a levels were with P<0.05. The levels of TG and LDL-C in the EDKD group were higher than those in the T2DM and the healthy groups; the levels of FPG, HbA1c, FINs, HOMA-IR, UACR, SOD, MCP-1, TNF-a in the EDKD and T2DM groups were higher than those in the healthy group, while SOD was smaller than that in the healthy group; the levels of BUN, Ucr, hs-CRP, FPG, HbA1c, FINs, HOMA-IR, UACR, SOD, MCP-1, TNF-a in the EDKD group were higher than those in the T2DM group, while SOD was smaller than that in the T2DM group. The above results were with P<0.05. (2) It has P<0.05 in Monocyte count, NLRP3, NT-proBNP, caspase-1, ASC and others in the three groups. Those in the EDKD and T2DM groups were higher than those in the healthy group. The levels of these indicators in the EDKD group were higher than those in the T2DM group, with P<0.05. NLRP3, Caspase-1, ASC, IL1b, and IL-18 were positively correlated with UACR, BUN, and Ucr in the EDKD group. All the above differences were P<0.05. Conclusions NLRP3 inflammasome and its related molecules caspase-1, ASC, IL-1b, IL-18 and other levels increase in early elderly EDKD and are closely related to the severity of EDKD.
Collapse
Affiliation(s)
- Xiaoli Li
- Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Department of Endocrinology, Taiyuan, China
| | - Shiwei Liu
- Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Department of Endocrinology, Taiyuan, China
| | - Jinrong Huangfu
- Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Department of Endocrinology, Taiyuan, China
| | - Nannan Lai
- Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Department of Endocrinology, Taiyuan, China
| | - Yan Shang
- Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Department of Nephrology, Taiyuan, China
| |
Collapse
|
5
|
Duret T, Elmallah M, Rollin J, Gatault P, Jiang LH, Roger S. Role of purinoreceptors in the release of extracellular vesicles and consequences on immune response and cancer progression. Biomed J 2024; 48:100805. [PMID: 39510381 DOI: 10.1016/j.bj.2024.100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/24/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024] Open
Abstract
Cell-to-cell communication is a major process for accommodating cell functioning to changes in the environments and to preserve tissue and organism homeostasis. It is achieved by different mechanisms characterized by the origin of the message, the molecular nature of the messenger, its speed of action and its reach. Purinergic signalling is a powerful mechanism initiated by extracellular nucleotides, such as ATP, acting on plasma membrane purinoreceptors. Purinergic signalling is tightly controlled in time and space by the action of ectonucleotidases. Recent studies have highlighted the critical role of purinergic signalling in controlling the generation, release and fate of extracellular vesicles and, in this way, mediating long-distance responses. Most of these discoveries have been made in immune and cancer cells. This review is aimed at establishing the current knowledge on the way which purinoreceptors control extracellular vesicle-mediated communications and consequences for recipient cells.
Collapse
Affiliation(s)
- Thomas Duret
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France; Fédération Hospitalo-Universitaire Survival Optimization in Organ Transplantation (FHU SUPORT), Tours, France
| | - Mohammed Elmallah
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France
| | - Jérôme Rollin
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France; Service d'Hématologie-Hémostase, CHRU de Tours, Tours, France
| | - Philippe Gatault
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France; Service de Néphrologie, Hypertension, Dialyse et Transplantation Rénale, Tours, France; Fédération Hospitalo-Universitaire Survival Optimization in Organ Transplantation (FHU SUPORT), Tours, France
| | - Lin-Hua Jiang
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France; School of Basic Medical Sciences, Xinxiang Medical University, Henan, China; School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Sébastien Roger
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France; Fédération Hospitalo-Universitaire Survival Optimization in Organ Transplantation (FHU SUPORT), Tours, France.
| |
Collapse
|
6
|
Ateyya H, Atif HM, Abd El-Fadeal NM, Abul-Ela E, Nadeem RI, Rizk NI, Gomaa FAM, Abdelkhalig SM, Aldahish AA, Fawzy MS, Barakat BM, Zaitone SA. Hesperetin protects against rotenone-induced motor disability and neurotoxicity via the regulation of SIRT1/NLRP3 signaling. Toxicol Mech Methods 2024; 34:1045-1060. [PMID: 39119966 DOI: 10.1080/15376516.2024.2390646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Rotenone is a pesticide that causes complex I inhibition and is widely known to induce motor disability and experimental Parkinson's disease (PD) in rodents. Evidence suggests a crucial role for sirtuin/nuclear factor-kappaB/nod-like receptor family, pyrin domain-containing 3 (SIRT1/NFκB/NLRP3) signaling and inflammation in PD and rotenone neurotoxicity. Hesperetin (C16H14O6) is a citrus flavonoid with documented anti-inflammatory activity. We investigated the value of hesperetin in delaying rotenone-induced PD in mice and the possible modulation of inflammatory burden. PD was induced in mice via rotenone injections. Groups were assigned as a vehicle, PD, or PD + hesperetin (50 or 100 mg/kg) and compared for the motor function, protein level (by ELISA), and gene expression (by real-time PCR) of the target proteins, histopathology, and immunohistochemistry for tyrosine hydroxylase enzyme. Hesperetin (50 or 100 mg/kg) alleviated the motor disability and the striatal dopamine level and decreased the expression of NLRP3 and NF-κB but increased SIRT1 expression (p < 0.05). Further, it enhanced the neural viability and significantly decreased neural degeneration in the substantia nigra, hippocampus, and cerebral cortex (p < 0.05). Taken together, we propose that hesperetin mediates its neuroprotective function via alleviating modulation of the SIRT1/NFκB/NLRP3 pathway. Therefore, hesperetin might delay the PD progression.
Collapse
Affiliation(s)
- Hayam Ateyya
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Huda M Atif
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Noha M Abd El-Fadeal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Biochemistry Department, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Eman Abul-Ela
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rania I Nadeem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Nermin I Rizk
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Fatma Alzahraa M Gomaa
- Department of Pharmacognosy and Medical Herbs, Faculty of Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Sozan M Abdelkhalig
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Afaf A Aldahish
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Manal S Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Bassant M Barakat
- Clinical Pharmacy Department, Faculty of Pharmacy, Al-Baha University, Saudi Arabia
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
7
|
Mishra S, Shelke V, Dagar N, Lech M, Gaikwad AB. Molecular insights into P2X signalling cascades in acute kidney injury. Purinergic Signal 2024; 20:477-486. [PMID: 38246970 PMCID: PMC11377406 DOI: 10.1007/s11302-024-09987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024] Open
Abstract
Acute kidney injury (AKI) is a critical health issue with high mortality and morbidity rates in hospitalized individuals. The complex pathophysiology and underlying health conditions further complicate AKI management. Growing evidence suggests the pivotal role of ion channels in AKI progression, through promoting tubular cell death and altering immune cell functions. Among these channels, P2X purinergic receptors emerge as key players in AKI pathophysiology. P2X receptors gated by adenosine triphosphate (ATP), exhibit increased extracellular levels of ATP during AKI episodes. More importantly, certain P2X receptor subtypes upon activation exacerbate the situation by promoting the release of extracellular ATP. While therapeutic investigations have primarily focused on P2X4 and P2X7 subtypes in the context of AKI, while understanding about other subtypes still remains limited. Whilst some P2X antagonists show promising results against different types of kidney diseases, their role in managing AKI remains unexplored. Henceforth, understanding the intricate interplay between P2X receptors and AKI is crucial for developing targeted interventions. This review elucidates the functional alterations of all P2X receptors during normal kidney function and AKI, offering insights into their involvement in AKI. Notably, we have highlighted the current knowledge of P2X receptor antagonists and the possibilities to use them against AKI in the future. Furthermore, the review delves into the pathways influenced by activated P2X receptors during AKI, presenting potential targets for future therapeutic interventions against this critical condition.
Collapse
Affiliation(s)
- Swati Mishra
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Vishwadeep Shelke
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Neha Dagar
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Maciej Lech
- Division of Nephrology, Department of Medicine IV, LMU University Hospital, Ludwig Maximilians University Munich, 80336, Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
8
|
Payne FM, Dabb AR, Harrison JC, Sammut IA. Inhibitors of NLRP3 Inflammasome Formation: A Cardioprotective Role for the Gasotransmitters Carbon Monoxide, Nitric Oxide, and Hydrogen Sulphide in Acute Myocardial Infarction. Int J Mol Sci 2024; 25:9247. [PMID: 39273196 PMCID: PMC11395567 DOI: 10.3390/ijms25179247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Myocardial ischaemia reperfusion injury (IRI) occurring from acute coronary artery disease or cardiac surgical interventions such as bypass surgery can result in myocardial dysfunction, presenting as, myocardial "stunning", arrhythmias, infarction, and adverse cardiac remodelling, and may lead to both a systemic and a localised inflammatory response. This localised cardiac inflammatory response is regulated through the nucleotide-binding oligomerisation domain (NACHT), leucine-rich repeat (LRR)-containing protein family pyrin domain (PYD)-3 (NLRP3) inflammasome, a multimeric structure whose components are present within both cardiomyocytes and in cardiac fibroblasts. The NLRP3 inflammasome is activated via numerous danger signals produced by IRI and is central to the resultant innate immune response. Inhibition of this inherent inflammatory response has been shown to protect the myocardium and stop the occurrence of the systemic inflammatory response syndrome following the re-establishment of cardiac circulation. Therapies to prevent NLRP3 inflammasome formation in the clinic are currently lacking, and therefore, new pharmacotherapies are required. This review will highlight the role of the NLRP3 inflammasome within the myocardium during IRI and will examine the therapeutic value of inflammasome inhibition with particular attention to carbon monoxide, nitric oxide, and hydrogen sulphide as potential pharmacological inhibitors of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Fergus M Payne
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Alisha R Dabb
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Joanne C Harrison
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ivan A Sammut
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
9
|
Huang R, Zeng J, Yu X, Shi Y, Song N, Zhang J, Wang P, Luo M, Ma Y, Xiao C, Wang L, Du G, Cai H, Yang W. Luteolin Alleviates Diabetic Nephropathy Fibrosis Involving AMPK/NLRP3/TGF-β Pathway. Diabetes Metab Syndr Obes 2024; 17:2855-2867. [PMID: 39100967 PMCID: PMC11297584 DOI: 10.2147/dmso.s450094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose Luteolin is a promising candidate for diabetic nephropathy due to its potential anti-inflammatory and anti-fibrotic properties. This study explored the molecular mechanisms through which luteolin combats fibrosis in DN. Methods Potential targets affected by luteolin and genes associated with DN were collected from databases. Overlapping targets between luteolin and diabetic nephropathy were identified through Venn analysis. A protein-protein interaction network was constructed using these common targets, and critical pathways and targets were elucidated through GO and KEGG analysis. These pathways and targets were confirmed using a streptozotocin-induced mouse model. Luteolin was administered at 45 mg/kg and 90 mg/kg. Various parameters were evaluated, including body weight, blood glucose levels, and histopathological examinations. Protein levels related to energy metabolism, inflammation, and fibrosis were quantified. Results Fifty-three targets associated with luteolin and 36 genes related to diabetic nephropathy were extracted. The AGE-RAGE signaling pathway was the key pathway impacted by luteolin in diabetic nephropathy. Key molecular targets include TGF-β, IL-1β, and PPARG. Luteolin reduced body weight and blood glucose levels, lowered the left kidney index, and improved insulin and glucose tolerance. Furthermore, luteolin mitigated inflammatory cell infiltration, basement membrane thickening, and collagen deposition in the kidney. Luteolin up-regulated the protein expression of p-AMPKα (Th172) while simultaneously down-regulated the protein expression of p-NF-ĸB (p65), NLRP3, TGF-β1, α-SMA, and Collagen I. Conclusion Luteolin mitigated renal fibrosis by alleviating energy metabolism disruptions and inflammation by modulating the AMPK/NLRP3/TGF-β signaling pathway.
