1
|
Baumer Y, Singh K, Saurabh A, Baez AS, Gutierrez-Huerta CA, Chen L, Igboko M, Turner BS, Yeboah JA, Reger RN, Ortiz-Whittingham LR, Joshi S, Andrews MR, Aquino Peterson EM, Bleck CK, Mendelsohn LG, Mitchell VM, Collins BS, Redekar NR, Kuhn SA, Combs CA, Pirooznia M, Dagur PK, Allan DS, Schwartz DM, Childs RW, Powell-Wiley TM. Obesity modulates NK cell activity via LDL and DUSP1 signaling for populations with adverse social determinants. JCI Insight 2024; 10:e180606. [PMID: 39718832 PMCID: PMC11790026 DOI: 10.1172/jci.insight.180606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/06/2024] [Indexed: 12/26/2024] Open
Abstract
African American (AA) women are disproportionately affected by obesity and hyperlipidemia, particularly in the setting of adverse social determinants of health (aSDoH) that contribute to health disparities. Obesity, hyperlipidemia, and aSDoH appear to impair NK cells. As potential common underlying mechanisms are largely unknown, we sought to investigate common signaling pathways involved in NK cell dysfunction related to obesity and hyperlipidemia in AA women from underresourced neighborhoods. We determined in freshly isolated NK cells that obesity and measures of aSDoH were associated with a shift in NK cell subsets away from CD56dim/CD16+ cytotoxic NK cells. Using ex vivo data, we identified LDL as a marker related to NK cell function in an AA population from underresourced neighborhoods. Additionally, NK cells from AA women with obesity and LDL-treated NK cells displayed a loss in NK cell function. Comparative unbiased RNA-sequencing analysis revealed DUSP1 as a common factor. Subsequently, chemical inhibition of Dusp1 and Dusp1 overexpression in NK cells highlighted its significance in NK cell function and lysosome biogenesis in a mTOR/TFEB-related fashion. Our data demonstrate a pathway by which obesity and hyperlipidemia in the setting of aSDoH may relate to NK cell dysfunction, making DUSP1 an important target for further investigation of health disparities.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory
| | | | - Abhinav Saurabh
- Social Determinants of Obesity and Cardiovascular Risk Laboratory
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory
| | | | - Long Chen
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, and
| | - Muna Igboko
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, and
| | - Briana S. Turner
- Social Determinants of Obesity and Cardiovascular Risk Laboratory
| | | | - Robert N. Reger
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, and
| | | | - Sahil Joshi
- Social Determinants of Obesity and Cardiovascular Risk Laboratory
| | | | | | - Christopher K.E. Bleck
- Electron Microscopy Core Facility, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | | | | | - Billy S. Collins
- Social Determinants of Obesity and Cardiovascular Risk Laboratory
| | - Neelam R. Redekar
- Integrative Data Sciences Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Skyler A. Kuhn
- Integrative Data Sciences Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | | | - Pradeep K. Dagur
- Flow Cytometry Core, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - David S.J. Allan
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, and
| | - Daniella M. Schwartz
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Richard W. Childs
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, and
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory
- Intramural Research Program, National Institute on Minority Health and Health Disparities, NIH, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Kim HY, Kim JM, Shin YK. Granzyme mRNA-miRNA interaction and its implication to functional impact. Genes Genomics 2024; 46:1495-1506. [PMID: 39528794 DOI: 10.1007/s13258-024-01578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Granzyme activity can affect the processing and stability of miRNAs within target cells. They also could induce changes in miRNA expression that impact apoptotic signaling. Granzyme-induced apoptosis might result in changes to the miRNA profile, which can further influence the apoptosis and inflammation processes. OBJECTIVE The aim of this study was to bioinformatically analyze which miRNAs and transcription factors bind to the CDS and UTR regions of the granzyme family to regulate gene expression in relation to granzyme evolution and their association with human cancer diseases. METHODS The expression patterns of granzyme genes were analyzed in various human tissues. MiRNAs binding to the CDS and UTR of the granzyme family were examined, and the transcription factors binding to these miRNAs binding sites were also analyzed. Cytoscape program was used to visualize and analyze the networks of interactions between granzyme mRNA and miRNAs. Additionally, the evolutionary patterns of the granzyme family in relation to miRNAs and transcription factors binding were investigated. RESULTS Analysis of the expression patterns of the granzyme family in various human tissues shows that GZMA and GZMK are strongly expressed in lymph nodes. GZMB exhibits strong expression in the bone marrow, while GZMA is prominently expressed in the spleen. Twenty-two miRNAs bind to both GZMK and GZMB mRNA, while six miRNAs bind to both GZMK and GZMM mRNA. The only miRNA that binds to GZMK, GZMB, GZMM, and GZMA mRNA is hsa-miR-146a-5p. Transcription factors JUND, FOS, and JUN are distinctly interconnected with has-miR-5696 and GZMK. Association data between the granzyme family and cancers showed that various miRNAs were consistently implicated and exhibited either upregulation or downregulation. CONCLUSION Although the granzyme family possesses distinct genetic information, it shows relatively high expression levels in the lymph node, spleen, and bone marrow. Many miRNAs specifically regulate granzyme gene expression, and various transcription factors are involved. Analyzing the granzyme genes-miRNAs-transcription factors-related network will provide crucial insights into the mechanisms of cancer development and suppression.
Collapse
Affiliation(s)
- Hyeon-Young Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung-Min Kim
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Baumer Y, Singh K, Baez AS, Gutierrez-Huerta CA, Chen L, Igboko M, Turner BS, Yeboah JA, Reger RN, Ortiz-Whittingham LR, Bleck CK, Mitchell VM, Collins BS, Pirooznia M, Dagur PK, Allan DS, Muallem-Schwartz D, Childs RW, Powell-Wiley TM. Social Determinants modulate NK cell activity via obesity, LDL, and DUSP1 signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.556825. [PMID: 37745366 PMCID: PMC10515802 DOI: 10.1101/2023.09.12.556825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Adverse social determinants of health (aSDoH) are associated with obesity and related comorbidities like diabetes, cardiovascular disease, and cancer. Obesity is also associated with natural killer cell (NK) dysregulation, suggesting a potential mechanistic link. Therefore, we measured NK phenotypes and function in a cohort of African-American (AA) women from resource-limited neighborhoods. Obesity was associated with reduced NK cytotoxicity and a shift towards a regulatory phenotype. In vitro, LDL promoted NK dysfunction, implicating hyperlipidemia as a mediator of obesity-related immune dysregulation. Dual specific phosphatase 1 (DUSP1) was induced by LDL and was upregulated in NK cells from subjects with obesity, implicating DUSP1 in obesity-mediated NK dysfunction. In vitro, DUSP1 repressed LAMP1/CD107a, depleting NK cells of functional lysosomes to prevent degranulation and cytokine secretion. Together, these data provide novel mechanistic links between aSDoH, obesity, and immune dysregulation that could be leveraged to improve outcomes in marginalized populations.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Komudi Singh
- Bioinformatics and Computational Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christian A. Gutierrez-Huerta
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Long Chen
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Muna Igboko
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Briana S. Turner
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Josette A. Yeboah
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert N. Reger
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lola R. Ortiz-Whittingham
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher K.E. Bleck
- Electron Microscopy Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Valerie M. Mitchell
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Billy S. Collins
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pradeep K. Dagur
- Flow Cytometry Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - David S.J. Allan
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Richard W. Childs
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Intramural Research Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Bashiri Dezfouli A, Yazdi M, Benmebarek MR, Schwab M, Michaelides S, Miccichè A, Geerts D, Stangl S, Klapproth S, Wagner E, Kobold S, Multhoff G. CAR T Cells Targeting Membrane-Bound Hsp70 on Tumor Cells Mimic Hsp70-Primed NK Cells. Front Immunol 2022; 13:883694. [PMID: 35720311 PMCID: PMC9198541 DOI: 10.3389/fimmu.2022.883694] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022] Open
Abstract
Strategies to boost anti-tumor immunity are urgently needed to treat therapy-resistant late-stage cancers, including colorectal cancers (CRCs). Cytokine stimulation and genetic modifications with chimeric antigen receptors (CAR) represent promising strategies to more specifically redirect anti-tumor activities of effector cells like natural killer (NK) and T cells. However, these approaches are critically dependent on tumor-specific antigens while circumventing the suppressive power of the solid tumor microenvironment and avoiding off-tumor toxicities. Previously, we have shown that the stress-inducible heat shock protein 70 (Hsp70) is frequently and specifically expressed on the cell surface of many different, highly aggressive tumors but not normal tissues. We could take advantage of tumors expressing Hsp70 on their membrane (‘mHsp70’) to attract and engage NK cells after in vitro stimulation with the 14-mer Hsp70 peptide TKDNNLLGRFELSG (TKD) plus low dose interleukin (IL)-2. However, a potential limitation of activated primary NK cells after adoptive transfer is their comparably short life span. T cells are typically long-lived but do not recognize mHsp70 on tumor cells, even after stimulation with TKD/IL-2. To combine the advantages of mHsp70-specificity with longevity, we constructed a CAR having specificity for mHsp70 and retrovirally transduced it into primary T cells. Co-culture of anti-Hsp70 CAR-transduced T cells with mHsp70-positive tumor cells stimulates their functional responsiveness. Herein, we demonstrated that human CRCs with a high mHsp70 expression similarly attract TKD/IL-2 stimulated NK cells and anti-Hsp70 CAR T cells, triggering the release of their lytic effector protein granzyme B (GrB) and the pro-inflammatory cytokine interferon (IFN)-γ, after 4 and 24 hours, respectively. In sum, stimulated NK cells and anti-Hsp70 CAR T cells demonstrated comparable anti-tumor effects, albeit with somewhat differing kinetics. These findings, together with the fact that mHsp70 is expressed on a large variety of different cancer entities, highlight the potential of TKD/IL-2 pre-stimulated NK, as well as anti-Hsp70 CAR T cells to provide a promising direction in the field of targeted, cell-based immunotherapies which can address significant unmet clinical needs in a wide range of cancer settings.
