1
|
Zhu S, Su L, Zhuang M, Liu L, Ji M, Liu J, Dai C, Xiao J, Guan Y, Yang L, Pu H. NEFL Modulates NRN1-Mediated Mitochondrial Pathway to Promote Diacetylmorphine-Induced Neuronal Apoptosis. Mol Neurobiol 2025; 62:6983-6997. [PMID: 39557800 PMCID: PMC12078432 DOI: 10.1007/s12035-024-04629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Diacetylmorphine abuse is a major social problem that jeopardizes the world, and abuse can cause serious neurological disorders. Apoptosis plays an important role in neurological diseases. A previous study by our group found that the brain tissue of diacetylmorphine-addicted rats showed severe vacuole-like degeneration and increased apoptosis, but the exact mechanism has not yet been reported. We used TMT technology to sequence the diseased brain tissue of rats, and selected neurofilament light chain (NEFL) and neuritin (NRN1) as the focus of our research. We explore the possible roles and mechanisms played by both. Based on the construction of apoptotic cell model, we used overexpression/silencing lentiviral vectors to interfere with the expression of NEFL in PC12 cells, and the results suggested that NEFL could regulate NRN1 to affect the apoptosis level. To further understand the specific mechanism, we used transmission electron microscopy to observe the ultrastructure of apoptotic cells, and the results showed that compared with the control group, mitochondria in the model group showed obvious vacuolation as well as expansion, a significant increase in the accumulation of ROS, and a significant decrease in the mitochondrial membrane potential; after overexpression/silencing of NEFL, these changes were found to occur along with the alteration of NEFL expression. In summary, we conclude that diacetylmorphine induces neuronal apoptosis, and the specific mechanism is that NEFL regulates the NRN1-mediated mitochondrial pathway to promote apoptosis.
Collapse
Affiliation(s)
- Sensen Zhu
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830017, China
| | - Liping Su
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Mengjie Zhuang
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830017, China
| | - Li Liu
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Min Ji
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Jingyu Liu
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830017, China
| | - Chenlu Dai
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830017, China
| | - Jinling Xiao
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830017, China
| | - Yaling Guan
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830017, China
| | - Long Yang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan City, 528000, China.
| | - Hongwei Pu
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830017, China.
- Key Laboratory of Forensic Medicine, Xinjiang Medical University, Xinjiang, China.
- Department of Discipline Construction, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| |
Collapse
|
2
|
Devarakonda SS, Basha S, Pithakumar A, L B T, Mukunda DC, Rodrigues J, K A, Biswas S, Pai AR, Belurkar S, Mahato KK. Molecular mechanisms of neurofilament alterations and its application in assessing neurodegenerative disorders. Ageing Res Rev 2024; 102:102566. [PMID: 39481763 DOI: 10.1016/j.arr.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Neurofilaments are intermediate filaments present in neurons. These provide structural support and maintain the size and shape of the neurons. Dysregulation, mutation, and aggregation of neurofilaments raise the levels of these proteins in the blood and cerebrospinal fluid (CSF), which are characteristic features of axonal damage and certain rare neurological diseases, such as Giant Axonal Neuropathy and Charcot-Mare-Tooth disease. Understanding the structure, dynamics, and function of neurofilaments has been greatly enhanced by a diverse range of biochemical and preclinical investigations conducted over more than four decades. Recently, there has been a resurgence of interest in post-translational modifications of neurofilaments, such as phosphorylation, aggregation, mutation, oxidation, etc. Over the past twenty years, several rare disorders have been studied from structural alterations of neurofilaments. These disorders are monitored by fluid biomarkers such as neurofilament light chains. Currently, there are many tools, such as Enzyme-Linked Immunosorbent Assay, Electrochemiluminescence Assay, Single-Molecule Array, Western/immunoblotting, etc., in use to assess the neurofilament proteins in Blood and CSF. However, all these techniques utilize expensive, non-specific, or antibody-based methods, which make them unsuitable for routine screening of neurodegenerative disorders. This provides room to search for newer sensitive, cost-effective, point-of-care tools for rapid screening of the disease. For a long time, the molecular mechanisms of neurofilaments have been poorly understood due to insufficient research attempts, and a deeper understanding of them remains elusive. Therefore, this review aims to highlight the available literature on molecular mechanisms of neurofilaments and the function of neurofilaments in axonal transport, axonal conduction, axonal growth, and neurofilament aggregation, respectively. Further, this review discusses the role of neurofilaments as potential biomarkers for the identification of several neurodegenerative diseases in clinical laboratory practice.