Collapse
Affiliation(s)
- Rong Huang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Jun Zeng
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Xiaoze Yu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Yunke Shi
- The First Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Na Song
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Jie Zhang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Peng Wang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Min Luo
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Yiming Ma
- The First Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Chuang Xiao
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Lueli Wang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Guanhua Du
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hongyan Cai
- The Second Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Weimin Yang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| |
Collapse
|
10
|
Fan Q, Li R, Wei H, Xue W, Li X, Xia Z, Zhao L, Qiu Y, Cui D. Research Progress of Pyroptosis in Diabetic Kidney Disease. Int J Mol Sci 2024; 25:7130. [PMID: 39000237 PMCID: PMC11241146 DOI: 10.3390/ijms25137130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Pyroptosis, known as one typical mode of programmed cell death, is generally characterized by the cleaved gasdermin family (GSDMs) forming pores in the cell membrane and inducing cell rupture, and the activation of aspartate-specific proteases (caspases) has also been found during this process. Diabetic Kidney Disease (DKD) is caused by the complication of diabetes in the kidney, and the most important kidney's function, Glomerular Filtration Rate (GFR), happens to drop to less than 90% of its usual and even lead to kidney failure in severe cases. The persistent inflammatory state induced by high blood glucose implies the key pathology of DKD, and growing evidence shows that pyroptosis serves as a significant contributor to this chronic immune-mediated inflammatory disorder. Currently, the expanded discovery of GSDMs, pyroptosis, and its association with innate immunity has been more attractive, and overwhelming research is needed to sort out the implication of pyroptosis in DKD pathology. In this review, we comb both classical studies and newly founds on pyroptosis, prick off the novel awakening of pyroptosis in DKD, and center on the significance of pyroptosis in DKD treatment, aiming to provide new research targets and treatment strategies on DKD.
Collapse
Affiliation(s)
- Qingqing Fan
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Rongxuan Li
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Huiting Wei
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Weiyue Xue
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Xiang Li
- Department of Physical Education, Jiangnan University, Wuxi 214122, China
| | - Ziyao Xia
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Le Zhao
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Ye Qiu
- The State Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410000, China
| | - Di Cui
- Department of Physical Education, Hunan University, Changsha 410000, China
- The State Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410000, China
| |
Collapse
|
11
|
Xu YS, Xiang J, Lin SJ. Functional role of P2X7 purinergic receptor in cancer and cancer-related pain. Purinergic Signal 2024:10.1007/s11302-024-10019-w. [PMID: 38771429 DOI: 10.1007/s11302-024-10019-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Numerous studies have revealed that the ATP-gated ion channel purinergic 2X7 receptor (P2X7R) plays an important role in tumor progression and the pathogenesis of cancer pain. P2X7R requires activation by extracellular ATP to perform its regulatory role functions. During tumor development or cancer-induced pain, ATP is released from tumor cells or other cells in the tumor microenvironment (such as tumor-associated immune cells), which activates P2X7R, opens ion channels on the cell membrane, affects intracellular molecular metabolism, and regulates the activity of tumor cells. Furthermore, peripheral organs and receptors can be damaged during tumor progression, and P2X7R expression in nerve cells (such as microglia) is significantly upregulated, enhancing sensory afferent information, sensitizing the central nervous system, and inducing or exacerbating pain. These findings reveal that the ATP-P2X7R signaling axis plays a key regulatory role in the pathogenesis of tumors and cancer pain and also has a therapeutic role. Accordingly, in this study, we explored the role of P2X7R in tumors and cancer pain, discussed the pharmacological properties of inhibiting P2X7R activity (such as the use of antagonists) or blocking its expression in the treatment of tumor and cancer pain, and provided an important evidence for the treatment of both in the future.
Collapse
Affiliation(s)
- Yong-Sheng Xu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, 343000, Jiangxi Province, China
| | - Jun Xiang
- The Second Affiliated Hospital, Nanchang University, Nanchang City, 343000, Jiangxi Province, China
| | - Si-Jian Lin
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, 343000, Jiangxi Province, China.
| |
Collapse
|
12
|
Li N, Ma Y, Li C, Sun M, Qi F. Dexmedetomidine alleviates sevoflurane-induced neuroinflammation and neurocognitive disorders by suppressing the P2X4R/NLRP3 pathway in aged mice. Int J Neurosci 2024; 134:511-521. [PMID: 36066545 DOI: 10.1080/00207454.2022.2121921] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE Microglia-mediated inflammation is associated with perioperative neurocognitive disorders (PNDs) caused by sevoflurane. Dexmedetomidine has been reported to protect against sevoflurane-induced cognitive impairment. In this study, we investigated the effects and underlying mechanisms of dexmedetomidine on sevoflurane-induced microglial neuroinflammation and PNDs. METHODS Wild-type and purinergic ionotropic 4 receptor (P2X4R) overexpressing C57/BL6 mice were intraperitoneally injected with 20 μg/kg dexmedetomidine or an equal volume of normal saline 2 h prior to sevoflurane exposure. The Morris water maze (MWM) test was performed to assess cognitive function. Immunofluorescence staining was employed to detect microglial activation. The expression levels of proinflammatory cytokines were measured by real-time quantitative PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The protein levels of P2X4R and NOD-like receptor protein 3 (NLRP3) were detected by Western Blotting. RESULTS Sevoflurane increased the number of microglia, upregulated the levels of proinflammatory cytokines, elevated the protein levels of P2X4R and NLRP3 in the hippocampus and induced cognitive decline, while pretreatment with dexmedetomidine downregulated the protein levels of P2X4R and NLRP3, alleviated sevoflurane-induced microglial neuroinflammation and improved cognitive dysfunction. Moreover, overexpression of P2X4R weakened the neuroprotective effect of dexmedetomidine. CONCLUSIONS Dexmedetomidine protected against sevoflurane-induced neuroinflammation and neurocognitive disorders by suppressing the P2X4R/NLRP3 pathway.
Collapse
Affiliation(s)
- Ning Li
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, China
| | - Yufeng Ma
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, China
| | - Chuangang Li
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, China
| | - Manyi Sun
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, China
| | - Feng Qi
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
13
|
Suzuki-Kerr H. ATP released from dying cancer cells stimulates P2X4 receptors and mTOR in their neighbors. Purinergic Signal 2024; 20:1-4. [PMID: 36750529 PMCID: PMC10828246 DOI: 10.1007/s11302-023-09926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Affiliation(s)
- Haruna Suzuki-Kerr
- Department of Physiology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Building 502-401, 85 Park Road, Grafton, Auckland, 1023, New Zealand.
- Eisdell Moore Centre, University of Auckland, Auckland, New Zealand.
- Aotearoa Brain Project - Kaupapa Roro o Aotearoa, Dunedin, New Zealand.
| |
Collapse
|
14
|
Yang M, Zhang C. The role of innate immunity in diabetic nephropathy and their therapeutic consequences. J Pharm Anal 2024; 14:39-51. [PMID: 38352948 PMCID: PMC10859537 DOI: 10.1016/j.jpha.2023.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/12/2023] [Accepted: 09/05/2023] [Indexed: 02/16/2024] Open
Abstract
Diabetic nephropathy (DN) is an enduring condition that leads to inflammation and affects a substantial number of individuals with diabetes worldwide. A gradual reduction in glomerular filtration and emergence of proteins in the urine are typical aspects of DN, ultimately resulting in renal failure. Mounting evidence suggests that immunological and inflammatory factors are crucial for the development of DN. Therefore, the activation of innate immunity by resident renal and immune cells is critical for initiating and perpetuating inflammation. Toll-like receptors (TLRs) are an important group of receptors that identify patterns and activate immune responses and inflammation. Meanwhile, inflammatory responses in the liver, pancreatic islets, and kidneys involve inflammasomes and chemokines that generate pro-inflammatory cytokines. Moreover, the activation of the complement cascade can be triggered by glycated proteins. This review highlights recent findings elucidating how the innate immune system contributes to tissue fibrosis and organ dysfunction, ultimately leading to renal failure. This review also discusses innovative approaches that can be utilized to modulate the innate immune responses in DN for therapeutic purposes.
Collapse
Affiliation(s)
- Min Yang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
15
|
Wang Y, Jin M, Cheng CK, Li Q. Tubular injury in diabetic kidney disease: molecular mechanisms and potential therapeutic perspectives. Front Endocrinol (Lausanne) 2023; 14:1238927. [PMID: 37600689 PMCID: PMC10433744 DOI: 10.3389/fendo.2023.1238927] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Diabetic kidney disease (DKD) is a chronic complication of diabetes and the leading cause of end-stage renal disease (ESRD) worldwide. Currently, there are limited therapeutic drugs available for DKD. While previous research has primarily focused on glomerular injury, recent studies have increasingly emphasized the role of renal tubular injury in the pathogenesis of DKD. Various factors, including hyperglycemia, lipid accumulation, oxidative stress, hypoxia, RAAS, ER stress, inflammation, EMT and programmed cell death, have been shown to induce renal tubular injury and contribute to the progression of DKD. Additionally, traditional hypoglycemic drugs, anti-inflammation therapies, anti-senescence therapies, mineralocorticoid receptor antagonists, and stem cell therapies have demonstrated their potential to alleviate renal tubular injury in DKD. This review will provide insights into the latest research on the mechanisms and treatments of renal tubular injury in DKD.