Collapse
Affiliation(s)
- Ali Bashiri Dezfouli
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, Munich, Germany
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Mohamed-Reda Benmebarek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Munich, Germany
| | - Melissa Schwab
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, Munich, Germany
| | - Stefanos Michaelides
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Munich, Germany
| | | | | | - Stefan Stangl
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, Munich, Germany.,Department of Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sarah Klapproth
- Institute of Experimental Hematology, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Munich, Germany.,German Center for Translational Cancer Research Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, Munich, Germany
| |
Collapse
|
5
|
Ramírez-Labrada A, Pesini C, Santiago L, Hidalgo S, Calvo-Pérez A, Oñate C, Andrés-Tovar A, Garzón-Tituaña M, Uranga-Murillo I, Arias MA, Galvez EM, Pardo J. All About (NK Cell-Mediated) Death in Two Acts and an Unexpected Encore: Initiation, Execution and Activation of Adaptive Immunity. Front Immunol 2022; 13:896228. [PMID: 35651603 PMCID: PMC9149431 DOI: 10.3389/fimmu.2022.896228] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
NK cells are key mediators of immune cell-mediated cytotoxicity toward infected and transformed cells, being one of the main executors of cell death in the immune system. NK cells recognize target cells through an array of inhibitory and activating receptors for endogenous or exogenous pathogen-derived ligands, which together with adhesion molecules form a structure known as immunological synapse that regulates NK cell effector functions. The main and best characterized mechanisms involved in NK cell-mediated cytotoxicity are the granule exocytosis pathway (perforin/granzymes) and the expression of death ligands. These pathways are recognized as activators of different cell death programmes on the target cells leading to their destruction. However, most studies analyzing these pathways have used pure recombinant or native proteins instead of intact NK cells and, thus, extrapolation of the results to NK cell-mediated cell death might be difficult. Specially, since the activation of granule exocytosis and/or death ligands during NK cell-mediated elimination of target cells might be influenced by the stimulus received from target cells and other microenvironment components, which might affect the cell death pathways activated on target cells. Here we will review and discuss the available experimental evidence on how NK cells kill target cells, with a special focus on the different cell death modalities that have been found to be activated during NK cell-mediated cytotoxicity; including apoptosis and more inflammatory pathways like necroptosis and pyroptosis. In light of this new evidence, we will develop the new concept of cell death induced by NK cells as a new regulatory mechanism linking innate immune response with the activation of tumour adaptive T cell responses, which might be the initiating stimulus that trigger the cancer-immunity cycle. The use of the different cell death pathways and the modulation of the tumour cell molecular machinery regulating them might affect not only tumour cell elimination by NK cells but, in addition, the generation of T cell responses against the tumour that would contribute to efficient tumour elimination and generate cancer immune memory preventing potential recurrences.
Collapse
Affiliation(s)
- Ariel Ramírez-Labrada
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Centro de Investigación Biomédica de Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Cecilia Pesini
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Llipsy Santiago
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Sandra Hidalgo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Adanays Calvo-Pérez
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Carmen Oñate
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Alejandro Andrés-Tovar
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Marcela Garzón-Tituaña
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Maykel A Arias
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Eva M Galvez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Julián Pardo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, Fundación Agencia Aragonesa para la Investigación y el Desarrollo ARAID Foundation, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
6
|
Gürbüz M, Aktaç Ş. Understanding the role of vitamin A and its precursors in the immune system. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Blocking HIF to Enhance NK Cells: Hints for New Anti-Tumor Therapeutic Strategies? Vaccines (Basel) 2021; 9:vaccines9101144. [PMID: 34696251 PMCID: PMC8539190 DOI: 10.3390/vaccines9101144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022] Open
Abstract
Natural Killer (NK) cells are becoming an ever more promising tool to design new anti-tumor strategies. However, two major issues are still a challenge to obtain versatile and effective NK-based therapies: the way to maximize the persistency of powerful NK effectors in the patient, and the way to overcome the multiple escape mechanisms that keep away or suppress NK cells at the tumor site. In this regard, targeting the hypoxia-inducible factors (HIFs), which is important for both tumor progression and immune suppression, may be an opportunity. Especially, in the context of the ongoing studies focused on more effective NK-based therapeutic products.
Collapse
|
8
|
Gao F, He S, Jin A. MiRNAs and lncRNAs in NK cell biology and NK/T-cell lymphoma. Genes Dis 2021; 8:590-602. [PMID: 34291131 PMCID: PMC8278539 DOI: 10.1016/j.gendis.2020.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/07/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
The important role of lncRNAs and miRNAs in directing immune responses has become increasingly clear. Recent evidence conforms that miRNAs and lncRNAs are involved in NK cell biology and diseases through RNA-protein, RNA-RNA, or RNA-DNA interactions. In this view, we summarize the contribution of miRNAs and lncRNAs to NK cell lineage development, activation and function, highlight the biological significance of functional miRNAs or lncRNAs in NKTL and discuss the potential of these miRNAs and lncRNAs as innovative biomarkers/targets for NKTL early diagnosis, target treatment and prognostic evaluations.