Collapse
Affiliation(s)
| | - Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Anjana Pithakumar
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Thoshna L B
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Ameera K
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Shimul Biswas
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Sushma Belurkar
- Department of Pathology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India.
| |
Collapse
|
3
|
van Asperen JV, Kotaich F, Caillol D, Bomont P. Neurofilaments: Novel findings and future challenges. Curr Opin Cell Biol 2024; 87:102326. [PMID: 38401181 DOI: 10.1016/j.ceb.2024.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/07/2024] [Indexed: 02/26/2024]
Abstract
Neurofilaments (NFs) are abundant cytoskeletal proteins that emerge as a critical hub for cell signalling within neurons. As we start to uncover essential roles of NFs in regulating microtubule and organelle dynamics, nerve conduction and neurotransmission, novel discoveries are expected to arise in genetics, with NFs identified as causal genes for various neurodegenerative diseases. This review will discuss how the latest advances in fundamental and translational research illuminate our understanding of NF biology, particularly their assembly, organisation, transport and degradation. We will emphasise the notion that filaments are not one entity and that future challenges will be to apprehend their diverse composition and structural heterogeneity and to scrutinize how this regulates signalling, sustains neuronal physiology and drives pathophysiology in disease.
Collapse
Affiliation(s)
- Jessy V van Asperen
- ERC Team, NeuroMyoGene Insitute, INMG-PGNM, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| | - Farah Kotaich
- ERC Team, NeuroMyoGene Insitute, INMG-PGNM, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| | - Damien Caillol
- ERC Team, NeuroMyoGene Insitute, INMG-PGNM, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| | - Pascale Bomont
- ERC Team, NeuroMyoGene Insitute, INMG-PGNM, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France.
| |
Collapse
|
4
|
Kotaich F, Caillol D, Bomont P. Neurofilaments in health and Charcot-Marie-Tooth disease. Front Cell Dev Biol 2023; 11:1275155. [PMID: 38164457 PMCID: PMC10758125 DOI: 10.3389/fcell.2023.1275155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024] Open
Abstract
Neurofilaments (NFs) are the most abundant component of mature neurons, that interconnect with actin and microtubules to form the cytoskeleton. Specifically expressed in the nervous system, NFs present the particularity within the Intermediate Filament family of being formed by four subunits, the neurofilament light (NF-L), medium (NF-M), heavy (NF-H) proteins and α-internexin or peripherin. Here, we review the current knowledge on NF proteins and neurofilaments, from their domain structures and their model of assembly to the dynamics of their transport and degradation along the axon. The formation of the filament and its behaviour are regulated by various determinants, including post-transcriptional (miRNA and RBP proteins) and post-translational (phosphorylation and ubiquitination) modifiers. Altogether, the complex set of modifications enable the neuron to establish a stable but elastic NF array constituting the structural scaffold of the axon, while permitting the local expression of NF proteins and providing the dynamics necessary to fulfil local demands and respond to stimuli and injury. Thus, in addition to their roles in mechano-resistance, radial axonal outgrowth and nerve conduction, NFs control microtubule dynamics, organelle distribution and neurotransmission at the synapse. We discuss how the studies of neurodegenerative diseases with NF aggregation shed light on the biology of NFs. In particular, the NEFL and NEFH genes are mutated in Charcot-Marie-Tooth (CMT) disease, the most common inherited neurological disorder of the peripheral nervous system. The clinical features of the CMT forms (axonal CMT2E, CMT2CC; demyelinating CMT1F; intermediate I-CMT) with symptoms affecting the central nervous system (CNS) will allow us to further investigate the physiological roles of NFs in the brain. Thus, NF-CMT mouse models exhibit various degrees of sensory-motor deficits associated with CNS symptoms. Cellular systems brought findings regarding the dominant effect of NF-L mutants on NF aggregation and transport, although these have been recently challenged. Neurofilament detection without NF-L in recessive CMT is puzzling, calling for a re-examination of the current model in which NF-L is indispensable for NF assembly. Overall, we discuss how the fundamental and translational fields are feeding each-other to increase but also challenge our knowledge of NF biology, and to develop therapeutic avenues for CMT and neurodegenerative diseases with NF aggregation.