Collapse
Affiliation(s)
- Yu Wang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mingyue Jin
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Chak Kwong Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qiang Li
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
16
|
Elgohary S, El Tayebi HM. Inflammasomes in breast cancer: the ignition spark of progression and resistance? Expert Rev Mol Med 2023; 25:e22. [PMID: 37337426 DOI: 10.1017/erm.2023.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Inflammation and immune evasion are major key players in breast cancer (BC) progression. Recently, the FDA approved the use of anti-programmed death-ligand 1 antibody (anti-PD-L1) and phosphoinositide 3-kinase (PI3K) inhibitors against aggressive BC. Despite the paradigm shift in BC treatments, patients still suffer from resistance, recurrence and serious immune-related adverse events. These obstacles require unravelling of the hidden molecular contributors for such therapy failure hence yielding therapeutics that are at least as efficient yet safer. Inflammasome pathway is activated when the pattern recognition receptor senses danger signals (danger-associated molecular patterns) from damagedRdying cells or pathogen-associated molecular patterns found in microbes, leading to secretion of the active pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18). It has been shown throughout numerous studies that inflammasome pathway enhanced invasion, metastasis, provoked BC progression and therapy resistance. Additionally, inflammasomes upregulated the proliferative index ki67 and enhanced PD-L1 expression leading to immunotherapy resistance. IL-1β contributed to significant decrease in oestrogen receptor levels and promoted BC chemo-resistance. High levels of IL-18 in sera of BC patients were associated with worst prognosis. Stimulation of purinergic receptors and modulation of adipokines in obese subjects activated inflammasomes that evoked radiotherapy resistance and BC progression. The micro RNA miR-223-3p attenuated the inflammasome over-expression leading to lowered tumour volume and lessened angiogenesis in BC. This review sheds the light on the molecular pathways of inflammasomes and their impacts in distinct BC subtypes. In addition, it highlights novel strategies in treatment and prevention of BC.
Collapse
Affiliation(s)
- Sawsan Elgohary
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Hend M El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
17
|
Sun M, Zhang M, Yin H, Tu H, Wen Y, Wei X, Shen W, Huang R, Xiong W, Li G, Gao Y. Long non-coding RNA MSTRG.81401 short hairpin RNA relieves diabetic neuropathic pain and behaviors of depression by inhibiting P2X4 receptor expression in type 2 diabetic rats. Purinergic Signal 2023; 19:123-133. [PMID: 35022948 PMCID: PMC9984665 DOI: 10.1007/s11302-021-09828-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/02/2021] [Indexed: 11/26/2022] Open
Abstract
Patients with diabetic neuropathic pain (DNP) experience immense physical and mental suffering, which is comorbid with other mental disorders, including major depressive disorder (MDD). P2X4 receptor, one of the purinergic receptors, is a significant mediator of DNP and MDD. The present study aimed to identify the roles and mechanisms of MSTRG.81401, a long non-coding RNA (lncRNA), in alleviating DNP and MDD-like behaviors in type 2 diabetic rats. After administration with MSTRG.81401 short hairpin RNA (shRNA), the model + MSTRG.81401 shRNA group demonstrated increased mechanical withdrawal threshold, thermal withdrawal latency, open-field test, and sucrose preference test; however, immobility time on the forced swimming test decreased. MSTRG.81401 shRNA administration significantly decreased the expression of the P2X4 receptor, tumor necrosis factor-α, and interleukin-1β in the hippocampus and spinal cord in the model + MSTRG.81401 shRNA group. Simultaneously, MSTRG.81401 shRNA administration downregulated phosphorylation of ERK1/2 in the hippocampus and spinal cord. Thus, lncRNA MSTRG.81401 shRNA can alleviate DNP and MDD-like behaviors in type 2 diabetic rats and may downregulate the expression of P2X4 receptors in the hippocampus and spinal cord of rats.
Collapse
Affiliation(s)
- Mengyun Sun
- Department of Physiology, Basic Medical College, Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, People's Republic of China
| | - Mingming Zhang
- Department of Physiology, Basic Medical College, Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, People's Republic of China
| | - Haoming Yin
- Medical College of Grade 2017, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Hongcheng Tu
- Basic Medical College of Grade 2018, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yuqing Wen
- Department of Physiology, Basic Medical College, Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, People's Republic of China
| | - Xingyu Wei
- Basic Medical College of Grade 2017, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wenhao Shen
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Ruoyu Huang
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wei Xiong
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Guodong Li
- Department of Physiology, Basic Medical College, Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, People's Republic of China
| | - Yun Gao
- Department of Physiology, Basic Medical College, Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
18
|
Liu JP, Liu SC, Hu SQ, Lu JF, Wu CL, Hu DX, Zhang WJ. ATP ion channel P2X purinergic receptors in inflammation response. Biomed Pharmacother 2023; 158:114205. [PMID: 36916431 DOI: 10.1016/j.biopha.2022.114205] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Different studies have confirmed that P2X purinergic receptors play a key role in inflammation. Activation of P2X purinergic receptors can release inflammatory cytokines and participate in the progression of inflammatory diseases. In an inflammatory microenvironment, cells can release a large amount of ATP to activate P2X receptors, open non-selective cation channels, activate multiple intracellular signaling, release multiple inflammatory cytokines, amplify inflammatory response. While P2X4 and P2X7 receptors play an important role in the process of inflammation. P2X4 receptor can mediate the activation of microglia involved in neuroinflammation, and P2X7 receptor can mediate different inflammatory cells to mediate the progression of tissue-wide inflammation. At present, the role of P2X receptors in inflammatory response has been widely recognized and affirmed. Therefore, in this paper, we discussed the role of P2X receptors-mediated inflammation. Moreover, we also described the effects of some antagonists (such as A-438079, 5-BDBD, A-804598, A-839977, and A-740003) on inflammation relief by antagonizing the activities of P2X receptors.
Collapse
Affiliation(s)
- Ji-Peng Liu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Si-Cheng Liu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Shi-Qi Hu
- Queen Mary College, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Jia-Feng Lu
- Basic medical school, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Chang-Lei Wu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
19
|
Ganugula R, Nuthalapati NK, Dwivedi S, Zou D, Arora M, Friend R, Sheikh-Hamad D, Basu R, Kumar MNVR. Nanocurcumin combined with insulin alleviates diabetic kidney disease through P38/P53 signaling axis. J Control Release 2023; 353:621-633. [PMID: 36503070 PMCID: PMC9904426 DOI: 10.1016/j.jconrel.2022.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Treatments for diabetic kidney disease (DKD) mainly focus on managing hyperglycemia and hypertension, but emerging evidence suggests that inflammation also plays a role in the pathogenesis of DKD. This 10-week study evaluated the efficacy of daily oral nanoparticulate-curcumin (nCUR) together with long-acting insulin (INS) to treat DKD in a rodent model. Diabetic rats were dosed with unformulated CUR alone, nCUR alone or together with INS, or INS alone. The progression of diabetes was reflected by increases in plasma fructosamine, blood urea nitrogen, creatinine, bilirubin, ALP, and decrease in albumin and globulins. These aberrancies were remedied by nCUR+INS or INS but not by CUR or nCUR. Kidney histopathological results revealed additional abnormalities characteristic of DKD, such as basement membrane thickening, tubular atrophy, and podocyte cytoskeletal impairment. nCUR and nCUR+INS mitigated these lesions, while CUR and INS alone were far less effective, if not ineffective. To elucidate how our treatments modulated inflammatory signaling in the liver and kidney, we identified hyperactivation of P38 (MAPK) and P53 with INS and CUR, whereas nCUR and nCUR+INS deactivated both targets. Similarly, the latter interventions led to significant downregulation of renal NLRP3, IL-1β, NF-ĸB, Casp3, and MAPK8 mRNA, indicating a normalization of inflammasome and apoptotic pathways. Thus, we show therapies that reduce both hyperglycemia and inflammation may offer better management of diabetes and its complications.
Collapse
Affiliation(s)
- Raghu Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL, USA
| | - Nikhil K Nuthalapati
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Subhash Dwivedi
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Dianxiong Zou
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Meenakshi Arora
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL, USA
| | - Richard Friend
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - David Sheikh-Hamad
- Division of Nephrology and Selzman Institute for Kidney Health, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Translational Research on Inflammatory Diseases, Michael E. Debakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Rita Basu
- Division of Endocrinology, Center of Diabetes Technology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL, USA; Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, USA; Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, USA; Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
20
|
Patil P, Doshi G. Deciphering the Role of Pyroptosis Impact on Cardiovascular Diseases. Curr Drug Targets 2023; 24:1166-1183. [PMID: 38164730 DOI: 10.2174/0113894501267496231102114410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 01/03/2024]
Abstract
Pyroptosis has become a noteworthy area of focus in recent years due to its association with inflammatory diseases. Pyroptosis is a type of programmed cell death accompanied by an inflammatory response, and the discovery of the gasdermin family has expanded the study of pyroptosis. The primary characteristics of pyroptosis include cell expansion, membrane penetration, and the ejection of cell contents. In healthy physiology, pyroptosis is an essential part of the host's defence against pathogen infection. Excessive Pyroptosis, however, can lead to unchecked and persistent inflammatory responses, including the emergence of inflammatory diseases. More precisely, gasdermin family members have a role in the creation of membrane holes during pyroptosis, which leads to cell lysis. It is also related to how pro-inflammatory intracellular substances, including IL-1, IL-18, and High mobility group box 1 (HMGB1), are used. Two different signalling pathways, one of which is regulated by caspase-1 and the other by caspase-4/5/11, are the primary causes of pyroptosis. Cardiovascular diseases are often associated with cell death and acute or chronic inflammation, making this area of research particularly relevant. In this review, we first systematically summarize recent findings related to Pyroptosis, exploring its characteristics and the signalling pathway mechanisms, as well as various treatment strategies based on its modulation that has emerged from the studies. Some of these strategies are currently undergoing clinical trials. Additionally, the article elaborates on the scientific evidence indicating the role of Pyroptosis in various cardiovascular diseases. As a whole, this should shed insight into future paths and present innovative ideas for employing Pyroptosis as a strong disease-fighting weapon.
Collapse
Affiliation(s)
- Poonam Patil
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, VLM Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, VLM Road, Vile Parle (w), Mumbai, 400056, India
| |
Collapse
|
21
|
Wu X, Zhao L, Zhang Y, Li K, Yang J. The role and mechanism of the gut microbiota in the development and treatment of diabetic kidney disease. Front Physiol 2023; 14:1166685. [PMID: 37153213 PMCID: PMC10160444 DOI: 10.3389/fphys.2023.1166685] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication in patients with diabetes mellitus (DM). Increasing evidence suggested that the gut microbiota participates in the progression of DKD, which is involved in insulin resistance, renin-angiotensin system (RAS) activation, oxidative stress, inflammation and immunity. Gut microbiota-targeted therapies including dietary fiber, supplementation with probiotics or prebiotics, fecal microbiota transplantation and diabetic agents that modulate the gut microbiota, such as metformin, glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, and sodium-glucose transporter-2 (SGLT-2) inhibitors. In this review, we summarize the most important findings about the role of the gut microbiota in the pathogenesis of DKD and the application of gut microbiota-targeted therapies.