Collapse
Affiliation(s)
- FengXia Gao
- Department of Immunology, Chongqing Medical University, Chongqing, 400010, PR China
- Chongqing Key Laboratory of Tumor Immunology and Tumor Immunotherapy, Chongqing Medical University, No.1, Medical School Road, Yuzhong District, Chongqing, 400010, PR China
| | - SiRong He
- Department of Immunology, Chongqing Medical University, Chongqing, 400010, PR China
- Chongqing Key Laboratory of Tumor Immunology and Tumor Immunotherapy, Chongqing Medical University, No.1, Medical School Road, Yuzhong District, Chongqing, 400010, PR China
| | - AiShun Jin
- Department of Immunology, Chongqing Medical University, Chongqing, 400010, PR China
- Chongqing Key Laboratory of Tumor Immunology and Tumor Immunotherapy, Chongqing Medical University, No.1, Medical School Road, Yuzhong District, Chongqing, 400010, PR China
| |
Collapse
|
9
|
Yan Z, Fan G, Li H, Jiao Y, Fu W, Weng J, Huo R, Wang J, Xu H, Wang S, Cao Y, Zhao J. The CTSC-RAB38 Fusion Transcript Is Associated With the Risk of Hemorrhage in Brain Arteriovenous Malformations. J Neuropathol Exp Neurol 2021; 80:71-78. [PMID: 33120410 DOI: 10.1093/jnen/nlaa126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Brain arteriovenous malformations (bAVMs) are congenital anomalies of blood vessels that cause intracranial hemorrhage in children and young adults. Chromosomal rearrangements and fusion genes play an important role in tumor pathogenesis, though the role of fusion genes in bAVM pathophysiological processes is unclear. The aim of this study was to identify fusion transcripts in bAVMs and analyze their effects. To identify fusion transcripts associated with bAVM, RNA sequencing was performed on 73 samples, including 66 bAVM and 7 normal cerebrovascular samples, followed by STAR-Fusion analysis. Reverse transcription polymerase chain reaction and Sanger sequencing were applied to verify fusion transcripts. Functional pathway analysis was performed to identify potential effects of different fusion types. A total of 21 fusion transcripts were detected. Cathepsin C (CTSC)-Ras-Related Protein Rab-38 (RAB38) was the most common fusion and was detected in 10 of 66 (15%) bAVM samples. In CTSC-RAB38 fusion-positive samples, CTSC and RAB38 expression was significantly increased and activated immune/inflammatory signaling. Clinically, CTSC-RAB38 fusion bAVM cases had a higher hemorrhage rate than non-CTSC-RAB38 bAVM cases (p < 0.05). Our study identified recurrent CTSC-RAB38 fusion transcripts in bAVMs, which may be associated with bAVM hemorrhage by promoting immune/inflammatory signaling.
Collapse
Affiliation(s)
- Zihan Yan
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Guangming Fan
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease.,Chaoyang Central Hospital, Liaoning Province, China
| | - Hao Li
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Yuming Jiao
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Weilun Fu
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Jiancong Weng
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Ran Huo
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Jie Wang
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Hongyuan Xu
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Shuo Wang
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Yong Cao
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Jizong Zhao
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Xiao G, Zhang X, Zhang X, Chen Y, Xia Z, Cao H, Huang J, Cheng Q. Aging-related genes are potential prognostic biomarkers for patients with gliomas. Aging (Albany NY) 2021; 13:13239-13263. [PMID: 33946049 PMCID: PMC8148480 DOI: 10.18632/aging.203008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/04/2021] [Indexed: 04/25/2023]
Abstract
Aging has a significant role in the proliferation and development of cancers. This study explored the expression profiles, prognostic value, and potential roles of aging-related genes in gliomas. We designed risk score and cluster models based on aging-related genes and glioma cases using LASSO Cox regression analysis, consensus clustering analysis and univariate cox regression analyses. High risk score was related to malignant clinical features and poor prognosis based on 10 datasets, 2953 cases altogether. Genetic alterations analysis revealed that high risk scores were associated with genomic aberrations of aging-related oncogenes. GSVA analysis exhibited the potential function of the aging-related genes. More immune cell infiltration was found in high-risk group cases, and glioma patients in high-risk group may be more responsive to immunotherapy. Knock-down of CTSC, an aging-related gene, can inhibit cell cycle progression, colony formation, cell proliferation and increase cell senescence in glioma cell lines in vitro. Indeed, high expression of CTSC was associated with poor prognosis in glioma cases. In conclusion, this study revealed that aging-related genes have prognostic potential for glioma patients and further identified potential mechanisms for aging-related genes in tumorigenesis and progression in gliomas.
Collapse
Affiliation(s)
- Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Hunan, China
| | - Xiangyang Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Hunan, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Hunan, China
| | - Yuanbing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Hunan, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Changsha, Hunan, China
| | - Hui Cao
- Department of Psychiatry, The Second People’s Hospital of Hunan Province, Hunan, China
- The Hospital of Hunan University of Chinese Medicine, Hunan, China
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Hunan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| |
Collapse
|
11
|
CD38 deletion of human primary NK cells eliminates daratumumab-induced fratricide and boosts their effector activity. Blood 2021; 136:2416-2427. [PMID: 32603414 DOI: 10.1182/blood.2020006200] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm that commonly expresses CD38. Daratumumab (DARA), a human monoclonal antibody targeting CD38, has significantly improved the outcome of patients with relapsed or refractory MM, but the response is transient in most cases. Putative mechanisms of suboptimal efficacy of DARA include downregulation of CD38 expression and overexpression of complement inhibitory proteins on MM target cells as well as DARA-induced depletion of CD38high natural killer (NK) cells resulting in crippled antibody-dependent cellular cytotoxicity (ADCC). Here, we tested whether maintaining NK cell function during DARA therapy could maximize DARA-mediated ADCC against MM cells and deepen the response. We used the CRISPR/Cas9 system to delete CD38 (CD38KO) in ex vivo expanded peripheral blood NK cells. These CD38KO NK cells were completely resistant to DARA-induced fratricide, showed superior persistence in immune-deficient mice pretreated with DARA, and enhanced ADCC activity against CD38-expressing MM cell lines and primary MM cells. In addition, transcriptomic and cellular metabolic analysis demonstrated that CD38KO NK cells have unique metabolic reprogramming with higher mitochondrial respiratory capacity. Finally, we evaluated the impact of exposure to all-trans retinoic acid (ATRA) on wild-type NK and CD38KO NK cell function and highlighted potential benefits and drawbacks of combining ATRA with DARA in patients with MM. Taken together, these findings provide proof of concept that adoptive immunotherapy using ex vivo expanded CD38KO NK cells has the potential to boost DARA activity in MM.
Collapse
|
12
|
Reina-Ortiz C, Constantinides M, Fayd-Herbe-de-Maudave A, Présumey J, Hernandez J, Cartron G, Giraldos D, Díez R, Izquierdo I, Azaceta G, Palomera L, Marzo I, Naval J, Anel A, Villalba M. Expanded NK cells from umbilical cord blood and adult peripheral blood combined with daratumumab are effective against tumor cells from multiple myeloma patients. Oncoimmunology 2020; 10:1853314. [PMID: 33457074 PMCID: PMC7781838 DOI: 10.1080/2162402x.2020.1853314] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this study we evaluated the potential of expanded NK cells (eNKs) from two sources combined with the mAbs daratumumab and pembrolizumab to target primary multiple myeloma (MM) cells ex vivo. In order to ascertain the best source of NK cells, we expanded and activated NK cells from peripheral blood (PB) of healthy adult donors and from umbilical cord blood (UCB). The resulting expanded NK (eNK) cells express CD16, necessary for carrying out antibody-dependent cellular cytotoxicity (ADCC). Cytotoxicity assays were performed on bone marrow aspirates of 18 MM patients and 4 patients with monoclonal gammopathy of undetermined significance (MGUS). Expression levels of PD-1 on eNKs and PD-L1 on MM and MGUS cells were also quantified. Results indicate that most eNKs obtained using our expansion protocol express a low percentage of PD-1+ cells. UCB eNKs were highly cytotoxic against MM cells and addition of daratumumab or pembrolizumab did not further increase their cytotoxicity. PB eNKs, while effective against MM cells, were significantly more cytotoxic when combined with daratumumab. In a minority of cases, eNK cells showed a detectable population of PD1+ cells. This correlated with low cytotoxic activity, particularly in UCB eNKs. Addition of pembrolizumab did not restore their activity. Results indicate that UCB eNKs are to be preferentially used against MM in the absence of daratumumab while PB eNKs have significant cytotoxic advantage when combined with this mAb.