Collapse
Affiliation(s)
| | | | - Pascale Bomont
- ERC team, NeuroMyoGene Institute-Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| |
Collapse
|
5
|
The J Domain of Sacsin Disrupts Intermediate Filament Assembly. Int J Mol Sci 2022; 23:ijms232415742. [PMID: 36555380 PMCID: PMC9779362 DOI: 10.3390/ijms232415742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Autosomal Recessive Spastic Ataxia of the Charlevoix Saguenay (ARSACS) is caused by mutation in the SACS gene resulting in loss of function of the protein sacsin. A key feature is the formation of abnormal bundles of neurofilaments (NF) in neurons and vimentin intermediate filaments (IF) in cultured fibroblasts, suggesting a role of sacsin in IF homeostasis. Sacsin contains a J domain (SacsJ) homologous to Hsp40, that can interact with Hsp70 chaperones. The SacsJ domain resolved NF bundles in cultured Sacs-/- neurons. Having studied the mechanism using NF assembled in vitro from purified NF proteins, we report that the SacsJ domain interacts with NF proteins to disassemble NFL filaments, and to inhibit their initial assembly. A cell-penetrating peptide derived from this domain, SacsJ-myc-TAT was efficient in disassembling NF bundles in cultured Sacs-/- motor neurons, restoring the NF network; however, there was some loss of vimentin IF and NF in cultured Sacs+/+ fibroblasts and motor neurons, respectively. These results suggest that sacsin through its SacsJ domain is a key regulator of NF and vimentin IF networks in cells.
Collapse
|
6
|
Guillaud L, El-Agamy SE, Otsuki M, Terenzio M. Anterograde Axonal Transport in Neuronal Homeostasis and Disease. Front Mol Neurosci 2020; 13:556175. [PMID: 33071754 PMCID: PMC7531239 DOI: 10.3389/fnmol.2020.556175] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Neurons are highly polarized cells with an elongated axon that extends far away from the cell body. To maintain their homeostasis, neurons rely extensively on axonal transport of membranous organelles and other molecular complexes. Axonal transport allows for spatio-temporal activation and modulation of numerous molecular cascades, thus playing a central role in the establishment of neuronal polarity, axonal growth and stabilization, and synapses formation. Anterograde and retrograde axonal transport are supported by various molecular motors, such as kinesins and dynein, and a complex microtubule network. In this review article, we will primarily discuss the molecular mechanisms underlying anterograde axonal transport and its role in neuronal development and maturation, including the establishment of functional synaptic connections. We will then provide an overview of the molecular and cellular perturbations that affect axonal transport and are often associated with axonal degeneration. Lastly, we will relate our current understanding of the role of axonal trafficking concerning anterograde trafficking of mRNA and its involvement in the maintenance of the axonal compartment and disease.
Collapse
Affiliation(s)
- Laurent Guillaud
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Sara Emad El-Agamy
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Miki Otsuki
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
7
|
Demy DL, Campanari ML, Munoz-Ruiz R, Durham HD, Gentil BJ, Kabashi E. Functional Characterization of Neurofilament Light Splicing and Misbalance in Zebrafish. Cells 2020; 9:E1238. [PMID: 32429483 PMCID: PMC7291018 DOI: 10.3390/cells9051238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Neurofilaments (NFs), a major cytoskeletal component of motor neurons, play a key role in the differentiation, establishment and maintenance of their morphology and mechanical strength. The de novo assembly of these neuronal intermediate filaments requires the presence of the neurofilament light subunit (NEFL), whose expression is reduced in motor neurons in amyotrophic lateral sclerosis (ALS). This study used zebrafish as a model to characterize the NEFL homologue neflb, which encodes two different isoforms via a splicing of the primary transcript (neflbE4 and neflbE3). In vivo imaging showed that neflb is crucial for proper neuronal development, and that disrupting the balance between its two isoforms specifically affects the NF assembly and motor axon growth, with resultant motor deficits. This equilibrium is also disrupted upon the partial depletion of TDP-43 (TAR DNA-binding protein 43), an RNA-binding protein encoded by the gene TARDBP that is mislocalized into cytoplasmic inclusions in ALS. The study supports the interaction of the NEFL expression and splicing with TDP-43 in a common pathway, both biologically and pathogenetically.
Collapse
Affiliation(s)
- Doris Lou Demy
- Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, 24, boulevard du Montparnasse, 75015 Paris, France; (D.L.D.); (M.L.C.); (R.M.-R.)
- Sorbonne Universités Paris VI, UMR INSERM U 1127, CNRS 1127 UPMC, Institut du Cerveau et de la Moelle épinière—ICM, 75015 Paris, France
| | - Maria Letizia Campanari
- Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, 24, boulevard du Montparnasse, 75015 Paris, France; (D.L.D.); (M.L.C.); (R.M.-R.)
- Sorbonne Universités Paris VI, UMR INSERM U 1127, CNRS 1127 UPMC, Institut du Cerveau et de la Moelle épinière—ICM, 75015 Paris, France
| | - Raphael Munoz-Ruiz
- Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, 24, boulevard du Montparnasse, 75015 Paris, France; (D.L.D.); (M.L.C.); (R.M.-R.)