Collapse
Affiliation(s)
- Xiaofang Wu
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Zhao
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujiang Zhang
- Department of Nephrology, Chongqing Jiangjin Second People’s Hospital, Chongqing, China
| | - Kailong Li
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Jurong Yang,
| |
Collapse
|
22
|
Xu B, Nikolaienko O, Levchenko V, Choubey AS, Isaeva E, Staruschenko A, Palygin O. Modulation of P2X 4 receptor activity by ivermectin and 5-BDBD has no effect on the development of ARPKD in PCK rats. Physiol Rep 2022; 10:e15510. [PMID: 36353932 PMCID: PMC9647406 DOI: 10.14814/phy2.15510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is an inherited pathology caused mainly by mutations of the polycystic kidney and hepatic disease 1 (PKHD1) gene, which usually leads to end-stage renal disease. Previous studies suggested that the P2X purinoreceptor 4 (P2X4 R) may play an important role in the progression of ARPKD. To test this hypothesis, we assessed the chronic effects of ivermectin (P2X4 R allosteric modulator) and 5-BDBD (P2X4 R antagonist) on the development of ARPKD in PCK/CrljCrl-Pkhd1pck/CRL (PCK) rats. Our data indicated that activation of ATP-mediated P2X4 R signaling with ivermectin for 6 weeks in high dose (50 mg/L; water supplementation) decreased the total body weight of PCK rats while the heart and kidney weight remained unaffected. Smaller doses of ivermectin (0.5 or 5 mg/L, 6 weeks) or the inhibition of P2X4 R signaling with 5-BDBD (18 mg/kg/day, food supplement for 8 weeks) showed no effect on electrolyte balance or the basic physiological parameters. Furthermore, cystic index analysis for kidneys and liver revealed no effect of smaller doses of ivermectin (0.5 or 5 mg/L) and 5-BDBD on the cyst development of PCK rats. We observed a slight increase in the cystic liver index on high ivermectin dose, possibly due to the cytotoxicity of the drug. In conclusion, this study revealed that pharmacological modulation of P2X4 R by ivermectin or 5-BDBD does not affect the development of ARPKD in PCK rats, which may provide insights for future studies on investigating the therapeutic potential of adenosine triphosphate (ATP)-P2 signaling in PKD diseases.
Collapse
Affiliation(s)
- Biyang Xu
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
| | - Oksana Nikolaienko
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsinUSA
- Bogomoletz Institute of PhysiologyDepartment of Cellular MembranologyKyivUkraine
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
| | | | - Elena Isaeva
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsinUSA
- Hypertension and Kidney Research CenterUniversity of South FloridaTampaFloridaUSA
- The James A. Haley Veterans HospitalTampaFloridaUSA
| | - Oleg Palygin
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of Regenerative Medicine and Cell BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Division of Nephrology, Department of MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| |
Collapse
|
23
|
Yan P, Ke B, Fang X. Ion channels as a therapeutic target for renal fibrosis. Front Physiol 2022; 13:1019028. [PMID: 36277193 PMCID: PMC9581181 DOI: 10.3389/fphys.2022.1019028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Renal ion channel transport and electrolyte disturbances play an important role in the process of functional impairment and fibrosis in the kidney. It is well known that there are limited effective drugs for the treatment of renal fibrosis, and since a large number of ion channels are involved in the renal fibrosis process, understanding the mechanisms of ion channel transport and the complex network of signaling cascades between them is essential to identify potential therapeutic approaches to slow down renal fibrosis. This review summarizes the current work of ion channels in renal fibrosis. We pay close attention to the effect of cystic fibrosis transmembrane conductance regulator (CFTR), transmembrane Member 16A (TMEM16A) and other Cl− channel mediated signaling pathways and ion concentrations on fibrosis, as well as the various complex mechanisms for the action of Ca2+ handling channels including Ca2+-release-activated Ca2+ channel (CRAC), purinergic receptor, and transient receptor potential (TRP) channels. Furthermore, we also focus on the contribution of Na+ transport such as epithelial sodium channel (ENaC), Na+, K+-ATPase, Na+-H+ exchangers, and K+ channels like Ca2+-activated K+ channels, voltage-dependent K+ channel, ATP-sensitive K+ channels on renal fibrosis. Proposed potential therapeutic approaches through further dissection of these mechanisms may provide new therapeutic opportunities to reduce the burden of chronic kidney disease.
Collapse
|
24
|
Zhang J, Wirtz S. Does Pyroptosis Play a Role in Inflammasome-Related Disorders? Int J Mol Sci 2022; 23:ijms231810453. [PMID: 36142364 PMCID: PMC9499396 DOI: 10.3390/ijms231810453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Inflammasomes are multiprotein complexes orchestrating intracellular recognition of endogenous and exogenous stimuli, cellular homeostasis, and cell death. Upon sensing of certain stimuli, inflammasomes typically activate inflammatory caspases that promote the production and release of the proinflammatory cytokines IL-1β, IL-1α, and IL-18 and induce a type of inflammatory cell death known as “pyroptosis”. Pyroptosis is an important form of regulated cell death executed by gasdermin proteins, which is largely different from apoptosis and necrosis. Recently, several signaling pathways driving pyroptotic cell death, including canonical and noncanonical inflammasome activation, as well as caspase-3-dependent pathways, have been reported. While much evidence exists that pyroptosis is involved in the development of several inflammatory diseases, its contribution to inflammasome-related disorders (IRDs) has not been fully clarified. This article reviews molecular mechanisms leading to pyroptosis, and attempts to provide evidence for its possible role in inflammasome-related disorders, including NLR pyrin domain containing 3 (NLRP3) inflammasome disease, NLR containing a caspase recruitment domain 4 (NLRC4) inflammasome disease, and pyrin inflammasome disease. Although the specific mechanism needs further investigations, these studies have uncovered the role of pyroptosis in inflammasome-related disorders and may open new avenues for future therapeutic interventions.
Collapse
Affiliation(s)
- Jiajia Zhang
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
- Correspondence:
| |
Collapse
|
25
|
Zhu X, Xu X, Du C, Su Y, Yin L, Tan X, Liu H, Wang Y, Xu L, Xu X. An examination of the protective effects and molecular mechanisms of curcumin, a polyphenol curcuminoid in diabetic nephropathy. Biomed Pharmacother 2022; 153:113438. [DOI: 10.1016/j.biopha.2022.113438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/02/2022] Open
|
26
|
D'Antongiovanni V, Pellegrini C, Benvenuti L, Fornai M, Di Salvo C, Natale G, Ryskalin L, Bertani L, Lucarini E, Di Cesare Mannelli L, Ghelardini C, Nemeth ZH, Haskó G, Antonioli L. Anti-inflammatory Effects of Novel P2X4 Receptor Antagonists, NC-2600 and NP-1815-PX, in a Murine Model of Colitis. Inflammation 2022; 45:1829-1847. [PMID: 35338432 PMCID: PMC9197920 DOI: 10.1007/s10753-022-01663-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022]
Abstract
The pharmacological blockade of P2X4 receptors has shown potential benefits in the management of several immune/inflammatory diseases. However, data regarding the involvement of P2X4 receptors in the pathophysiological mechanisms of action in intestinal inflammation are not well defined. We aimed to evaluate the anti-inflammatory effects of two novel and selective P2X4 receptor antagonists, NC-2600 and NP-1815-PX, and characterize the molecular mechanisms of their action in a murine model of 2,4-dinitrobenzene sulfonic acid (DNBS)-induced colitis. These two drugs and dexamethasone (DEX) were administered orally for 6 days, immediately after the manifestation of DNBS. The body weight decrease, resulting from colitis, was attenuated by NC-2600 and NP-1815-PX, but not DEX. However, all three drugs attenuated the increase in spleen weight and ameliorated macroscopic and microscopic colonic tissue damage. Furthermore, all three compounds decreased tissue IL-1β levels and caspase-1 expression and activity. Colonic tissue increase of tumor necrosis factor was downregulated by DEX, while both NC-2600 and NP-1815-PX were ineffective. The reduction of occludin associated with colitis was ameliorated by NC-2600 and NP-1815-PX, but not DEX. In THP-1 cells, lipopolysaccharide and ATP upregulated IL-1β release and NLRP3, caspase-1, caspase-5, and caspase-8 activity, but not of caspase-4. These changes were prevented by NC-2600 and NP-1815-PX treatment. For the first time, the above findings show that the selective inhibition of P2X4 receptors represents a viable approach to manage bowel inflammation via the inhibition of NLRP3 inflammasome signaling pathways.
Collapse
Affiliation(s)
| | - Carolina Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa Via Roma 55, 56126 Pisa, Italy.
| | - Clelia Di Salvo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Lorenzo Bertani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Zoltan H Nemeth
- Department of Surgery, Morristown Medical Center, Morristown, NJ, 07960, USA
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
27
|
Shahin D. H. H, Sultana R, Farooq J, Taj T, Khaiser UF, Alanazi NSA, Alshammari MK, Alshammari MN, Alsubaie FH, Asdaq SMB, Alotaibi AA, Alamir AA, Imran M, Jomah S. Insights into the Uses of Traditional Plants for Diabetes Nephropathy: A Review. Curr Issues Mol Biol 2022; 44:2887-2902. [PMID: 35877423 PMCID: PMC9316237 DOI: 10.3390/cimb44070199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious kidney illness characterized by proteinuria, glomerular enlargement, reduced glomerular filtration, and renal fibrosis. DN is the most common cause of end-stage kidney disease, accounting for nearly one-third of all cases of diabetes worldwide. Hyperglycemia is a major factor in the onset and progression of diabetic nephropathy. Many contemporary medicines are derived from plants since they have therapeutic properties and are relatively free of adverse effects. Glycosides, alkaloids, terpenoids, and flavonoids are among the few chemical compounds found in plants that are utilized to treat diabetic nephropathy. The purpose of this review was to consolidate information on the clinical and pharmacological evidence supporting the use of a variety of medicinal plants to treat diabetic nephropathy.
Collapse
Affiliation(s)
- Haleema Shahin D. H.
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | - Rokeya Sultana
- Department of Pharmacognosy, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India
- Correspondence: (R.S.); (S.M.B.A.)
| | - Juveriya Farooq
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | - Tahreen Taj
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | - Umaima Farheen Khaiser
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | | | | | | | - Firas Hamdan Alsubaie
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (M.N.A.); (F.H.A.)
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
- Correspondence: (R.S.); (S.M.B.A.)
| | - Abdulmueen A. Alotaibi
- Department of Anaesthesia Technology, College of Applied Sciences, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia;
| | - Abdulrhman ahmed Alamir
- Department of Emergency Medicine, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia;
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Shahamah Jomah
- Pharmacy Department, Dr.Sulaiman Al-Habib Medical Group, Riyadh 11372, Saudi Arabia;
| |
Collapse
|
28
|
Schneider S, Merfort I, Idzko M, Zech A. Blocking P2X purinoceptor 4 signalling alleviates cigarette smoke induced pulmonary inflammation. Respir Res 2022; 23:148. [PMID: 35676684 PMCID: PMC9175376 DOI: 10.1186/s12931-022-02072-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/27/2022] [Indexed: 12/31/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is associated with elevated ATP levels in the extracellular space. Once released, ATP serves as danger signal modulating immune responses by activating purinergic receptors. Accordingly, purinergic signalling has been implicated in respiratory inflammation associated with cigarette smoke exposure. However, the role of P2X4-signalling has not been fully elucidated yet.
