1
|
Luo J, Wang J, Zheng H, Wang L. Rho GDP-Dissociation Inhibitor 2 Inhibits C-X-C Chemokine Receptor Type 4-Mediated Acute Lymphoblastic Leukemia Cell Migration. Front Oncol 2020; 10:1512. [PMID: 32903764 PMCID: PMC7438871 DOI: 10.3389/fonc.2020.01512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Although we currently have a good understanding of the role C-X-C chemokine receptor type 4 (CXCR4) plays in T cell acute lymphoblastic leukemia (T-ALL), the mechanism of CXCR4-mediated T-ALL migration remains elusive. Therefore, we focus on the downstream signals of CXCR4 that contribute to T-ALL cell migration in this study. Rho GDP-dissociation inhibitor 2 (RhoGDI2) is expressed preferentially in lymphocytes. It interacts with and regulates the activation of Rho proteins by inhibiting the dissociation of GDP and the binding of GTP. In a previous study, we demonstrated that RhoA and RhoC are activated and required for CXCR4-mediated JURKAT cell migration. In the present work, we investigate the role of RhoGDI2 in CXCR4-mediated T-ALL cell migration. Results show that RhoGDI2 sh2 significantly releases its inhibition effects on T-ALL cell migration toward CXCL12 (C-X-C motif chemokine ligand 12). Phosphorylation of RhoGDI2 on Y24 and Y153 releases RhoA and RhoC from RhoGDI2, which recovers CXCR4-mediated migration toward CXCL12 although the phosphorylation of Y130 has less effect on RhoA or RhoC binding. Furthermore, Src is activated by CXCL12. Transfection of siRNAs to Src reduces CXCR4-mediated migration. Src is required for the phosphorylation of RhoGDI2 on Y153, and ABL1 is activated by CXCL12 and responsible for the phosphorylation of RhoGDI2 on Y24 and Y130. Similarly, knockdown of the expression of ABL1 by siRNAs reduces the CXCR4-mediated migration. Therefore, RhoGDI2 may be a brake for CXCR4-positive T-ALL migration. Because migration is a prerequisite for infiltration of leukemia, this work may suggest the possible involvement of RhoGDI2 in infiltration of T-ALL.
Collapse
Affiliation(s)
- Jixian Luo
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Junting Wang
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Huiguang Zheng
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Lan Wang
- School of Life Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
2
|
Bohio AA, Sattout A, Wang R, Wang K, Sah RK, Guo X, Zeng X, Ke Y, Boldogh I, Ba X. c-Abl-Mediated Tyrosine Phosphorylation of PARP1 Is Crucial for Expression of Proinflammatory Genes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1521-1531. [PMID: 31399520 PMCID: PMC6731455 DOI: 10.4049/jimmunol.1801616] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Poly(ADP-ribosyl)ation is a rapid and transient posttranslational protein modification mostly catalyzed by poly(ADP-ribose) polymerase-1 (PARP1). Fundamental roles of activated PARP1 in DNA damage repair and cellular response pathways are well established; however, the precise mechanisms by which PARP1 is activated independent of DNA damage, and thereby playing a role in expression of inflammatory genes, remain poorly understood. In this study, we show that, in response to LPS or TNF-α exposure, the nonreceptor tyrosine kinase c-Abl undergoes nuclear translocation and interacts with and phosphorylates PARP1 at the conserved Y829 site. Tyrosine-phosphorylated PARP1 is required for protein poly(ADP-ribosyl)ation of RelA/p65 and NF-κB-dependent expression of proinflammatory genes in murine RAW 264.7 macrophages, human monocytic THP1 cells, or mouse lungs. Furthermore, LPS-induced airway lung inflammation was reduced by inhibition of c-Abl activity. The present study elucidated a novel signaling pathway to activate PARP1 and regulate gene expression, suggesting that blocking the interaction of c-Abl with PARP1 or pharmaceutical inhibition of c-Abl may improve the outcomes of PARP1 activation-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Ameer Ali Bohio
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Aman Sattout
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Ruoxi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Ke Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Rajiv Kumar Sah
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun 130024, China; and
| | - Xiaolan Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xianlu Zeng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yueshuang Ke
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China;
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
3
|
Liu W, Wang X, Wang S, Ba X, Xu T, Wang X, Zeng X. RhoGDI2 positively regulates the Rho GTPases activation in response to the β2 outside-in signaling in T cells adhesion and migration on ICAM-1. J Leukoc Biol 2019; 106:431-446. [PMID: 31075185 DOI: 10.1002/jlb.2a0718-272rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 01/08/2023] Open
Abstract
Cytoskeletal reorganization driven by Rho GTPases plays a crucial role in the migration of T cells, which are key regulators of immunity. The molecular mechanisms that control actin cytoskeleton remodeling during T cell movement have only partially been clarified as the function of many modulators has not been evaluated in these cells. Here, we report a new function of RhoGDI2 by showing that this protein positively regulates Rho GTPase activation during T cell adhesion and migration. RhoGDI2 knockdown significantly reduced T cell adhesion and migration. Furthermore, RhoGDI2 knockdown decreased the activation of Rac1 and Cdc42, 2 members of Rho GTPases, and the remodeling of the actin cytoskeleton. Upon P-selectin glycoprotein ligand-1 engagement, RhoGDI2 was phosphorylated at Y24 and Y153 by kinases related to β2 integrin outside-in signaling, Src, c-Abl, and Syk, resulting in the accumulation of RhoGDI2 at the cell membrane. Subsequent phosphorylation of S31 induced the opening of RhoGDI2 and the release of Rho GTPases, whereas phosphorylation of Y153 might promote the activation of Rho GTPases by recruiting Vav1. Moreover, the disruption of lipid rafts with methyl-β-cyclodextrin blocked the interaction between integrins and RhoGDI2, reducing the level of phosphorylated RhoGDI2 and the activation of downstream Rho GTPases. Based on these observations, RhoGDI2 is a target of intergrin outside-in signaling that activates Rho GTPases during T cell adhesion and migration, and RhoGDI2-mediated signal transduction is based on the lipid rafts integrity.