- Sorbonne Universités Paris VI, UMR INSERM U 1127, CNRS 1127 UPMC, Institut du Cerveau et de la Moelle épinière—ICM, 75015 Paris, France
| | - Heather D. Durham
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; (H.D.D.); (B.J.G.)
| | - Benoit J. Gentil
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; (H.D.D.); (B.J.G.)
- Department of Kinesiology and Physical Education McGill University, Montreal, QC H3A 2B4, Canada
| | - Edor Kabashi
- Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, 24, boulevard du Montparnasse, 75015 Paris, France; (D.L.D.); (M.L.C.); (R.M.-R.)
- Sorbonne Universités Paris VI, UMR INSERM U 1127, CNRS 1127 UPMC, Institut du Cerveau et de la Moelle épinière—ICM, 75015 Paris, France
| |
Collapse
|
8
|
Beijer D, Sisto A, Van Lent J, Baets J, Timmerman V. Defects in Axonal Transport in Inherited Neuropathies. J Neuromuscul Dis 2020; 6:401-419. [PMID: 31561383 PMCID: PMC6918914 DOI: 10.3233/jnd-190427] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Axonal transport is a highly complex process essential for sustaining proper neuronal functioning. Disturbances can result in an altered neuronal homeostasis, aggregation of cargoes, and ultimately a dying-back degeneration of neurons. The impact of dysfunction in axonal transport is shown by genetic defects in key proteins causing a broad spectrum of neurodegenerative diseases, including inherited peripheral neuropathies. In this review, we provide an overview of the cytoskeletal components, molecular motors and adaptor proteins involved in axonal transport mechanisms and their implication in neuronal functioning. In addition, we discuss the involvement of axonal transport dysfunction in neurodegenerative diseases with a particular focus on inherited peripheral neuropathies. Lastly, we address some recent scientific advances most notably in therapeutic strategies employed in the area of axonal transport, patient-derived iPSC models, in vivo animal models, antisense-oligonucleotide treatments, and novel chemical compounds.
Collapse
Affiliation(s)
- Danique Beijer
- Neurogenetics Research Group, Department of Medical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| | - Angela Sisto
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| | - Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| | - Jonathan Baets
- Neurogenetics Research Group, Department of Medical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium.,Neurology Department, University Hospital Antwerp, Antwerpen, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| |
Collapse
|
9
|
Martin PB, Hicks AN, Holbrook SE, Cox GA. Overlapping spectrums: The clinicogenetic commonalities between Charcot-Marie-Tooth and other neurodegenerative diseases. Brain Res 2020; 1727:146532. [PMID: 31678418 PMCID: PMC6939129 DOI: 10.1016/j.brainres.2019.146532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive and heterogeneous inherited peripheral neuropathy. A myriad of genetic factors have been identified that contribute to the degeneration of motor and sensory axons in a length-dependent manner. Emerging biological themes underlying disease include defects in axonal trafficking, dysfunction in RNA metabolism and protein homeostasis, as well deficits in the cellular stress response. Moreover, genetic contributions to CMT can have overlap with other neuropathies, motor neuron diseases (MNDs) and neurodegenerative disorders. Recent progress in understanding the molecular biology of CMT and overlapping syndromes aids in the search for necessary therapeutic targets.
Collapse
Affiliation(s)
- Paige B Martin
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Amy N Hicks
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sarah E Holbrook
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Gregory A Cox
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
10
|
Stone EJ, Uchida A, Brown A. Charcot-Marie-Tooth disease Type 2E/1F mutant neurofilament proteins assemble into neurofilaments. Cytoskeleton (Hoboken) 2019; 76:423-439. [PMID: 31574566 DOI: 10.1002/cm.21566] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/30/2019] [Accepted: 09/13/2019] [Indexed: 11/12/2022]
Abstract
Charcot-Marie-Tooth disease Type 2E/1F (CMT2E/1F) is a peripheral neuropathy caused by mutations in neurofilament protein L (NFL), which is one of five neurofilament subunit proteins that co-assemble to form neurofilaments in vivo. Prior studies on cultured cells have shown that CMT2E/1F mutations disrupt neurofilament assembly and lead to protein aggregation, suggesting a possible disease mechanism. However, electron microscopy of axons in peripheral nerve biopsies from patients has revealed accumulations of neurofilament polymers of normal appearance and no evidence of protein aggregates. To reconcile these observations, we reexamined the assembly of seven CMT2E/1F NFL mutants in cultured cells. None of the mutants assembled into homopolymers in SW13vim- cells, but P8R, P22S, L268/269P, and P440/441L mutant NFL assembled into heteropolymers in the presence of neurofilament protein M (NFM) alone, and N98S, Q332/333P, and E396/397K mutant NFL assembled in the presence of NFM and peripherin. P8R, P22S, N98S, L268/269P, E396/397K, and P440/441L mutant NFL co-assembled into neurofilaments with endogenous NFL, NFM, and α-internexin in cultured neurons, although the N98S and E396/397K mutants showed reduced filament incorporation, and the Q332/333P mutant showed limited incorporation. We conclude that all the mutants are capable of assembling into neurofilaments, but for some of the mutants this was dependent on the identity of the other neurofilament proteins available for co-assembly, and most likely also their relative expression level. Thus, caution should be exercised when drawing conclusions about the assembly capacity of CMT2E/1F mutants based on transient transfections in cultured cells.