Methods Here, we analysed the P2X4 mRNA expression in COPD patients as well as cigarette smoke-exposed mice. Furthermore, P2X4-signalling was blocked by either using a specific antagonist or genetic depletion of P2rx4 in mice applied to an acute and prolonged model of cigarette smoke exposure. Finally, we inhibited P2X4-signalling in macrophages derived from THP-1 before stimulation with cigarette smoke extract. Results COPD patients exhibited an increased P2X4 mRNA expression in cells isolated from the bronchoalveolar lavage fluid and peripheral mononuclear cells. Similarly, P2rx4 expression was elevated in lung tissue of mice exposed to cigarette smoke. Blocking P2X4-signalling in mice alleviated cigarette smoke induced airway inflammation as well as lung parenchyma destruction. Additionally, human macrophages derived from THP-1 cells released reduced concentrations of proinflammatory cytokines in response to cigarette smoke extract stimulation when P2X4 was inhibited. Conclusion Taken together, we provide evidence that P2X4-signalling promotes innate immunity in the immunopathologic responses induced by cigarette smoke exposure. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02072-z.
Collapse
|
29
|
P2X4 Inhibition reduces microglia inflammation and apoptosis by NLRP3 and improves nervous system defects in rat brain trauma model. J Clin Neurosci 2022; 99:224-232. [DOI: 10.1016/j.jocn.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 12/14/2022]
|
30
|
Enders J, Swanson T, Ryals J, Wright D. A ketogenic diet reduces mechanical allodynia and improves epidermal innervation in diabetic mice. Pain 2022; 163:682-689. [PMID: 34252910 PMCID: PMC10067134 DOI: 10.1097/j.pain.0000000000002401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/28/2021] [Indexed: 01/21/2023]
Abstract
ABSTRACT Dietary interventions are promising approaches to treat pain associated with metabolic changes because they impact both metabolic and neural components contributing to painful neuropathy. Here, we tested whether consumption of a ketogenic diet could affect sensation, pain, and epidermal innervation loss in type 1 diabetic mice. C57Bl/6 mice were rendered diabetic using streptozotocin and administered a ketogenic diet at either 3 weeks (prevention) or 9 weeks (reversal) of uncontrolled diabetes. We quantified changes in metabolic biomarkers, sensory thresholds, and epidermal innervation to assess impact on neuropathy parameters. Diabetic mice consuming a ketogenic diet had normalized weight gain, reduced blood glucose, elevated blood ketones, and reduced hemoglobin-A1C levels. These metabolic biomarkers were also improved after 9 weeks of diabetes followed by 4 weeks of a ketogenic diet. Diabetic mice fed a control chow diet developed rapid mechanical allodynia of the hind paw that was reversed within a week of consumption of a ketogenic diet in both prevention and reversal studies. Loss of thermal sensation was also improved by consumption of a ketogenic diet through normalized thermal thresholds. Finally, diabetic mice consuming a ketogenic diet had normalized epidermal innervation, including after 9 weeks of uncontrolled diabetes and 4 weeks of consumption of the ketogenic diet. These results suggest that, in mice, a ketogenic diet can prevent and reverse changes in key metabolic biomarkers, altered sensation, pain, and axon innervation of the skin. These results identify a ketogenic diet as a potential therapeutic intervention for patients with painful diabetic neuropathy and/or epidermal axon loss.
Collapse
Affiliation(s)
- Jonathan Enders
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Taylor Swanson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Janelle Ryals
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Douglas Wright
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
31
|
Jin J, Zhou TJ, Ren GL, Cai L, Meng XM. Novel insights into NOD-like receptors in renal diseases. Acta Pharmacol Sin 2022; 43:2789-2806. [PMID: 35365780 PMCID: PMC8972670 DOI: 10.1038/s41401-022-00886-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/09/2022]
Abstract
Nucleotide-binding oligomerization domain-like receptors (NLRs), including NLRAs, NLRBs (also known as NAIPs), NLRCs, and NLRPs, are a major subfamily of pattern recognition receptors (PRRs). Owing to a recent surge in research, NLRs have gained considerable attention due to their involvement in mediating the innate immune response and perpetuating inflammatory pathways, which is a central phenomenon in the pathogenesis of multiple diseases, including renal diseases. NLRs are expressed in different renal tissues during pathological conditions, which suggest that these receptors play roles in acute kidney injury, obstructive nephropathy, diabetic nephropathy, IgA nephropathy, lupus nephritis, crystal nephropathy, uric acid nephropathy, and renal cell carcinoma, among others. This review summarises recent progress on the functions of NLRs and their mechanisms in the pathophysiological processes of different types of renal diseases to help us better understand the role of NLRs in the kidney and provide a theoretical basis for NLR-targeted therapy for renal diseases.
Collapse
|
32
|
Zeng X, Liu D, Wu W, Huo X. PM 2.5 exposure inducing ATP alteration links with NLRP3 inflammasome activation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24445-24456. [PMID: 35064883 PMCID: PMC8783591 DOI: 10.1007/s11356-021-16405-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/04/2021] [Indexed: 06/14/2023]
Abstract
Fine particulate matter (PM2.5) has been the primary air pollutant and the fourth leading risk factor for disease and death in the world. Exposure to PM2.5 is related to activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, but the mechanism of PM2.5 affecting the NLRP3 inflammasome is still unclear. Previous studies have shown that PM2.5 can cause alterations in adenosine triphosphate (ATP), and an increase in extracellular ATP and a decrease in intracellular ATP can trigger the activation process of the NLRP3 inflammasome. Therefore, we emphasize that ATP changes may be the central link and key mechanism of PM2.5 exposure that activates the NLRP3 inflammasome. This review briefly elucidates and summarizes how PM2.5 acts on ATP and subsequently further impacts the NLRP3 inflammasome. Investigation of ATP changes due to exposure to PM2.5 may be essential to regulate NLRP3 inflammasome activation and treat inflammation-related diseases such as coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Xiang Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China.
| | - Dongling Liu
- Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, China
| | - Weidong Wu
- Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China.
| |
Collapse
|
33
|
Molnár K, Nógrádi B, Kristóf R, Mészáros Á, Pajer K, Siklós L, Nógrádi A, Wilhelm I, Krizbai IA. Motoneuronal inflammasome activation triggers excessive neuroinflammation and impedes regeneration after sciatic nerve injury. J Neuroinflammation 2022; 19:68. [PMID: 35305649 PMCID: PMC8934511 DOI: 10.1186/s12974-022-02427-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Background Peripheral nerve injuries are accompanied by inflammatory reactions, over-activation of which may hinder recovery. Among pro-inflammatory pathways, inflammasomes are one of the most potent, leading to release of active IL-1β. Our aim was to understand how inflammasomes participate in central inflammatory reactions accompanying peripheral nerve injury. Methods After axotomy of the sciatic nerve, priming and activation of the NLRP3 inflammasome was examined in cells of the spinal cord. Regeneration of the nerve was evaluated after coaptation using sciatic functional index measurements and retrograde tracing. Results In the first 3 days after the injury, elements of the NLRP3 inflammasome were markedly upregulated in the L4–L5 segments of the spinal cord, followed by assembly of the inflammasome and secretion of active IL-1β. Although glial cells are traditionally viewed as initiators of neuroinflammation, in this acute phase of inflammation, inflammasome activation was found exclusively in affected motoneurons of the ventral horn in our model. This process was significantly inhibited by 5-BDBD, a P2X4 receptor inhibitor and MCC950, a potent NLRP3 inhibitor. Although at later time points the NLRP3 protein was upregulated in microglia too, no signs of inflammasome activation were detected in these cells. Inhibition of inflammasome activation in motoneurons in the first days after nerve injury hindered development of microgliosis in the spinal cord. Moreover, P2X4 or inflammasome inhibition in the acute phase significantly enhanced nerve regeneration on both the morphological and the functional levels. Conclusions Our results indicate that the central reaction initiated by sciatic nerve injury starts with inflammasome activation in motoneurons of the ventral horn, which triggers a complex inflammatory reaction and activation of microglia. Inhibition of neuronal inflammasome activation not only leads to a significant reduction of microgliosis, but has a beneficial effect on the recovery as well. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02427-9.
Collapse
Affiliation(s)
- Kinga Molnár
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, 6726, Szeged, Hungary
| | - Bernát Nógrádi
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, 6726, Szeged, Hungary.,Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary.,Department of Neurology, University of Szeged, Szeged, Hungary
| | - Rebeka Kristóf
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, 6726, Szeged, Hungary.,Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Ádám Mészáros
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, 6726, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Krisztián Pajer
- Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary
| | - László Siklós
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, 6726, Szeged, Hungary
| | - Antal Nógrádi
- Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, 6726, Szeged, Hungary. .,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania.
| | - István A Krizbai
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, 6726, Szeged, Hungary. .,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania.
| |
Collapse
|
34
|
Wang B, Dai Z, Gao Q, Liu Y, Gu G, Zheng H. Spop ameliorates diabetic nephropathy through restraining NLRP3 inflammasome. Biochem Biophys Res Commun 2022; 594:131-138. [PMID: 35081502 DOI: 10.1016/j.bbrc.2021.12.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 11/20/2022]
Abstract
Diabetic nephropathy (DN) is one of the most common causes for end-stage renal disease without effective therapies available. NLR family, pyrin domain-containing 3 (NLRP3) inflammasome possesses a fundamental effect to facilitate the pathogenesis of DN. Unfortunately, how NLRP3 inflammasome is mediated still remains largely unclear. In the present study, an E3 ubiquitin ligase Speckle-type BTB-POZ protein (Spop) was identified as a suppressor of NLRP3 inflammasome. We first showed that Spop expression was extensively down-regulated in kidney of DN patients, which was confirmed in kidney of streptozotocin (STZ)-challenged mice and in high glucose (HG)-stimulated podocytes. Intriguingly, we showed that conditional knockout (cKO) of Spop in podocytes considerably accelerated renal dysfunction and pathological changes in the glomerulus of STZ-induced mice with DN, along with severe podocyte injury. Furthermore, Spop specific ablation in podocytes dramatically facilitated inflammatory response in glomeruli of DN mice via enhancing NLRP3 inflammasome and nuclear factor κB (NF-κB) signaling pathways, which were confirmed in HG-cultured podocytes. Notably, our findings indicated that Spop directly interacted with NLRP3. More importantly, Spop promoted NLRP3 degradation via elevating K48-linked polyubiquitination of NLRP3. Collectively, our findings disclosed a mechanisms through which Spop limited NLRP3 inflammasome under HG condition, and illustrated that Spop may be a novel therapeutic target to suppress NLRP3 inflammasome, contributing to the DN management.