Collapse
Affiliation(s)
- Chantal Reina-Ortiz
- Apoptosis, Immunity & Cancer Group, Dept. Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Sq., University of Zaragoza and Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | | | | | | | | | | | - David Giraldos
- Apoptosis, Immunity & Cancer Group, Dept. Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Sq., University of Zaragoza and Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Rosana Díez
- Hematology Department, Miguel Servet Hospital, Zaragoza, Spain
| | | | - Gemma Azaceta
- Hematology Department, Lozano Blesa Hospital, Zaragoza, Spain
| | - Luis Palomera
- Hematology Department, Lozano Blesa Hospital, Zaragoza, Spain
| | - Isabel Marzo
- Apoptosis, Immunity & Cancer Group, Dept. Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Sq., University of Zaragoza and Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Javier Naval
- Apoptosis, Immunity & Cancer Group, Dept. Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Sq., University of Zaragoza and Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Alberto Anel
- Apoptosis, Immunity & Cancer Group, Dept. Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Sq., University of Zaragoza and Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Martín Villalba
- CHU Montpellier, IRMB, Montpellier, France.,IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| |
Collapse
|
13
|
Villalba M, Alexia C, Bellin-Robert A, Fayd'herbe de Maudave A, Gitenay D. Non-Genetically Improving the Natural Cytotoxicity of Natural Killer (NK) Cells. Front Immunol 2020; 10:3026. [PMID: 31998309 PMCID: PMC6970430 DOI: 10.3389/fimmu.2019.03026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
The innate lymphocyte lineage natural killer (NK) is now the target of multiple clinical applications, although none has received an agreement from any regulatory agency yet. Transplant of naïve NK cells has not proven efficient enough in the vast majority of clinical trials. Hence, new protocols wish to improve their medical use by producing them from stem cells and/or modifying them by genetic engineering. These techniques have given interesting results but these improvements often hide that natural killers are mainly that: natural. We discuss here different ways to take advantage of NK physiology to improve their clinical activity without the need of additional modifications except for in vitro activation and expansion and allograft in patients. Some of these tactics include combination with monoclonal antibodies (mAb), drugs that change metabolism and engraftment of specific NK subsets with particular activity. Finally, we propose to use specific NK cell subsets found in certain patients that show increase activity against a specific disease, including the use of NK cells derived from patients.
Collapse
Affiliation(s)
- Martin Villalba
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France.,IRMB, CHU Montpellier, Montpellier, France
| | - Catherine Alexia
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | | | | | - Delphine Gitenay
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| |
Collapse
|
14
|
Gholikhani-Darbroud R. MicroRNA and retinoic acid. Clin Chim Acta 2019; 502:15-24. [PMID: 31812758 DOI: 10.1016/j.cca.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Retinoic acid is a metabolite of vitamin A that is necessary to maintain health in human and most of the other vertebrates. MicroRNAs (miR or miRNAs) are small, non-coding RNA particles that diminish mRNA translation of various genes and so can regulate critical cell processes including cell death, proliferation, development, etc. The aim of this review is to study interrelations between retinoic acid with miRNAs. METHODS We reviewed and summarized all published articles in PubMed, Europe PMC, and Embase databases with any relationship between retinoic acid and miRNAs from Jun 2003 to Dec 2018 that includes 126 articles. RESULTS Results showed direct and indirect relationships between retinoic acid and miRNAs in various levels including effects of retinoic acid on expression of various miRNAs and miRNA-biogenesis enzymes, and effect of miRNAs on metabolism of retinoic acid. DISCUTION AND CONCLUSION This review indicates that retinoic acid has inter-correlations with various miRNA members and their metabolism in health and disease may require implications of the other.
Collapse
Affiliation(s)
- Reza Gholikhani-Darbroud
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran.
| |
Collapse
|
15
|
Lima L, de Melo TCT, Marques D, de Araújo JNG, Leite ISF, Alves CX, Genre J, Silbiger VN. Modulation of all-trans retinoic acid-induced MiRNA expression in neoplastic cell lines: a systematic review. BMC Cancer 2019; 19:866. [PMID: 31470825 PMCID: PMC6717326 DOI: 10.1186/s12885-019-6081-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
Background Cancer is a genetic and epigenetic disease that involves inactivation of tumor suppressor genes and activation of proto-oncogenes. All-trans retinoic acid (ATRA) is an isomer of retinoic acid involved in the onset of differentiation and apoptosis of a number of normal and cancer cells, functioning as an anti-cancer agent in several neoplasms. Ectopic changes in the expression of certain microRNAs (miRNAs) occur in response to ATRA, leading to phenotypic alterations in neoplastic cell lines. Moreover, the modulation of miRNA patterns upon ATRA-treatment may represent an effective chemopreventive and anti-cancer therapy strategy. The present systematic review was performed to provide an overview of the modulation of ATRA-induced miRNA expression in different types of neoplastic cells and identify the efficacy of intervention factors (i.e., concentration and duration of treatment) and how they influence expression profiles of oncogenesis-targeting miRNAs. Methods A systematic search was conducted according to the PRISMA statement via the US National Library of Medicine MEDLINE/PubMed bibliographic search engine. Results The search identified 31 experimental studies involving human cell lines from nine different cancer types (neuroblastoma, acute myeloid leukemia, breast cancer, lung cancer, pancreatic cancer, glioma, glioblastoma, embryonal carcinoma, and colorectal cancer) treated with ATRA at concentrations ranging from 10− 3 μmol/L to 102 μmol mol/L for 24 h to 21 days. Conclusion The concentrations used and the duration of treatment of cancer cells with ATRA varied widely. The presence of ATRA in the culture medium of cancer cells was able to modulate the expression of more than 300 miRNAs, and inhibit invasive behavior and deregulated growth of cancer cells, resulting in total tumor remission in some cases. ATRA may thus be broadly effective for neoplasm treatment and prevention, although these studies may not accurately represent in vivo conditions. Additional studies are required to elucidate ATRA-induced miRNA modulation during neoplasm treatment.
Collapse
Affiliation(s)
- Lara Lima
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil.,Laboratory of Bioanalysis and Molecular Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Diego Marques
- Laboratory of Bioanalysis and Molecular Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jéssica Nayara Góes de Araújo
- Laboratory of Bioanalysis and Molecular Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Camila Xavier Alves
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Julieta Genre
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Vivian Nogueira Silbiger
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil. .,Laboratory of Bioanalysis and Molecular Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil. .,Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, Brazil. .,Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Av. General Gustavo Cordeiro de Faria S/N, Petrópolis, Natal - RN, 59012-570, Brazil.
| |
Collapse
|
16
|
Jakoš T, Pišlar A, Jewett A, Kos J. Cysteine Cathepsins in Tumor-Associated Immune Cells. Front Immunol 2019; 10:2037. [PMID: 31555270 PMCID: PMC6724555 DOI: 10.3389/fimmu.2019.02037] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Cysteine cathepsins are key regulators of the innate and adaptive arms of the immune system. Their expression, activity, and subcellular localization are associated with the distinct development and differentiation stages of immune cells. They promote the activation of innate myeloid immune cells since they contribute to toll-like receptor signaling and to cytokine secretion. Furthermore, they control lysosomal biogenesis and autophagic flux, thus affecting innate immune cell survival and polarization. They also regulate bidirectional communication between the cell exterior and the cytoskeleton, thus influencing cell interactions, morphology, and motility. Importantly, cysteine cathepsins contribute to the priming of adaptive immune cells by controlling antigen presentation and are involved in cytotoxic granule mediated killing in cytotoxic T lymphocytes and natural killer cells. Cathepins'aberrant activity can be prevented by their endogenous inhibitors, cystatins. However, dysregulated proteolysis contributes significantly to tumor progression also by modulation of the antitumor immune response. Especially tumor-associated myeloid cells, such as tumor-associated macrophages and myeloid-derived suppressor cells, which are known for their tumor promoting and immunosuppressive functions, constitute the major source of excessive cysteine cathepsin activity in cancer. Since they are enriched in the tumor microenvironment, cysteine cathepsins represent exciting targets for development of new diagnostic and therapeutic moieties.