Collapse
Affiliation(s)
- Elizabeth J Stone
- Department of Neuroscience, Ohio State University, Columbus, Ohio.,Neuroscience Graduate Program, Ohio State University, Columbus, Ohio
| | - Atsuko Uchida
- Department of Neuroscience, Ohio State University, Columbus, Ohio
| | - Anthony Brown
- Department of Neuroscience, Ohio State University, Columbus, Ohio
| |
Collapse
|
11
|
Yang FR, Chen J, Yi H, Peng LY, Hu XL, Guo QL. MicroRNA-7a ameliorates neuropathic pain in a rat model of spinal nerve ligation via the neurofilament light polypeptide-dependent signal transducer and activator of transcription signaling pathway. Mol Pain 2019; 15:1744806919842464. [PMID: 30987515 PMCID: PMC6537231 DOI: 10.1177/1744806919842464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neuropathic pain is a type of chronic pain induced by either central or
peripheral nerve injury. MicroRNAs have been recently linked to many diseases,
including neuropathic pain. However, the role of miR-7a in neuropathic pain
still remains elusive. Thus, we aim to investigate the effects of miR-7a on
neuropathic pain based on the spinal nerve ligation rat model. After
establishment of spinal nerve ligation rat models, rats were infected with
adeno-associated virus-neurofilament light polypeptide, adeno-associated
virus-miR-7a or treated with metformin. The paw withdrawal threshold and paw
withdrawal latency were assessed afterward, and the expression of miR-7a and
neurofilament light polypeptide as well as their interaction was determined.
Subsequently, miR-7a was overexpressed or silenced in dorsal root ganglion cells
to investigate the role of miR-7a in neuropathic pain. Furthermore, the
regulatory effect of neurofilament light polypeptide on neuropathic pain was
detected using plasmid overexpressing neurofilament light polypeptide. Spinal
nerve ligation rat model exhibited upregulation of neurofilament light
polypeptide but downregulation of miR-7a. In addition, neurofilament light
polypeptide accumulation or miR-7a inhibition decreased paw withdrawal threshold
and paw withdrawal latency. Then, neurofilament light polypeptide accumulation
or miR-7a inhibition was observed to increase the phosphorylation level of
signal transducer and activator of transcription. miR-7a was found to directly
target neurofilament light polypeptide and downregulate neurofilament light
polypeptide. In addition, inhibiting the signal transducer and activator of
transcription signaling pathway was also revealed to increase paw withdrawal
threshold and paw withdrawal latency. Collectively, our study demonstrated that
miR-7a ameliorated neuropathic pain via blocking the signal transducer and
activator of transcription signaling pathway by repressing neurofilament light
polypeptide. These findings, if taken further, can be of important clinical
significance in treating patients with neuropathic pain.
Collapse
Affiliation(s)
- Feng-Rui Yang
- 1 Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, P.R. China.,2 Department of Anesthesiology, the First Affiliated Hospital of University of South China, Hengyang, P.R. China
| | - Ji Chen
- 3 Department of Endocrinology, the First Affiliated Hospital of University of South China, Hengyang, P.R. China
| | - Han Yi
- 2 Department of Anesthesiology, the First Affiliated Hospital of University of South China, Hengyang, P.R. China
| | - Liang-Yu Peng
- 2 Department of Anesthesiology, the First Affiliated Hospital of University of South China, Hengyang, P.R. China
| | - Xiao-Ling Hu
- 2 Department of Anesthesiology, the First Affiliated Hospital of University of South China, Hengyang, P.R. China
| | - Qu-Lian Guo
- 1 Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
12
|
Lerat J, Magdelaine C, Beauvais-Dzugan H, Espil C, Ghorab K, Latour P, Derouault P, Sturtz F, Lia AS. A novel pathogenic variant of NEFL responsible for deafness associated with peripheral neuropathy discovered through next-generation sequencing and review of the literature. J Peripher Nerv Syst 2019; 24:139-144. [PMID: 30734407 DOI: 10.1111/jns.12310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 11/29/2022]
Abstract
Neurofilaments are neuron-specific intermediate filaments essential for the radial growth of axons during development and the maintenance of axonal diameter. Pathogenic variants of Neurofilament Light (NEFL) are associated with CMT1F, CMT2E, and CMTDIG and have been observed in less than 1% of Charcot-Marie-Tooth (CMT) cases, resulting in the reporting of 35 variants in 173 CMT patients to date. However, only six variants have been reported in 17 patients with impaired hearing. No genotype-phenotype correlations have yet been established. Here, we report an additional case: a 69-year-old female, who originally presented with axonal sensory and motor neuropathy at the age of 45, associated with moderate sensorineural hearing loss, with a slight slope at high frequencies. Next-generation sequencing identified a novel pathogenic variant: c.269A > G, p.(Glu90Gly). Hearing impairment is often linked to CMT due to pathogenic variants of NEFL, especially p.(Glu90Lys) and p.(Asn98Ser), and in our case p.(Glu90Gly). These pathogenic variants are all located at hot spots, in the head domain and the two ends of the rod domain of the protein.