Collapse
Affiliation(s)
- Wenai Liu
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Xuehao Wang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Shan Wang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Tingshuang Xu
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoguang Wang
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW We review P-selectin glycoprotein ligand-1 (PSGL-1) as a selectin and chemokine-binding adhesion molecule. PSGL-1 is widely studied in neutrophils. Here, we focus on T cells, because PSGL-1 was recently described as a major immunomodulatory molecule during viral infection. PSGL-1 also plays a crucial role in T-cell homeostasis by binding to lymphoid chemokines, and can induce tolerance by enhancing the functions of regulatory T cells. RECENT FINDINGS PSGL-1 was originally described as a leukocyte ligand for P-selectin, but it is actually a ligand for all selectins (P-, L- and E-selectin), binds chemokines, activates integrins and profoundly affects T-cell biology. It has been shown recently that PSGL-1 can modulate T cells during viral infection by acting as a negative regulator for T-cell functions. Absence of PSGL-1 promotes effector CD4 and CD8 T-cell differentiation and prevents T-cell exhaustion. Consistent with this, tumor growth was significantly reduced in PSGL-1-deficient mice because of an enhanced number of effector T cells together with reduced levels of inhibitory receptors that induce T-cell exhaustion. SUMMARY PSGL-1 is the best-studied selectin ligand and has become a posterchild of versatility in leukocyte adhesion, inflammation and immunology. The direct involvement of PSGL-1 in T-cell biology suggests that it might be a drug target. Indeed, PSGL-1 has been tested in some clinical trials and recently, PSGL-1 blockers were proposed as a potential cotherapy in cancer immunotherapy.
Collapse
|
5
|
Vadillo E, Dorantes-Acosta E, Pelayo R, Schnoor M. T cell acute lymphoblastic leukemia (T-ALL): New insights into the cellular origins and infiltration mechanisms common and unique among hematologic malignancies. Blood Rev 2017; 32:36-51. [PMID: 28830639 DOI: 10.1016/j.blre.2017.08.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 02/06/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) accounts for 15% and 25% of total childhood and adult ALL cases, respectively. During T-ALL, patients are at risk of organ infiltration by leukemic T-cells. Infiltration is a major consequence of disease relapse and correlates with poor prognosis. Transendothelial migration of leukemic cells is required to exit the blood stream into target organs. While mechanisms of normal T-cell transmigration are well known, the mechanisms of leukemic T-cell extravasation remain elusive; but involvement of chemokines, integrins and Notch signaling play critical roles. Here, we summarize current knowledge about molecular mechanisms of leukemic T-cell infiltration with special emphasis on the newly identified subtype early T-cell-progenitor (ETP)-ALL. Furthermore, we compare the extravasation potential of T-ALL cells with that of other hematologic malignancies such as B-ALL and acute myeloid leukemia (AML).
Collapse
Affiliation(s)
- Eduardo Vadillo
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), 07360 Mexico City, Mexico.
| | - Elisa Dorantes-Acosta
- Leukemia Clinic, Children's Hospital of Mexico Federico Gómez, 06720 Mexico City, Mexico
| | - Rosana Pelayo
- Oncology Research Unit, National Medical Center, Mexican Institute for Social Security, 06720 Mexico City, Mexico
| | - Michael Schnoor
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), 07360 Mexico City, Mexico.
| |
Collapse
|
6
|
PSGL-1: A New Player in the Immune Checkpoint Landscape. Trends Immunol 2017; 38:323-335. [PMID: 28262471 DOI: 10.1016/j.it.2017.02.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 02/07/2023]
Abstract
P-selectin glycoprotein ligand-1 (PSGL-1) has long been studied as an adhesion molecule involved in immune cell trafficking and is recognized as a regulator of many facets of immune responses by myeloid cells. PSGL-1 also regulates T cell migration during homeostasis and inflammatory settings. However, recent findings indicate that PSGL-1 can also negatively regulate T cell function. Because T cell differentiation is finely tuned by multiple positive and negative regulatory signals that appropriately scale the magnitude of the immune response, PSGL-1 has emerged as an important checkpoint during this process. We summarize what is known regarding PSGL-1 structure and function and highlight how it may act as an immune checkpoint inhibitor in T cells.
Collapse
|
7
|
Xu T, Liu W, Yang C, Ba X, Wang X, Jiang Y, Zeng X. Lipid raft-associated β
-adducin is required for PSGL-1-mediated neutrophil rolling on P-selectin. J Leukoc Biol 2014; 97:297-306. [DOI: 10.1189/jlb.2a0114-016r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|