Collapse
Affiliation(s)
- Tanja Jakoš
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Pišlar
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anahid Jewett
- UCLA School of Dentistry and Medicine, Los Angeles, CA, United States
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.,Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
17
|
Persistent Replication of HIV, Hepatitis C Virus (HCV), and HBV Results in Distinct Gene Expression Profiles by Human NK Cells. J Virol 2019; 93:JVI.00575-18. [PMID: 30185599 DOI: 10.1128/jvi.00575-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/20/2018] [Indexed: 01/14/2023] Open
Abstract
Natural killer (NK) cells during chronic viral infection have been well studied in the past. We performed an unbiased next-generation RNA-sequencing approach to identify commonalities or differences of the effect of HIV, HCV, and HBV viremia on NK cell transcriptomes. Using cell sorting, we obtained CD3- CD56+ NK cells from blood of 6 HIV-, 8 HCV-, and 32 HBV-infected patients without treatment. After library preparation and sequencing, we used an in-house analytic pipeline to compare expression levels with matched healthy controls. In NK cells from HIV-, HCV-, and HBV-infected patients, transcriptome analysis identified 272, 53, and 56 differentially expressed genes, respectively (fold change, >1.5; q-value, 0.2). Interferon-stimulated genes were induced in NK cells from HIV/HCV patients, but not during HBV infection. HIV viremia downregulated ribosome assembly genes in NK cells. In HBV-infected patients, viral load and alanine aminotransferase (ALT) variation had little effect on genes related to NK effector function. In conclusion, we compare, for the first time, NK cell transcripts of viremic HIV, HCV, and HBV patients. We clearly demonstrate distinctive NK cell gene signatures in three different populations, suggestive for a different degree of functional alterations of the NK cell compartment compared to healthy individuals.IMPORTANCE Three viruses exist that can result in persistently high viral loads in immunocompetent humans: human immunodeficiency virus (HIV), hepatitis C virus, and hepatitis B virus. In the last decades, by using flow cytometry and in vitro assays on NK cells from patients with these types of infections, several impairments have been established, particularly during and possibly contributing to HIV viremia. However, the background of NK cell impairments in viremic patients is not well understood. In this study, we describe the NK cell transcriptomes of patients with high viral loads of different etiologies. We clearly demonstrate distinctive NK cell gene signatures with regard to interferon-stimulated gene induction and the expression of genes coding for activation markers or proteins involved in cytotoxic action, as well immunological genes. This study provides important details necessary to uncover the origin of functional and phenotypical differences between viremic patients and healthy subjects and provides many leads that can be confirmed using future in vitro manipulation experiments.
Collapse
|
18
|
Korkmaz B, Caughey GH, Chapple I, Gauthier F, Hirschfeld J, Jenne DE, Kettritz R, Lalmanach G, Lamort AS, Lauritzen C, Łȩgowska M, Lesner A, Marchand-Adam S, McKaig SJ, Moss C, Pedersen J, Roberts H, Schreiber A, Seren S, Thakker NS. Therapeutic targeting of cathepsin C: from pathophysiology to treatment. Pharmacol Ther 2018; 190:202-236. [DOI: 10.1016/j.pharmthera.2018.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Sanchez-Martinez D, Allende-Vega N, Orecchioni S, Talarico G, Cornillon A, Vo DN, Rene C, Lu ZY, Krzywinska E, Anel A, Galvez EM, Pardo J, Robert B, Martineau P, Hicheri Y, Bertolini F, Cartron G, Villalba M. Expansion of allogeneic NK cells with efficient antibody-dependent cell cytotoxicity against multiple tumors. Theranostics 2018; 8:3856-3869. [PMID: 30083264 PMCID: PMC6071536 DOI: 10.7150/thno.25149] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/26/2018] [Indexed: 01/09/2023] Open
Abstract
Monoclonal antibodies (mAbs) have significantly improved the treatment of certain cancers. However, in general mAbs alone have limited therapeutic activity. One of their main mechanisms of action is to induce antibody-dependent cell-mediated cytotoxicity (ADCC), which is mediated by natural killer (NK) cells. Unfortunately, most cancer patients have severe immune dysfunctions affecting NK activity. This can be circumvented by the injection of allogeneic, expanded NK cells, which is safe. Nevertheless, despite their strong cytolytic potential against different tumors, clinical results have been poor. Methods: We combined allogeneic NK cells and mAbs to improve cancer treatment. We generated expanded NK cells (e-NK) with strong in vitro and in vivo ADCC responses against different tumors and using different therapeutic mAbs, namely rituximab, obinutuzumab, daratumumab, cetuximab and trastuzumab. Results: Remarkably, e-NK cells can be stored frozen and, after thawing, armed with mAbs. They mediate ADCC through degranulation-dependent and -independent mechanisms. Furthermore, they overcome certain anti-apoptotic mechanisms found in leukemic cells. Conclusion: We have established a new protocol for activation/expansion of NK cells with high ADCC activity. The use of mAbs in combination with e-NK cells could potentially improve cancer treatment.
Collapse
|
20
|
Lanuza PM, Vigueras A, Olivan S, Prats AC, Costas S, Llamazares G, Sanchez-Martinez D, Ayuso JM, Fernandez L, Ochoa I, Pardo J. Activated human primary NK cells efficiently kill colorectal cancer cells in 3D spheroid cultures irrespectively of the level of PD-L1 expression. Oncoimmunology 2018; 7:e1395123. [PMID: 29632716 DOI: 10.1080/2162402x.2017.1395123] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 01/26/2023] Open
Abstract
Haploidentical Natural Killer (NK) cells have been shown as an effective and safe alternative for the treatment of haematological malignancies with poor prognosis for which traditional therapies are ineffective. In contrast to haematological cancer cells, that mainly grow as single suspension cells, solid carcinomas are characterised by a tridimensional (3D) architecture that provide specific surviving advantages and resistance against chemo- and radiotherapy. However, little is known about the impact of 3D growth on solid cancer immunotherapy especially adoptive NK cell transfer. We have recently developed a protocol to activate ex vivo human primary NK cells using B lymphoblastic cell lines, which generates NK cells able to overcome chemoresistance in haematological cancer cells. Here we have analysed the activity of these allogeneic NK cells against colorectal (CRC) human cell lines growing in 3D spheroid culture and correlated with the expression of some of the main ligands regulating NK cell activity. Our results indicate that activated NK cells efficiently kill colorectal tumour cell spheroids in both 2D and 3D cultures. Notably, although 3D CRC cell cultures favoured the expression of the inhibitory immune checkpoint PD-L1, it did not correlate with increased resistance to NK cells. Finally, we have analysed in detail the infiltration of NK cells in 3D spheroids by microscopy and found that at low NK cell density, cell death is not observed although NK cells are able to infiltrate into the spheroid. In contrast, higher densities promote tumoural cell death before infiltration can be detected. These findings show that highly dense activated human primary NK cells efficiently kill colorectal carcinoma cells growing in 3D cultures independently of PD-L1 expression and suggest that the use of allogeneic activated NK cells could be beneficial for the treatment of colorectal carcinoma.
Collapse
Affiliation(s)
- Pilar M Lanuza
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Alan Vigueras
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Group of Applied Mechanics and Bioengineering (AMB); Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Spain.,Centro Investigacion Biomedica en Red. Bioingenieria, biomateriales y nanomedicina (CIBER-BBN)
| | - Sara Olivan
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Group of Applied Mechanics and Bioengineering (AMB); Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Spain.,Centro Investigacion Biomedica en Red. Bioingenieria, biomateriales y nanomedicina (CIBER-BBN)
| | - Anne C Prats
- Inserm, U1037, F-31432 Toulouse, France, Université de Toulouse, UPS, Cancer Research Center of Toulouse, F-31432 Toulouse, France
| | - Santiago Costas
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Guillermo Llamazares
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Group of Applied Mechanics and Bioengineering (AMB); Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Spain.,Centro Investigacion Biomedica en Red. Bioingenieria, biomateriales y nanomedicina (CIBER-BBN)
| | | | - José María Ayuso
- Medical Engineering, Morgridge Institute for Research, Madison, Wisconsin, USA.,Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI, USA.,The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Luis Fernandez
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Group of Applied Mechanics and Bioengineering (AMB); Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Spain.,Centro Investigacion Biomedica en Red. Bioingenieria, biomateriales y nanomedicina (CIBER-BBN)
| | - Ignacio Ochoa
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Group of Applied Mechanics and Bioengineering (AMB); Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Spain.,Centro Investigacion Biomedica en Red. Bioingenieria, biomateriales y nanomedicina (CIBER-BBN)
| | - Julián Pardo
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Dpt. Microbiology, Preventive Medicine and Public Health and Dpt. Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain.,Aragón I+D Foundation (ARAID), Government of Aragon, Zaragoza, Spain Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
21
|
Kim CH. Control of Innate and Adaptive Lymphocytes by the RAR-Retinoic Acid Axis. Immune Netw 2018; 18:e1. [PMID: 29503736 PMCID: PMC5833116 DOI: 10.4110/in.2018.18.e1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/20/2017] [Accepted: 12/30/2017] [Indexed: 12/19/2022] Open
Abstract
Lymphocytes, such as T cells, B cells, and innate lymphoid cells (ILCs), play central roles in regulating immune responses. Retinoic acids (RAs) are vitamin A metabolites, produced and metabolized by certain tissue cells and myeloid cells in a tissue-specific manner. It has been established that RAs induce gut-homing receptors on T cells, B cells, and ILCs. A mounting body of evidence indicates that RAs exert far-reaching effects on functional differentiation and fate of these lymphocytes. For example, RAs promote effector T cell maintenance, generation of induced gut-homing regulatory and effector T cell subsets, antibody production by B cells, and functional maturation of ILCs. Key functions of RAs in regulating major groups of innate and adaptive lymphocytes are highlighted in this article.