Collapse
Affiliation(s)
- Justine Lerat
- Univ. Limoges, MMNP, Limoges, France.,CHU Limoges, Service Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, Limoges, France
| | - Corinne Magdelaine
- Univ. Limoges, MMNP, Limoges, France.,CHU Limoges, Service Biochimie et Génétique Moléculaire, Limoges, France
| | - Hélène Beauvais-Dzugan
- Univ. Limoges, MMNP, Limoges, France.,CHU Limoges, Service Biochimie et Génétique Moléculaire, Limoges, France
| | | | - Karima Ghorab
- Univ. Limoges, MMNP, Limoges, France.,CHU Limoges, Service Neurologie, Limoges, France
| | | | - Paco Derouault
- CHU Limoges, Service Biochimie et Génétique Moléculaire, Limoges, France
| | - Franck Sturtz
- Univ. Limoges, MMNP, Limoges, France.,CHU Limoges, Service Biochimie et Génétique Moléculaire, Limoges, France
| | - Anne-Sophie Lia
- Univ. Limoges, MMNP, Limoges, France.,CHU Limoges, Service Biochimie et Génétique Moléculaire, Limoges, France
| |
Collapse
|
13
|
Gentil BJ, Lai GT, Menade M, Larivière R, Minotti S, Gehring K, Chapple JP, Brais B, Durham HD. Sacsin, mutated in the ataxia ARSACS, regulates intermediate filament assembly and dynamics. FASEB J 2018; 33:2982-2994. [DOI: 10.1096/fj.201801556r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Benoit J. Gentil
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
- Department of Kinesiology and Physical EducationMcGill UniversityMontrealQuébecCanada
| | - Gia-Thanh Lai
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
- Department of Kinesiology and Physical EducationMcGill UniversityMontrealQuébecCanada
| | - Marie Menade
- Department of BiochemistryGroupe de Recherche axé sur la Structure des ProtéinesMcGill UniversityMontrealQuébecCanada
| | - Roxanne Larivière
- Laboratory of Neurogenetics of MotionMontreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
| | - Sandra Minotti
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
| | - Kalle Gehring
- Department of BiochemistryGroupe de Recherche axé sur la Structure des ProtéinesMcGill UniversityMontrealQuébecCanada
| | - J.-Paul Chapple
- William Harvey Research InstituteBarts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUnited Kingdom
| | - Bernard Brais
- Laboratory of Neurogenetics of MotionMontreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
| | - Heather D. Durham
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
| |
Collapse
|
14
|
Sun J, Groppi VE, Gui H, Chen L, Xie Q, Liu L, Omary MB. High-Throughput Screening for Drugs that Modulate Intermediate Filament Proteins. Methods Enzymol 2015; 568:163-85. [PMID: 26795471 DOI: 10.1016/bs.mie.2015.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intermediate filament (IF) proteins have unique and complex cell and tissue distribution. Importantly, IF gene mutations cause or predispose to more than 80 human tissue-specific diseases (IF-pathies), with the most severe disease phenotypes being due to mutations at conserved residues that result in a disrupted IF network. A critical need for the entire IF-pathy field is the identification of drugs that can ameliorate or cure these diseases, particularly since all current therapies target the IF-pathy complication, such as diabetes or cardiovascular disease, rather than the mutant IF protein or gene. We describe a high-throughput approach to identify drugs that can normalize disrupted IF proteins. This approach utilizes transduction of lentivirus that expresses green fluorescent protein-tagged keratin 18 (K18) R90C in A549 cells. The readout is drug "hits" that convert the dot-like keratin filament distribution, due to the R90C mutation, to a wild-type-like filamentous array. A similar strategy can be used to screen thousands of compounds and can be utilized for practically any IF protein with a filament-disrupting mutation, and could therefore potentially target many IF-pathies. "Hits" of interest require validation in cell culture then using in vivo experimental models. Approaches to study the mechanism of mutant IF normalization by potential drugs of interest are also described. The ultimate goal of this drug screening approach is to identify effective and safe compounds that can potentially be tested for clinical efficacy in patients.