Collapse
Affiliation(s)
- Bin Wang
- Department of Endocrinology, The Second Affiliated Hospital of Xingtai Medical College, No.618 Gangtie North Road, Xindu District, Xingtai, 054000, Hebei, China
| | - Zhaohua Dai
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xingtai Medical College, No.618 Gangtie North Road, Xindu District, Xingtai, 054000, Hebei, China
| | - Qian Gao
- Department of Endocrinology, The Second Affiliated Hospital of Xingtai Medical College, No.618 Gangtie North Road, Xindu District, Xingtai, 054000, Hebei, China
| | - Yang Liu
- Department of Endocrinology, The Second Affiliated Hospital of Xingtai Medical College, No.618 Gangtie North Road, Xindu District, Xingtai, 054000, Hebei, China
| | - Guoxiao Gu
- Department of Internal Medicine, Xingtai Medical College, No.618 Gangtie North Road, Xindu District, Xingtai, 054000, Hebei, China.
| | - Huixiao Zheng
- Department of Endocrinology, The Second Affiliated Hospital of Xingtai Medical College, No.618 Gangtie North Road, Xindu District, Xingtai, 054000, Hebei, China.
| |
Collapse
|
35
|
P2X 4 deficiency reduces atherosclerosis and plaque inflammation in mice. Sci Rep 2022; 12:2801. [PMID: 35181718 PMCID: PMC8857235 DOI: 10.1038/s41598-022-06706-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/19/2022] [Indexed: 12/25/2022] Open
Abstract
Extracellular adenosine-5′-triphosphate (ATP) acts as an import signaling molecule mediating inflammation via purinergic P2 receptors. ATP binds to the purinergic receptor P2X4 and promotes inflammation via increased expression of pro-inflammatory cytokines. Because of the central role of inflammation, we assumed a functional contribution of the ATP-P2X4-axis in atherosclerosis. Expression of P2X4 was increased in atherosclerotic aortic arches from low-density lipoprotein receptor-deficient mice being fed a high cholesterol diet as assessed by real-time polymerase chain reaction and immunohistochemistry. To investigate the functional role of P2X4 in atherosclerosis, P2X4-deficient mice were crossed with low-density lipoprotein receptor-deficient mice and fed high cholesterol diet. After 16 weeks, P2X4-deficient mice developed smaller atherosclerotic lesions compared to P2X4-competent mice. Furthermore, intravital microscopy showed reduced ATP-induced leukocyte rolling at the vessel wall in P2X4-deficient mice. Mechanistically, we found a reduced RNA expression of CC chemokine ligand 2 (CCL-2), C-X-C motif chemokine-1 (CXCL-1), C-X-C motif chemokine-2 (CXCL-2), Interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) as well as a decreased nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)-inflammasome priming in atherosclerotic plaques from P2X4-deficient mice. Moreover, bone marrow derived macrophages isolated from P2X4-deficient mice revealed a reduced ATP-mediated release of CCL-2, CC chemokine ligand 5 (CCL-5), Interleukin-1β (IL-1β) and IL-6. Additionally, P2X4-deficient mice shared a lower proportion of pro-inflammatory Ly6Chigh monocytes and a higher proportion of anti-inflammatory Ly6Clow monocytes, and expressend less endothelial VCAM-1. Finally, increased P2X4 expression in human atherosclerotic lesions from carotid endarterectomy was found, indicating the importance of potential implementations of this study’s findings for human atherosclerosis. Collectively, P2X4 deficiency reduced experimental atherosclerosis, plaque inflammation and inflammasome priming, pointing to P2X4 as a potential therapeutic target in the fight against atherosclerosis.
Collapse
|
36
|
Xia GQ, Cai JN, Wu X, Fang Q, Zhao N, Lv XW. The mechanism by which ATP regulates alcoholic steatohepatitis through P2X4 and CD39. Eur J Pharmacol 2022; 916:174729. [PMID: 34973190 DOI: 10.1016/j.ejphar.2021.174729] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
Alcoholic liver disease caused by chronic excessive drinking has become one of the most common types of liver disease. Alcohol-induced inflammatory immune responses play a central role in the development of alcohol-associated steatohepatitis. The content and expression of ATP and P2X4 in the livers of alcoholic steatohepatitis mice are significantly increased. The content of ATP increased by 20 percent and the expression of P2X4 receptor protein was 1.3 times higher than that in the livers of normal mice. Treatment with 5-BDBD, a P2X4 receptor-specific inhibitor, significantly reduced alcohol-induced liver inflammation and lipid deposition. In RAW264.7 cell experiments, 5-BDBD inhibited the expression of P2X4 and alleviated alcohol-induced inflammation, while the CD39-specific inhibitor POM-1 reduced extracellular ATP degradation and promoted the expression of P2X4, thereby exacerbating inflammation. After treatment with 5-BDBD, P2X4 receptor protein expression decreased by 0.2 times and after treatment with POM-1, P2X4 receptor protein expression increased by 0.1 times compared to the alcohol-stimulated group. In addition, inhibition of P2X4 expression in RAW264.7 cells reduced calcium influx in RAW264.7 cells. P2X4 may induce the activation of NLRP3 inflammasomes by mediating calcium influx, thus exacerbating the inflammatory response, and inhibition of P2X4 expression can effectively block this process. Conclusion: These results suggest that the ATP-P2X4 signaling pathway promotes the inflammatory response in alcoholic steatohepatitis and that CD39 may play a protective role in regulating P2X4 expression by hydrolyzing ATP. In conclusion, the CD39 and ATP-P2X4 signaling pathways may be potential therapeutic targets for alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Guo-Qing Xia
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Jun-Nan Cai
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Xue Wu
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Qian Fang
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Ning Zhao
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Xiong-Wen Lv
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China.
| |
Collapse
|
37
|
Role of P2X4/NLRP3 Pathway-Mediated Neuroinflammation in Perioperative Neurocognitive Disorders. Mediators Inflamm 2022; 2022:6355805. [PMID: 35153623 PMCID: PMC8825560 DOI: 10.1155/2022/6355805] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
Several studies have demonstrated that neuroinflammation is the key to perioperative neurocognitive disorders (PND); however, the specific mechanism postsurgery and anesthesia has not yet been fully clarified. The present study is aimed at exploring the effects of P2X4/NLRP3 signaling pathway in neuroinflammation and cognitive impairment after surgery. 12–14-month-old male C57BL/6 mice undergoing open tibial fracture surgery by sevoflurane anesthesia were administered P2X4R inhibitor 5-BDBD or saline was intraperitoneally for 3 consecutive days after surgery. Then, the animals were subjected to Morris water maze test or sacrificed to collect the hippocampus. The level of P2X4R and NLRP3 was estimated by Western blot, the activation of microglia was detected via immunohistochemistry, and the expression of TNF-α, IL-1β, and IL-6 was quantified by enzyme-linked immunosorbent assay. These results indicated that tibial surgery caused cognitive impairment, increased the expression of P2X4R and NLRP3, and aggravated the neuroinflammation and microglia activation. However, intraperitoneal injection of 5-BDBD attenuated these effects. In conclusion, these findings indicated that the P2X4/NLRP3 pathway might be involved in the pathophysiology of PND.
Collapse
|
38
|
Lei L, Bai Y, Fan Y, Li Y, Jiang H, Wang J. Comprehensive Diagnostics of Diabetic Nephropathy by Transcriptome RNA Sequencing. Diabetes Metab Syndr Obes 2022; 15:3069-3080. [PMID: 36237968 PMCID: PMC9553241 DOI: 10.2147/dmso.s371026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a primary driver of end-stage renal disease. Given the heterogeneity of renal lesions and the complex mechanisms of DN, the present-day diagnostic approach remains highly controversial. We aimed to design a diagnostic model by bioinformatics methods for discriminating DN patients from normal subjects. METHODS In this study, transcriptome sequencing was performed on 6 clinical samples (3 from DN patients and 3 from healthy volunteers) from the Second Affiliated Hospital of Kunming Medical University. Construction of a competing endogenous RNA (ceRNA) network based on differentially expressed (DE)-mRNAs and -long noncoding RNAs (lncRNAs). Subsequently, the CytoHubba plugin was used to identify hub genes from DE-mRNAs in the ceRNA network and to perform functional enrichment analysis on them. The least absolute shrinkage and selection operator (LASSO) regression analysis was responsible for screening the diagnostic biomarkers from hub genes and assessing their diagnostic power using ROC curves. The pathways involved in hub genes were revealed by single-gene Gene Set Enrichment Analysis (GSEA). Moreover, we verified the expression levels of diagnostic biomarkers by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. RESULTS A total of 10 hub genes were screened from the ceRNA network, which appeared to be associated with the viral infection, kidney development, and regulation of immune and inflammatory responses. Subsequently, LASSO regression analysis established a diagnostic model consisting of DDX58, SAMD9L, and TLR6 with a robust diagnostic potency (AUC = 1). Similarly, single-gene GSEA showed a strong association of these diagnostic biomarkers with the viral infection. Furthermore, PCR and Western blot demonstrated showed that DDX58, SAMD9L, and TLR6 were upregulated in DN patients at both transcriptome and protein levels compared to healthy controls. CONCLUSION We confirmed that differentially expressed hub genes may be novel diagnostic biomarkers in DN.
Collapse
Affiliation(s)
- Lei Lei
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Yihua Bai
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People’s Republic of China
- Correspondence: Yihua Bai, Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People’s Republic of China, Email
| | - Yang Fan
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Yaling Li
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Hongying Jiang
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Jiaping Wang
- Department of Radiology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| |
Collapse
|
39
|
Szrejder M, Rogacka D, Piwkowska A. Purinergic P2 receptors: Involvement and therapeutic implications in diabetes-related glomerular injury. Arch Biochem Biophys 2021; 714:109078. [PMID: 34742673 DOI: 10.1016/j.abb.2021.109078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/15/2021] [Accepted: 10/30/2021] [Indexed: 02/08/2023]
Abstract
The purinergic activation of P2 receptors initiates a powerful and rapid signaling cascade that contributes to the regulation of an array of physiological and pathophysiological processes in many organs, including the kidney. P2 receptors are broadly distributed in both epithelial and vascular renal cells. Disturbances of purinergic signaling can lead to impairments in renal function. A growing body of evidence indicates changes in P2 receptor expression and nucleotide metabolism in chronic renal injury and inflammatory diseases. Increasing attention has focused on purinergic P2X7 receptors, which are not normally expressed in healthy kidney tissue but are highly expressed at sites of tissue damage and inflammation. Under hyperglycemic conditions, several mechanisms that are linked to purinergic signaling and involve nucleotide release and degradation are disrupted, resulting in the accumulation of adenosine 5'-triphosphate in the bloodstream in diabetes. Dysfunction of the purinergic system might be associated with serious vascular complications in diabetes, including diabetic nephropathy. This review summarizes our current knowledge of the role of P2 receptors in diabetes-related glomerular injury and its implications for new therapeutics for diabetic nephropathy.