Collapse
Affiliation(s)
- Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.,Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.,Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| |
Collapse
|
22
|
iTRAQ-Based Identification of Proteins Related to Muscle Growth in the Pacific Abalone, Haliotis discus hannai. Int J Mol Sci 2017; 18:ijms18112237. [PMID: 29068414 PMCID: PMC5713207 DOI: 10.3390/ijms18112237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 11/16/2022] Open
Abstract
The abalone Haliotis discus hannai is an important aquaculture species that is grown for human consumption. However, little is known of the genetic mechanisms governing muscle growth in this species, particularly with respect to proteomics. The isobaric tag for relative and absolute quantitation (iTRAQ) method allows for sensitive and accurate protein quantification. Our study was the first to use iTRAQ-based quantitative proteomics to investigate muscle growth regulation in H. discus hannai. Among the 1904 proteins identified from six samples, 125 proteins were differentially expressed in large specimens of H. discus hannai as compared to small specimens. In the large specimens, 47 proteins were upregulated and 78 were downregulated. Many of the significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including these differentially expressed proteins, were closely related to muscle growth, including apoptosis, thyroid hormone signaling, regulation of the actin cytoskeleton, and viral myocarditis (p < 0.05). Our quantitative real-time polymerase chain reaction (qRT-PCR) analyses suggested that the alterations in expression levels observed in the differentially expressed proteins were consistent with the alterations observed in the encoding mRNAs, indicating the repeatability of our proteomic approach. Our findings contribute to the knowledge of the molecular mechanisms of muscle growth in H. discus hannai.
Collapse
|
23
|
High-throughput sequencing identifies HIV-1-replication- and latency-related miRNAs in CD4 + T cell lines. Arch Virol 2017; 162:1933-1942. [PMID: 28303346 DOI: 10.1007/s00705-017-3305-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/15/2017] [Indexed: 12/30/2022]
Abstract
MicroRNAs are potent gene expression regulators involved in regulating various biological processes, including host-pathogen interactions. In this study, we used high-throughput sequencing to investigate cellular miRNA signatures related to HIV-1 replication and latent infection in CD4+ T cell lines, which included HIV-1-replicating H9/HTLV-IIIB, HIV-1-latently-infected CEM-Bru cells, and their parental uninfected H9 and CEM-SS cells. Relatively few miRNAs were found to be modulated by HIV-1 replication or latent infection, while the cell-lineage-specific miRNA difference was more pronounced, irrespective of HIV-1 infection. In silico analysis showed that some of our HIV-1 infection-regulated miRNA profiles echoed previous studies, while others were novel. In addition, some of the miRNAs that were differentially expressed between the productively and latently infected cells seemed to participate in shaping the differential infection state. Thus, the newly identified miRNA profiles related to HIV-1 replication and latency provide information about the interplay between HIV-1 and its host.
Collapse
|
24
|
Sánchez-Martínez D, Lanuza PM, Gómez N, Muntasell A, Cisneros E, Moraru M, Azaceta G, Anel A, Martínez-Lostao L, Villalba M, Palomera L, Vilches C, García Marco JA, Pardo J. Activated Allogeneic NK Cells Preferentially Kill Poor Prognosis B-Cell Chronic Lymphocytic Leukemia Cells. Front Immunol 2016; 7:454. [PMID: 27833611 PMCID: PMC5081347 DOI: 10.3389/fimmu.2016.00454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/11/2016] [Indexed: 01/04/2023] Open
Abstract
Mutational status of TP53 together with expression of wild-type (wt) IGHV represents the most widely accepted biomarkers, establishing a very poor prognosis in B-cell chronic lymphocytic leukemia (B-CLL) patients. Adoptive cell therapy using allogeneic HLA-mismatched Natural killer (NK) cells has emerged as an effective and safe alternative in the treatment of acute myeloid and lymphoid leukemias that do not respond to traditional therapies. We have described that allogeneic activated NK cells eliminate hematological cancer cell lines with multidrug resistance acquired by mutations in the apoptotic machinery. This effect depends on the activation protocol, being B-lymphoblastoid cell lines (LCLs) the most effective stimulus to activate NK cells. Here, we have further analyzed the molecular determinants involved in allogeneic NK cell recognition and elimination of B-CLL cells, including the expression of ligands of the main NK cell-activating receptors (NKG2D and NCRs) and HLA mismatch. We present preliminary data suggesting that B-CLL susceptibility significantly correlates with HLA mismatch between NK cell donor and B-CLL patient. Moreover, we show that the sensitivity of B-CLL cells to NK cells depends on the prognosis based on TP53 and IGHV mutational status. Cells from patients with worse prognosis (mutated TP53 and wt IGHV) are the most susceptible to activated NK cells. Hence, B-CLL prognosis may predict the efficacy of allogenic activated NK cells, and, thus, NK cell transfer represents a good alternative to treat poor prognosis B-CLL patients who present a very short life expectancy due to lack of effective treatments.
Collapse
Affiliation(s)
- Diego Sánchez-Martínez
- Biomedical Research Center of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), University of Zaragoza , Zaragoza , Spain
| | - Pilar M Lanuza
- Biomedical Research Center of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), University of Zaragoza , Zaragoza , Spain
| | - Natalia Gómez
- Immunogenetics and HLA, Instituto de Investigación Sanitaria Puerta de Hierro , Majadahonda , Spain
| | - Aura Muntasell
- Immunity and infection Lab, IMIM (Hospital del Mar Medical Research Institute) , Barcelona , Spain
| | - Elisa Cisneros
- Immunogenetics and HLA, Instituto de Investigación Sanitaria Puerta de Hierro , Majadahonda , Spain
| | - Manuela Moraru
- Immunogenetics and HLA, Instituto de Investigación Sanitaria Puerta de Hierro , Majadahonda , Spain
| | - Gemma Azaceta
- Hospital Clínico Universitario Lozano Blesa, Instituto Aragonés de Ciencias de la Salud (IACS)/Aragón Health Research Institute (IIS Aragón) , Zaragoza , Spain
| | - Alberto Anel
- Department of Biochemistry and Molecular and Cellular Biology, Aragón Health Research Institute (IIS Aragón), University of Zaragoza , Zaragoza , Spain
| | - Luis Martínez-Lostao
- Hospital Clínico Universitario Lozano Blesa, Instituto Aragonés de Ciencias de la Salud (IACS)/Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain; Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain
| | - Martin Villalba
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France; Institute for Regenerative Medicine and Biotherapy (IRMB), CHU Montpellier, Montpellier, France
| | - Luis Palomera
- Hospital Clínico Universitario Lozano Blesa, Instituto Aragonés de Ciencias de la Salud (IACS)/Aragón Health Research Institute (IIS Aragón) , Zaragoza , Spain
| | - Carlos Vilches
- Immunity and infection Lab, IMIM (Hospital del Mar Medical Research Institute) , Barcelona , Spain
| | - José A García Marco
- Unidad de Citogenética Molecular/Servicio de Hematología, Hospital Universitario Puerta de Hierro-Majadahonda , Madrid , Spain
| | - Julián Pardo
- Biomedical Research Center of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain; Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain; Aragón I+D Foundation (ARAID), Government of Aragon, Zaragoza, Spain; Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
25
|
Liang B, Song Y, Zheng W, Ma W. miRNA143 Induces K562 Cell Apoptosis Through Downregulating BCR-ABL. Med Sci Monit 2016; 22:2761-7. [PMID: 27492780 PMCID: PMC4978212 DOI: 10.12659/msm.895833] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background Leukemia seriously threats human health and life. MicroRNA regulates cell growth, proliferation, apoptosis, and cell cycle. Whether microRNA could be treated as a target for leukemia is still unclear and the mechanism by which microRNA143 regulates K562 cells needs further investigation. Material/Methods miRNA143 and its scramble miRNA were synthesized and transfected to K562 cells. MTT assay was used to detect K562 cell proliferation. Flow cytometry and a caspase-3 activity detection kit were used to test K562 cell apoptosis. Western blot analysis was performed to determine breakpoint cluster region-Abelson (BCR-ABL) expression. BCR-ABL overexpression and siRNA were used to change BCR-ABL level, and cell apoptosis was detected again after lipofection transfection. Results miRNA143 transfection inhibited K562 cell growth and induced its apoptosis. miRNA143 transfection decreased BCR-ABL expression. BCR-ABL overexpression suppressed miRNA143-induced K562 cell apoptosis, while its reduction enhanced miRNA143-induced apoptosis. Conclusions miRNA143 induced K562 cell apoptosis through downregulating BCR-ABL. miRNA143 might be a target for a new leukemia therapy.