Collapse
Affiliation(s)
- Jingyuan Sun
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA; Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Vincent E Groppi
- Department of Pharmacology, The Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan, USA
| | - Honglian Gui
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA; Department of Infectious Diseases, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, PR China
| | - Lu Chen
- Department of Infectious Diseases, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, PR China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, PR China
| | - Li Liu
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - M Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA.
| |
Collapse
|
15
|
Valakh V, Frey E, Babetto E, Walker LJ, DiAntonio A. Cytoskeletal disruption activates the DLK/JNK pathway, which promotes axonal regeneration and mimics a preconditioning injury. Neurobiol Dis 2015; 77:13-25. [PMID: 25726747 DOI: 10.1016/j.nbd.2015.02.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/12/2015] [Accepted: 02/15/2015] [Indexed: 10/23/2022] Open
Abstract
Nerve injury can lead to axonal regeneration, axonal degeneration, and/or neuronal cell death. Remarkably, the MAP3K dual leucine zipper kinase, DLK, promotes each of these responses, suggesting that DLK is a sensor of axon injury. In Drosophila, mutations in proteins that stabilize the actin and microtubule cytoskeletons activate the DLK pathway, suggesting that DLK may be activated by cytoskeletal disruption. Here we test this model in mammalian sensory neurons. We find that pharmacological agents designed to disrupt either the actin or microtubule cytoskeleton activate the DLK pathway, and that activation is independent of calcium influx or induction of the axon degeneration program. Moreover, activation of the DLK pathway by targeting the cytoskeleton induces a pro-regenerative state, enhancing axon regeneration in response to a subsequent injury in a process akin to preconditioning. This highlights the potential utility of activating the DLK pathway as a method to improve axon regeneration. Moreover, DLK is required for these responses to cytoskeletal perturbations, suggesting that DLK functions as a key neuronal sensor of cytoskeletal damage.
Collapse
Affiliation(s)
- Vera Valakh
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Erin Frey
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Elisabetta Babetto
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Lauren J Walker
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
16
|
Mathis S, Magy L, Vallat JM. Therapeutic options in Charcot–Marie–Tooth diseases. Expert Rev Neurother 2015; 15:355-66. [DOI: 10.1586/14737175.2015.1017471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Gentil BJ, Tibshirani M, Durham HD. Neurofilament dynamics and involvement in neurological disorders. Cell Tissue Res 2015; 360:609-20. [PMID: 25567110 DOI: 10.1007/s00441-014-2082-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/19/2014] [Indexed: 12/21/2022]
Abstract
Neurons are extremely polarised cells in which the cytoskeleton, composed of microtubules, microfilaments and neurofilaments, plays a crucial role in maintaining structure and function. Neurofilaments, the 10-nm intermediate filaments of neurons, provide structure and mechanoresistance but also provide a scaffolding for the organization of the nucleus and organelles such as mitochondria and ER. Disruption of neurofilament organization and expression or metabolism of neurofilament proteins is characteristic of certain neurological syndromes including Amyotrophic Lateral Sclerosis, Charcot-Marie-Tooth sensorimotor neuropathies and Giant Axonal Neuropathy. Microfluorometric live imaging techniques have been instrumental in revealing the dynamics of neurofilament assembly and transport and their functions in organizing intracellular organelle networks. The insolubility of neurofilament proteins has limited identifying interactors by conventional biochemical techniques but yeast two-hybrid experiments have revealed new roles for oligomeric, nonfilamentous structures including vesicular trafficking. Although having long half-lives, new evidence points to degradation of subunits by the ubiquitin-proteasome system as a mechanism of normal turnover. Although certain E3-ligases ubiquitinating neurofilament proteins have been identified, the overall process of neurofilament degradation is not well understood. We review these mechanisms of neurofilament homeostasis and abnormalities in motor neuron and peripheral nerve disorders. Much remains to discover about the disruption of processes that leads to their pathological aggregation and accumulation and the relevance to pathogenesis. Understanding these mechanisms is crucial for identifying novel therapeutic strategies.