Collapse
Affiliation(s)
- Maria Szrejder
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland.
| | - Dorota Rogacka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; Department of Molecular Biotechnology, University of Gdańsk, Faculty of Chemistry, Gdańsk, Poland
| | - Agnieszka Piwkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; Department of Molecular Biotechnology, University of Gdańsk, Faculty of Chemistry, Gdańsk, Poland
| |
Collapse
|
40
|
The Complex Interplay between Autophagy and NLRP3 Inflammasome in Renal Diseases. Int J Mol Sci 2021; 22:ijms222312766. [PMID: 34884572 PMCID: PMC8657456 DOI: 10.3390/ijms222312766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a highly conserved process of the eukaryotic cell cycle. It plays an important role in the survival and maintenance of cells by degrading organelles, proteins, and macromolecules in the cytoplasm and the circulation of degraded products. The dysfunction of autophagy can lead to the pathology of many human diseases. The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome belongs to the family of nucleotide-binding and oligomerization domain-like receptors (NLRs) and can induce caspase-1 activation, thus leading to the maturation and secretion of interleukin-1beta (IL-1β) and IL-18. It has been reported that the interplay between autophagy and NLRP3 inflammasome is involved in many diseases, including renal diseases. In this review, the interplay between autophagy and the NLRP3 inflammasome and the mechanisms in renal diseases are explored to provide ideas for relevant basic research in the future.
Collapse
|
41
|
Deng J, Liu Y, Liu Y, Li W, Nie X. The Multiple Roles of Fibroblast Growth Factor in Diabetic Nephropathy. J Inflamm Res 2021; 14:5273-5290. [PMID: 34703268 PMCID: PMC8524061 DOI: 10.2147/jir.s334996] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022] Open
Abstract
Diabetic nephropathy (DN) is a common microvascular complication in the late stages of diabetes. Currently, the etiology and pathogenesis of DN are not well understood. Even so, available evidence shows its development is associated with metabolism, oxidative stress, cytokine interaction, genetic factors, and renal microvascular disease. Diabetic nephropathy can lead to proteinuria, edema and hypertension, among other complications. In severe cases, it can cause life-threatening complications such as renal failure. Patients with type 1 diabetes, hypertension, high protein intake, and smokers have a higher risk of developing DN. Fibroblast growth factor (FGF) regulates several human processes essential for normal development. Even though FGF has been implicated in the pathological development of DN, the underlying mechanisms are not well understood. This review summarizes the role of FGF in the development of DN. Moreover, the association of FGF with metabolism, inflammation, oxidative stress and fibrosis in the context of DN is discussed. Findings of this review are expected to deepen our understanding of DN and generate ideas for developing effective prevention and treatments for the disease.
Collapse
Affiliation(s)
- Junyu Deng
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Yiqiu Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Wei Li
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
- Key Laboratory of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| |
Collapse
|
42
|
Molecular mechanism and therapeutic targeting of necrosis, apoptosis, pyroptosis, and autophagy in cardiovascular disease. Chin Med J (Engl) 2021; 134:2647-2655. [PMID: 34608069 PMCID: PMC8631411 DOI: 10.1097/cm9.0000000000001772] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT Cell death occurs in various tissues and organs in the body. It is a physiological or pathological process that has different effects. It is of great significance in maintaining the morphological function of cells and clearing abnormal cells. Pyroptosis, apoptosis, and necrosis are all modes of cell death that have been studied extensively by many experts and scholars, including studies on their effects on the liver, kidney, the heart, other organs, and even the whole body. The heart, as the most important organ of the body, should be a particular focus. This review summarizes the mechanisms underlying the various cell death modes and the relationship between the various mechanisms and heart diseases. The current research status for heart therapy is discussed from the perspective of pathogenesis.
Collapse
|
43
|
Wang J, Zhang XN, Fang JN, Hua FF, Han JY, Yuan ZQ, Xie AM. The mechanism behind activation of the Nod-like receptor family protein 3 inflammasome in Parkinson's disease. Neural Regen Res 2021; 17:898-904. [PMID: 34472491 PMCID: PMC8530148 DOI: 10.4103/1673-5374.323077] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previous studies have shown that the ATP-P2X4 receptor signaling pathway mediates the activation of the Nod-like receptor family protein 3 (NLRP3) inflammasome. The NLRP3 inflammasome may promote renal interstitial inflammation in diabetic nephropathy. As inflammation also plays an important role in the pathogenesis of Parkinson’s disease, we hypothesized that the ATP-P2X4 receptor signaling pathway may activate the NLRP3 inflammasome in Parkinson’s disease. A male rat model of Parkinson’s disease was induced by stereotactic injection of 6-hydroxydopamine into the pars compacta of the substantia nigra. The P2X4 receptor and the NLRP3 inflammasome (interleukin-1β and interleukin-18) were activated. Intracerebroventricular injection of the selective P2X4 receptor antagonist 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD) or knockdown of P2X4 receptor expression by siRNA inhibited the activation of the NLRP3 inflammasome and alleviated dopaminergic neurodegeneration and neuroinflammation. Our results suggest that the ATP-P2X4 receptor signaling pathway mediates NLRP3 inflammasome activation, dopaminergic neurodegeneration, and dopamine levels. These findings reveal a novel role of the ATP-P2X4 axis in the molecular mechanisms underlying Parkinson’s disease, thus providing a new target for treatment. This study was approved by the Animal Ethics Committee of Qingdao University, China, on March 5, 2015 (approval No. QYFYWZLL 26119).
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiao-Na Zhang
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jin-Ni Fang
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Fei-Fei Hua
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jing-Yang Han
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Zeng-Qiang Yuan
- Brain Science Center, Academy of Military Medical Sciences of PLA, Beijing, China
| | - An-Mu Xie
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
44
|
Xiong W, Meng XF, Zhang C. NLRP3 Inflammasome in Metabolic-Associated Kidney Diseases: An Update. Front Immunol 2021; 12:714340. [PMID: 34305953 PMCID: PMC8297462 DOI: 10.3389/fimmu.2021.714340] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Metabolic syndrome (MS) is a group of complex metabolic disorders syndrome, which refers to the pathological state of metabolism disorder of protein, fat, carbohydrate and other substances in human body. The kidney is an important organ of metabolism, and various metabolic disorders can lead to the abnormalities in the structure and function of the kidney. The recognition of pathogenesis and treatment measures of renal damage in MS is a very important part for the renal function preserve. Inflammatory response caused by various metabolic factors is a protective mechanism of the body, but persistent inflammation will become a harmful factor and aggravate kidney damage. Inflammasomes are sensors of the innate immune system that play crucial roles in initiating inflammation in response to acute infections and chronic diseases. They are multiprotein complex composed of cytoplasmic sensors (mainly NLR family members), apoptosis-associated speck-like protein (ASC or PYCARD) and pro-caspase-1. After receiving exogenous and endogenous stimuli, the sensors begin to assemble inflammasome and then promote the release of inflammatory cytokines IL-1β and IL-18, resulting in a special way of cell death named pyroptosis. In the kidney, NLRP3 inflammasome can be activated by a variety of pathways, which eventually leads to inflammatory infiltration, renal intrinsic cell damage and renal function decline. This paper reviews the function and specific regulatory mechanism of inflammasome in kidney damage caused by various metabolic disorders, which will provide a new therapeutic perspective and targets for kidney diseases.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Fang Meng
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Palygin O, Klemens CA, Isaeva E, Levchenko V, Spires DR, Dissanayake LV, Nikolaienko O, Ilatovskaya DV, Staruschenko A. Characterization of purinergic receptor 2 signaling in podocytes from diabetic kidneys. iScience 2021; 24:102528. [PMID: 34142040 PMCID: PMC8188476 DOI: 10.1016/j.isci.2021.102528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/12/2021] [Accepted: 05/08/2021] [Indexed: 02/08/2023] Open
Abstract
Growing evidence suggests that renal purinergic signaling undergoes significant remodeling during pathophysiological conditions such as diabetes. This study examined the renal P2 receptor profile and ATP-mediated calcium response from podocytes in glomeruli from kidneys with type 1 or type 2 diabetic kidney disease (DKD), using type 2 diabetic nephropathy (T2DN) rats and streptozotocin-injected Dahl salt-sensitive (type 1 diabetes) rats. A dramatic increase in the ATP-mediated intracellular calcium flux in podocytes was observed in both models. Pharmacological inhibition established that P2X4 and P2X7 are the major receptors contributing to the augmented ATP-mediated intracellular calcium signaling in diabetic podocytes. The transition in purinergic receptor composition from metabotropic to ionotropic may disrupt intracellular calcium homeostasis in podocytes resulting in their dysfunction and potentially further aggravating DKD progression. Diabetic podocytes have sustained intracellular Ca2+ signaling in response to ATP Podocyte purinergic receptor signaling is predominantly ionotropic in diabetes Both type 1 and 2 diabetic podocytes have similar purinergic receptor remodeling
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christine A Klemens
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Denisha R Spires
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Lashodya V Dissanayake
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Oksana Nikolaienko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.,Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| |
Collapse
|
46
|
Wan S, Wan S, Jiao X, Cao H, Gu Y, Yan L, Zheng Y, Niu P, Shao F. Advances in understanding the innate immune-associated diabetic kidney disease. FASEB J 2021; 35:e21367. [PMID: 33508160 DOI: 10.1096/fj.202002334r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022]
Abstract
Millions of human deaths occur annually due to chronic kidney disease, caused by diabetic kidney disease (DKD). Despite having effective drugs controlling the hyperglycemia and high blood pressure, the incidence of DKD is increasing, which indicates the need for the development of novel therapies to control DKD. In this article, we discussed the recent advancements in the basic innate immune mechanisms in renal tissues triggered under the diabetes environment, leading to the pathogenesis and progression of DKD. We also summarized the currently available innate immune molecules-targeting therapies tested against DKD in clinical and preclinical settings, and highlighted additional drug targets that could potentially be employed for the treatment of DKD. The improved understanding of the disease pathogenesis may open avenues for the development of novel therapies to rein in DKD, which consequently, can reduce morbidity and mortality in humans in the future.