Collapse
Affiliation(s)
- Bing Liang
- Institute of Genetic Engineering, Southern Medical University, Baiyun, Guangzhou, China (mainland)
| | - Yanbin Song
- Institute of Genetic Engineering, Southern Medical University, Baiyun, Guangzhou, China (mainland)
| | - Wenling Zheng
- Institute of Genetic Engineering, Southern Medical University, Baiyun, Guangzhou, China (mainland)
| | - Wenli Ma
- Institute of Genetic Engineering, Southern Medical University, Baiyun, Guangzhou, China (mainland)
| |
Collapse
|
26
|
Abstract
High levels of miR-23a expression in human primary macrophages suggested that miR-23a might have an important role in innate immune cells. Therefore, we investigated whether miR-23a regulates the secretion of cytokines by immune cells. Herein, we demonstrate that the expression of miR-23a was reduced in toll-like receptor (TLR)-stimulated macrophages. By targeting A20, miR-23a could affect NF-κB activity and the expression of downstream NF-κB-target genes that encode proinflammatory mediators, such as IL-6 and TNF-α. In summary, our study describes a novel role for miR-23a in the regulation of inflammatory cytokine production in macrophages, which could yield new insights into the regulatory role of miRNAs in the inflammatory response.
Collapse
|
27
|
Krzywinska E, Cornillon A, Allende-Vega N, Vo DN, Rene C, Lu ZY, Pasero C, Olive D, Fegueux N, Ceballos P, Hicheri Y, Sobecki M, Rossi JF, Cartron G, Villalba M. CD45 Isoform Profile Identifies Natural Killer (NK) Subsets with Differential Activity. PLoS One 2016; 11:e0150434. [PMID: 27100180 PMCID: PMC4839597 DOI: 10.1371/journal.pone.0150434] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/13/2016] [Indexed: 01/30/2023] Open
Abstract
The leucocyte-specific phosphatase CD45 is present in two main isoforms: the large CD45RA and the short CD45RO. We have recently shown that distinctive expression of these isoforms distinguishes natural killer (NK) populations. For example, co-expression of both isoforms identifies in vivo the anti tumor NK cells in hematological cancer patients. Here we show that low CD45 expression associates with less mature, CD56bright, NK cells. Most NK cells in healthy human donors are CD45RA+CD45RO-. The CD45RA-RO+ phenotype, CD45RO cells, is extremely uncommon in B or NK cells, in contrast to T cells. However, healthy donors possess CD45RAdimRO- (CD45RAdim cells), which show immature markers and are largely expanded in hematopoietic stem cell transplant patients. Blood borne cancer patients also have more CD45RAdim cells that carry several features of immature NK cells. However, and in opposition to their association to NK cell progenitors, they do not proliferate and show low expression of the transferrin receptor protein 1/CD71, suggesting low metabolic activity. Moreover, CD45RAdim cells properly respond to in vitro encounter with target cells by degranulating or gaining CD69 expression. In summary, they are quiescent NK cells, with low metabolic status that can, however, respond after encounter with target cells.
Collapse
Affiliation(s)
- Ewelina Krzywinska
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France
| | - Amelie Cornillon
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France
| | - Nerea Allende-Vega
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB), CHU Montpellier, Montpellier, 34295, France
| | - Dang-Nghiem Vo
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France
| | - Celine Rene
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France
| | - Zhao-Yang Lu
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France
| | - Christine Pasero
- Centre de Cancérologie de Marseille, Plateforme d'Immunomonitoring en Cancérologie, INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258, Marseille, France
| | - Daniel Olive
- Centre de Cancérologie de Marseille, Plateforme d'Immunomonitoring en Cancérologie, INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258, Marseille, France
| | - Nathalie Fegueux
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier I, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Patrick Ceballos
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier I, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Yosr Hicheri
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier I, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Michal Sobecki
- Institute for Integrative Biology of the Cell (I2BC), Genome Biology Department CNRS - UMR9198, Gif-sur-Yvette, France
| | - Jean-François Rossi
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier I, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Guillaume Cartron
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier I, 80 avenue Augustin Fliche, 34295, Montpellier, France
- CNRS UMR5235, Université de Montpellier, Montpellier, France
| | - Martin Villalba
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB), CHU Montpellier, Montpellier, 34295, France
- * E-mail:
| |
Collapse
|
28
|
MicroRNA networks regulated by all-trans retinoic acid and Lapatinib control the growth, survival and motility of breast cancer cells. Oncotarget 2016; 6:13176-200. [PMID: 25961594 PMCID: PMC4537007 DOI: 10.18632/oncotarget.3759] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/04/2015] [Indexed: 12/31/2022] Open
Abstract
SKBR3-cells, characterized by ERBB2/RARA co-amplification, represent a subgroup of HER2+ breast-cancers sensitive to all-trans retinoic acid (ATRA) and Lapatinib. In this model, the two agents alone or in combination modulate the expression of 174 microRNAs (miRs). These miRs and predicted target-transcripts are organized in four interconnected modules (Module-1 to -4). Module-1 and Module-3 consist of ATRA/Lapatinib up-regulated and potentially anti-oncogenic miRs, while Module-2 contains ATRA/Lapatinib down-regulated and potentially pro-oncogenic miRs. Consistent with this, the expression levels of Module-1/-3 and Module-2 miRs are higher and lower, respectively, in normal mammary tissues relative to ductal-carcinoma-in-situ, invasive-ductal-carcinoma and metastases. This indicates associations between tumor-progression and the expression profiles of Module-1 to -3 miRs. Similar associations are observed with tumor proliferation-scores, staging, size and overall-survival using TCGA (The Cancer Genome Atlas) data. Forced expression of Module-1 miRs, (miR-29a-3p; miR-874-3p) inhibit SKBR3-cell growth and Module-3 miRs (miR-575; miR-1225-5p) reduce growth and motility. Module-2 miRs (miR-125a; miR-193; miR-210) increase SKBR3 cell growth, survival and motility. Some of these effects are of general significance, being replicated in other breast cancer cell lines representing the heterogeneity of this disease. Finally, our study demonstrates that HIPK2-kinase and the PLCXD1-phospholipase-C are novel targets of miR-193a-5p/miR-210-3p and miR-575/miR-1225-5p, respectively.