Collapse
Affiliation(s)
- Benoit J Gentil
- Department of Neurology/Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada,
| | | | | |
Collapse
|
18
|
Gentil BJ, McLean JR, Xiao S, Zhao B, Durham HD, Robertson J. A two-hybrid screen identifies an unconventional role for the intermediate filament peripherin in regulating the subcellular distribution of the SNAP25-interacting protein, SIP30. J Neurochem 2014; 131:588-601. [DOI: 10.1111/jnc.12928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/02/2014] [Accepted: 08/08/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Benoit J. Gentil
- Montreal Neurological Institute and Department of Neurology and Neurosurgery; McGill University; Montreal Quebec Canada
| | - Jesse R. McLean
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Shangxi Xiao
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Beibei Zhao
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Heather D. Durham
- Montreal Neurological Institute and Department of Neurology and Neurosurgery; McGill University; Montreal Quebec Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
19
|
Jerath NU, Shy ME. Hereditary motor and sensory neuropathies: Understanding molecular pathogenesis could lead to future treatment strategies. Biochim Biophys Acta Mol Basis Dis 2014; 1852:667-78. [PMID: 25108281 DOI: 10.1016/j.bbadis.2014.07.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/02/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
Abstract
Inherited peripheral neuropathies, like many other degenerative disorders, have been challenging to treat. At this point, there is little specific therapy for the inherited neuropathies other than genetic counseling as well as symptomatic treatment and rehabilitation. In the past, ascorbic acid, progesterone antagonists, and subcutaneous neurotrophin-3 (NT3) injections have demonstrated improvement in animal models of CMT 1A, the most common inherited neuropathy, but have failed to translate any effect in humans. Given the difficulty in treatment, it is important to understand the molecular pathogenesis of hereditary neuropathies in order to strategize potential future therapies. The hereditary neuropathies are in an era of molecular insight and over the past 20 years, more than 78 subtypes of Charcot Marie Tooth disease (CMT) have been identified and extensively studied to understand the biological pathways in greater detail. Next generation molecular sequencing has also improved the diagnosis as well as the understanding of CMT. A greater understanding of the molecular pathways will help pave the way to future therapeutics of CMT. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Nivedita U Jerath
- University of Iowa, Carver College of Medicine, Department of Neurology, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Michael E Shy
- University of Iowa, Carver College of Medicine, Department of Neurology, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| |
Collapse
|
20
|
Harel T, Lupski J. Charcot-Marie-Tooth disease and pathways to molecular based therapies. Clin Genet 2014; 86:422-31. [DOI: 10.1111/cge.12393] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 01/31/2023]
Affiliation(s)
- T. Harel
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston TX USA
| | - J.R. Lupski
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston TX USA
- Department of Pediatrics; Baylor College of Medicine; Houston TX USA
- Texas Children's Hospital; Houston TX USA
- Human Genome Sequencing Center; Baylor College of Medicine; Houston TX USA
| |
Collapse
|
21
|
Miteva YV, Cristea IM. A proteomic perspective of Sirtuin 6 (SIRT6) phosphorylation and interactions and their dependence on its catalytic activity. Mol Cell Proteomics 2013; 13:168-83. [PMID: 24163442 DOI: 10.1074/mcp.m113.032847] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sirtuin 6 (SIRT6), a member of the mammalian sirtuin family, is a nuclear deacetylase with substrate-specific NAD(+)-dependent activity. SIRT6 has emerged as a critical regulator of diverse processes, including DNA repair, gene expression, telomere maintenance, and metabolism. However, our knowledge regarding its interactions and regulation remains limited. Here, we present a comprehensive proteomics-based analysis of SIRT6 protein interactions and their dependence on SIRT6 catalytic activity. We also identify evolutionarily conserved SIRT6 phosphorylations, including four within a proline-rich disordered region, and show that the conserved S338 phosphorylation can modulate selected SIRT6 interactions. By integrating molecular biology tools, microscopy, immunoaffinity purifications, label-free quantitative mass spectrometry, and bioinformatic analyses, we have established the first large-scale SIRT6 interaction network. Relative protein abundances and gene ontology functional assessment highlighted proteins involved in transcription regulation, chromatin organization, nuclear transport, telomerase function, and RNA processing. Independent immunoisolations under increased stringency distinguished the most stable SIRT6 interactions. One prominent interaction with Ras-GTPase-activating protein-binding protein 1 (G3BP1) was further validated by microscopy, reciprocal purifications, and isolations in different cell types and of endogenous SIRT6. Interestingly, a subset of specific interactions, including G3BP1, were significantly reduced or abolished in isolations of catalytically deficient SIRT6 mutant, revealing previously unknown interplay between SIRT6 activity and its associations. Overall, our study reveals putative means of regulation of SIRT6 functions via interactions and modifications, providing an important resource for future studies on the molecular mechanisms underlying sirtuin functions.
Collapse
Affiliation(s)
- Yana V Miteva
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | | |
Collapse
|