Collapse
Affiliation(s)
- Shengfeng Wan
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Shengkai Wan
- Department of Operations Management, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Xiaojing Jiao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Huixia Cao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Yue Gu
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Lei Yan
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Yan Zheng
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Peiyuan Niu
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| |
Collapse
|
47
|
Caspase-1-Inhibitor AC-YVAD-CMK Inhibits Pyroptosis and Ameliorates Acute Kidney Injury in a Model of Sepsis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6636621. [PMID: 34222479 PMCID: PMC8213477 DOI: 10.1155/2021/6636621] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/02/2021] [Accepted: 05/23/2021] [Indexed: 11/18/2022]
Abstract
Objective To observe the protective effect of AC-YVAD-CMK on sepsis-induced acute kidney injury in mice and to explore its possible mechanisms primarily. Methods Eighteen male C57BL/6 mice were randomly divided into sham-operated group (Control), cecal ligation and puncture group (CLP), and CLP model treated with AC-YVAD-CMK group (AC-YVAD-CMK) (n = 6 in each group). Mice were sacrificed at 24 h after operation, and blood and kidney tissue samples were collected for analyses. Histologic changes were determined microscopically following HE staining. The expression of Ly-6B and CD68 was investigated using immunohistochemistry. Serum concentrations of creatinine (sCR) and blood urea nitrogen (BUN) were measured. Serum levels of interleukin-1β (IL-1β), interleukin-18 (IL-18), TNF-α, and interleukin-6 (IL-6) were determined by ELISA. The expressions of Caspas-1, NLRP-1, IL-1β, and IL-18 in renal tissues were investigated using Western blot. Immunofluorescence staining was used to detect the expression of GSDMD protein in renal tissues. Results AC-YVAD-CMK treatment significantly alleviates sepsis-induced acute kidney injury, with decreased histological injury in renal tissues, suppresses the accumulation of neutrophils and macrophages in renal tissues, and decreased sCR and BUN level (P < 0.05). Attenuation of sepsis-induced acute kidney injury was due to the prohibited production of inflammatory cytokines and decrease expression of Caspas-1, NLRP-1, IL-1β, and IL-18 in renal tissues. In addition, AC-YVAD-CMK treatment significantly reduced the expression of GSDMD in renal tissues compared to those observed in controls (P < 0.05). Conclusions We demonstrated a marked renoprotective effect of caspase-1-inhibitor AC-YVAD-CMK in a rat model of sepsis by inhibition of pyroptosis.
Collapse
|
48
|
Hou Y, Wang Q, Han B, Chen Y, Qiao X, Wang L. CD36 promotes NLRP3 inflammasome activation via the mtROS pathway in renal tubular epithelial cells of diabetic kidneys. Cell Death Dis 2021; 12:523. [PMID: 34021126 PMCID: PMC8140121 DOI: 10.1038/s41419-021-03813-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 02/04/2023]
Abstract
Tubulointerstitial inflammation plays a key role in the pathogenesis of diabetic nephropathy (DN). Interleukin-1β (IL-1β) is the key proinflammatory cytokine associated with tubulointerstitial inflammation. The NLRP3 inflammasome regulates IL-1β activation and secretion. Reactive oxygen species (ROS) represents the main mediator of NLRP3 inflammasome activation. We previously reported that CD36, a class B scavenger receptor, mediates ROS production in DN. Here, we determined whether CD36 is involved in NLRP3 inflammasome activation and explored the underlying mechanisms. We observed that high glucose induced-NLRP3 inflammasome activation mediate IL-1β secretion, caspase-1 activation, and apoptosis in HK-2 cells. In addition, the levels of CD36, NLRP3, and IL-1β expression (protein and mRNA) were all significantly increased under high glucose conditions. CD36 knockdown resulted in decreased NLRP3 activation and IL-1β secretion. CD36 knockdown or the addition of MitoTempo significantly inhibited ROS production in HK-2 cells. CD36 overexpression enhanced NLRP3 activation, which was reduced by MitoTempo. High glucose levels induced a change in the metabolism of HK-2 cells from fatty acid oxidation (FAO) to glycolysis, which promoted mitochondrial ROS (mtROS) production after 72 h. CD36 knockdown increased the level of AMP-activated protein kinase (AMPK) activity and mitochondrial FAO, which was accompanied by the inhibition of NLRP3 and IL-1β. The in vivo experimental results indicate that an inhibition of CD36 could protect diabetic db/db mice from tubulointerstitial inflammation and tubular epithelial cell apoptosis. CD36 mediates mtROS production and NLRP3 inflammasome activation in db/db mice. CD36 inhibition upregulated the level of FAO-related enzymes and AMPK activity in db/db mice. These results suggest that NLRP3 inflammasome activation is mediated by CD36 in renal tubular epithelial cells in DN, which suppresses mitochondrial FAO and stimulates mtROS production.
Collapse
Affiliation(s)
- Yanjuan Hou
- grid.263452.40000 0004 1798 4018Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Qian Wang
- grid.263452.40000 0004 1798 4018Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Baosheng Han
- grid.477944.dDepartment of Cardiac Surgery, Shanxi Cardiovascular Hospital, Taiyuan, China
| | - Yiliang Chen
- grid.280427.b0000 0004 0434 015XBlood Research Institute, Blood Center of Wisconsin, Milwaukee, WI USA ,grid.30760.320000 0001 2111 8460Department of Medicine, Medical College of Wisconsin, Milwaukee, WI USA
| | - Xi Qiao
- grid.263452.40000 0004 1798 4018Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Lihua Wang
- grid.263452.40000 0004 1798 4018Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
49
|
Role of microglia and P2X4 receptors in chronic pain. Pain Rep 2021; 6:e864. [PMID: 33981920 PMCID: PMC8108579 DOI: 10.1097/pr9.0000000000000864] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
This study summarizes current understanding of the role of microglia and P2X4 receptor in chronic pain including neuropathic pain and of their therapeutic potential. Pain plays an indispensable role as an alarm system to protect us from dangers or injuries. However, neuropathic pain, a debilitating pain condition caused by damage to the nervous system, persists for a long period even in the absence of dangerous stimuli or after injuries have healed. In this condition, pain becomes a disease itself rather than the alarm system and is often resistant to currently available medications. A growing body of evidence indicates that microglia, a type of macrophages residing in the central nervous system, play a crucial role in the pathogenesis of neuropathic pain. Whenever microglia in the spinal cord detect a damaging signal within the nervous system, they become activated and cause diverse alterations that change neural excitability, leading to the development of neuropathic pain. For over a decade, several lines of molecular and cellular mechanisms that define microglial activation and subsequently altered pain transmission have been proposed. In particular, P2X4 receptors (a subtype of purinergic receptors) expressed by microglia have been investigated as an essential molecule for neuropathic pain. In this review article, we describe our understanding of the mechanisms by which activated microglia cause neuropathic pain through P2X4 receptors, their involvement in several pathological contexts, and recent efforts to develop new drugs targeting microglia and P2X4 receptors.
Collapse
|
50
|
Friščić J, Böttcher M, Reinwald C, Bruns H, Wirth B, Popp SJ, Walker KI, Ackermann JA, Chen X, Turner J, Zhu H, Seyler L, Euler M, Kirchner P, Krüger R, Ekici AB, Major T, Aust O, Weidner D, Fischer A, Andes FT, Stanojevic Z, Trajkovic V, Herrmann M, Korb-Pap A, Wank I, Hess A, Winter J, Wixler V, Distler J, Steiner G, Kiener HP, Frey B, Kling L, Raza K, Frey S, Kleyer A, Bäuerle T, Hughes TR, Grüneboom A, Steffen U, Krönke G, Croft AP, Filer A, Köhl J, Klein K, Buckley CD, Schett G, Mougiakakos D, Hoffmann MH. The complement system drives local inflammatory tissue priming by metabolic reprogramming of synovial fibroblasts. Immunity 2021; 54:1002-1021.e10. [PMID: 33761330 DOI: 10.1016/j.immuni.2021.03.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/23/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022]
Abstract
Arthritis typically involves recurrence and progressive worsening at specific predilection sites, but the checkpoints between remission and persistence remain unknown. Here, we defined the molecular and cellular mechanisms of this inflammation-mediated tissue priming. Re-exposure to inflammatory stimuli caused aggravated arthritis in rodent models. Tissue priming developed locally and independently of adaptive immunity. Repeatedly stimulated primed synovial fibroblasts (SFs) exhibited enhanced metabolic activity inducing functional changes with intensified migration, invasiveness and osteoclastogenesis. Meanwhile, human SF from patients with established arthritis displayed a similar primed phenotype. Transcriptomic and epigenomic analyses as well as genetic and pharmacological targeting demonstrated that inflammatory tissue priming relies on intracellular complement C3- and C3a receptor-activation and downstream mammalian target of rapamycin- and hypoxia-inducible factor 1α-mediated metabolic SF invigoration that prevents activation-induced senescence, enhances NLRP3 inflammasome activity, and in consequence sensitizes tissue for inflammation. Our study suggests possibilities for therapeutic intervention abrogating tissue priming without immunosuppression.
Collapse
Affiliation(s)
- Jasna Friščić
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Martin Böttcher
- Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christiane Reinwald
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Heiko Bruns
- Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Benjamin Wirth
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Samantha-Josefine Popp
- Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kellie Irene Walker
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Jochen A Ackermann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Xi Chen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jason Turner
- Institute for Inflammation and Ageing, University of Birmingham, NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, B15 2TT Birmingham, United Kingdom
| | - Honglin Zhu
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Lisa Seyler
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) ands Universitäts-klinikum Erlangen, 91054, Erlangen, Germany
| | - Maximilien Euler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Philipp Kirchner
- Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - René Krüger
- Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Triin Major
- Institute for Inflammation and Ageing, University of Birmingham, NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, B15 2TT Birmingham, United Kingdom
| | - Oliver Aust
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Daniela Weidner
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Anita Fischer
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Arthritis and Rehabilitation, 1090 Vienna, Austria
| | - Fabian T Andes
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Zeljka Stanojevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Adelheid Korb-Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, D3, 48149 Muenster, Germany
| | - Isabel Wank
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Johnathan Winter
- Division of Infection and Immunity, School of Medicine, Cardiff University, CF10 3AT, Cardiff, UK
| | - Viktor Wixler
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University Muenster, 48149 Muenster, Germany
| | - Jörg Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Günter Steiner
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Arthritis and Rehabilitation, 1090 Vienna, Austria
| | - Hans P Kiener
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090 Vienna, Austria
| | - Benjamin Frey
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Lasse Kling
- Innovations-Institut für Nanotechnologie und korrelative Mikroskopie, 91301 Forchheim, Germany
| | - Karim Raza
- Institute for Inflammation and Ageing, University of Birmingham, NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, B15 2TT Birmingham, United Kingdom; Department of Rheumatology, City Hospital, Sandwell and West Birmingham, B18 7QH Birmingham, UK
| | - Silke Frey
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Arnd Kleyer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Tobias Bäuerle
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) ands Universitäts-klinikum Erlangen, 91054, Erlangen, Germany
| | - Timothy R Hughes
- Division of Infection and Immunity, School of Medicine, Cardiff University, CF10 3AT, Cardiff, UK
| | - Anika Grüneboom
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Ulrike Steffen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Adam P Croft
- Institute for Inflammation and Ageing, University of Birmingham, NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, B15 2TT Birmingham, United Kingdom
| | - Andrew Filer
- Institute for Inflammation and Ageing, University of Birmingham, NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, B15 2TT Birmingham, United Kingdom
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany; Division of Immunobiology, Cincinnati Childrens Hospital Medical Center and University of Cincinnati College of Medicine, 45229-3026 Cincinnati, OH, USA
| | - Kerstin Klein
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Christopher D Buckley
- Institute for Inflammation and Ageing, University of Birmingham, NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, B15 2TT Birmingham, United Kingdom; Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, UK
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Dimitrios Mougiakakos
- Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Markus H Hoffmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| |
Collapse
|