Collapse
|
29
|
Ma Y, Gong J, Liu Y, Guo W, Jin B, Wang X, Chen L. MicroRNA-30c promotes natural killer cell cytotoxicity via up-regulating the expression level of NKG2D. Life Sci 2016; 151:174-181. [PMID: 26968781 DOI: 10.1016/j.lfs.2016.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/28/2016] [Accepted: 03/07/2016] [Indexed: 12/20/2022]
Abstract
AIMS Natural killer (NK) cells play critical roles in antitumor immunity. Our previous study showed that over-expression of miR-30c-1* enhanced NKL cell cytotoxicity through up-regulation of tumor necrosis factor-α via directly targeting transcription factor homeobox containing 1. MiR-30c, the complimentary microRNA of miR-30c-1*, has been found to exert regulatory effect on T cell function. However, the effect of miR-30c on NK cells is unknown. Therefore, this study aimed to investigate whether miR-30c could play a role to enhance NK cell activation and cytotoxicity. MAIN METHODS Chemosynthesis exogenous miR-30c mimics and miR-30c inhibitor were transfected into NKL cells and isolated human peripheral blood NK cells, respectively. The expression levels of NK group 2, member D (NKG2D), CD107a and FasL on cell surface and cytotoxic ability of miRNAs transfected NKL cells against SMMC-7721 cells were evaluated. KEY FINDINGS MiR-30c could increase the expression of NKG2D and CD107a on NKL cells, and enhance cytotoxic ability of NKL cells to kill SMMC-7721 cells. Moreover, miR-30c could up-regulate the expression of FasL on both NKL cells and human peripheral blood NK cells. However, the peripheral blood NK cells from only four in ten healthy donors appeared high expression levels of NKG2D and CD107a after miR-30c transfection. SIGNIFICANCE MiR-30c could promote the cytotoxicity of NKL cells in vitro by up-regulating the expression levels of NKG2D, CD107a and FasL. However, the effect of miR-30c on ex vivo NK cells from different human individuals is diverse, indicating that miR-30c may play complicate and fine adjustment in immune system.
Collapse
Affiliation(s)
- Ying Ma
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China
| | - Jiuyu Gong
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China; Hospital of Hubei Armed Police Corps, Wuhan, Hubei 430000, China
| | - Yuan Liu
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China; Department of Gynecology and Obstetrics, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Wenwei Guo
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China; Department of Gynecology and Obstetrics, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Boquan Jin
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China
| | - Xiaohong Wang
- Department of Gynecology and Obstetrics, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China.
| | - Lihua Chen
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
30
|
Profiles of microRNA networks in intestinal epithelial cells in a mouse model of colitis. Sci Rep 2015; 5:18174. [PMID: 26647826 PMCID: PMC4673535 DOI: 10.1038/srep18174] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) accompany a critical loss of the frontline barrier function that is achieved primarily by intestinal epithelial cells (IECs). Although the gene-regulation pathways underlying these host-defense roles of IECs presumably are deranged during IBD pathogenesis, the quantitative and qualitative alterations of posttranscriptional regulators such as microRNAs (miRNAs) within the cells largely remain to be defined. We aimed to uncover the regulatory miRNA–target gene relationships that arise differentially in inflamed small- compared with large-IECs. Whereas IBD significantly increased the expression of only a few miRNA candidates in small-IECs, numerous miRNAs were upregulated in inflamed large-IECs. These marked alterations might explain why the large, as compared with small, intestine is more sensitive to colitis and shows more severe pathology in this experimental model of IBD. Our in-depth assessment of the miRNA–mRNA expression profiles and the resulting networks prompts us to suggest that miRNAs such as miR-1224, miR-3473a, and miR-5128 represent biomarkers that appear in large-IECs upon IBD development and co-operatively repress the expression of key anti-inflammatory factors. The current study provides insight into gene-regulatory networks in IECs through which dynamic rearrangement of the involved miRNAs modulates the gene expression–regulation machinery between maintaining and disrupting gastrointestinal homeostasis.
Collapse
|
31
|
Krzywinska E, Allende-Vega N, Cornillon A, Vo DN, Cayrefourcq L, Panabieres C, Vilches C, Déchanet-Merville J, Hicheri Y, Rossi JF, Cartron G, Villalba M. Identification of Anti-tumor Cells Carrying Natural Killer (NK) Cell Antigens in Patients With Hematological Cancers. EBioMedicine 2015; 2:1364-76. [PMID: 26629531 PMCID: PMC4634619 DOI: 10.1016/j.ebiom.2015.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells, a cytotoxic lymphocyte lineage, are able to kill tumor cells in vitro and in mouse models. However, whether these cells display an anti-tumor activity in cancer patients has not been demonstrated. Here we have addressed this issue in patients with several hematological cancers. We found a population of highly activated CD56dimCD16+ NK cells that have recently degranulated, evidence of killing activity, and it is absent in healthy donors. A high percentage of these cells expressed natural killer cell p46-related protein (NKp46), natural-killer group 2, member D (NKG2D) and killer inhibitory receptors (KIRs) and a low percentage expressed NKG2A and CD94. They are also characterized by a high metabolic activity and active proliferation. Notably, we found that activated NK cells from hematological cancer patients have non-NK tumor cell antigens on their surface, evidence of trogocytosis during tumor cell killing. Finally, we found that these activated NK cells are distinguished by their CD45RA+RO+ phenotype, as opposed to non-activated cells in patients or in healthy donors displaying a CD45RA+RO− phenotype similar to naïve T cells. In summary, we show that CD45RA+RO+ cells, which resemble a unique NK population, have recognized tumor cells and degranulate in patients with hematological neoplasias. Expression of both CD45 isoforms RA and RO identifies anti-leukemia NK cells. Anti-leukemia NK cells proliferate, degranulate and perform trogocytosis in vivo. The presence of CD45RARO population identifies hematological cancer patients.
NK cells are thought to have an intrinsic anti-tumor activity. However, the presence of anti-leukemia NK cells in patients is unknown. We present a relatively simple protocol to identify and characterize them. This is based on differential protein expression and on the fact that they gain tumor cell proteins by the process of trogocytosis. These phenotypic differences should be taken into account in analysis to identify different NK cell subpopulations. Hence, NK cells are actively recognizing tumor cells in leukemia patients; but this seems to be insufficient to eradicate disease. Future efforts should enhance the antitumor activity of this population.
Collapse
Affiliation(s)
- Ewelina Krzywinska
- INSERM U1183, Université de Montpellier, UFR Médecine, Montpellier, France
| | - Nerea Allende-Vega
- INSERM U1183, Université de Montpellier, UFR Médecine, Montpellier, France
| | - Amelie Cornillon
- INSERM U1183, Université de Montpellier, UFR Médecine, Montpellier, France
| | - Dang-Nghiem Vo
- INSERM U1183, Université de Montpellier, UFR Médecine, Montpellier, France
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), Department of Cellular and Tissular Biopathology of Tumors, University Medical Centre, Montpellier, France ; EA2415 - Help for Personalized Decision: Methodological Aspects, University Institute of Clinical Research, Montpellier University, Montpellier, France
| | - Catherine Panabieres
- Laboratory of Rare Human Circulating Cells (LCCRH), Department of Cellular and Tissular Biopathology of Tumors, University Medical Centre, Montpellier, France ; EA2415 - Help for Personalized Decision: Methodological Aspects, University Institute of Clinical Research, Montpellier University, Montpellier, France
| | - Carlos Vilches
- Inmunogenética-HLA, Hospital Univ. Puerta de Hierro, Manuel de Falla 1, 28220 Majadahonda, Madrid, Spain
| | | | - Yosr Hicheri
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier, 80 Avenue Augustin Fliche, 34295 Montpellier, France
| | - Jean-François Rossi
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier, 80 Avenue Augustin Fliche, 34295 Montpellier, France
| | - Guillaume Cartron
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier, 80 Avenue Augustin Fliche, 34295 Montpellier, France
| | - Martin Villalba
- INSERM U1183, Université de Montpellier, UFR Médecine, Montpellier, France ; Institut for Regenerative Medicine and Biotherapy (IRMB), CHU Montpellier, Montpellier 34295, France
| |
Collapse
|
32
|
Humeau M, Vignolle-Vidoni A, Sicard F, Martins F, Bournet B, Buscail L, Torrisani J, Cordelier P. Salivary MicroRNA in Pancreatic Cancer Patients. PLoS One 2015; 10:e0130996. [PMID: 26121640 PMCID: PMC4486170 DOI: 10.1371/journal.pone.0130996] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/27/2015] [Indexed: 12/21/2022] Open
Abstract
Background Pancreatic cancer is the fourth leading cause of cancer death in Western countries, with the lowest 1-year survival rate among commonly diagnosed cancers. Reliable biomarkers for pancreatic cancer diagnosis are lacking and are urgently needed to allow for curative surgery. As microRNA (miRNA) recently emerged as candidate biomarkers for this disease, we explored in the present pilot study the differences in salivary microRNA profiles between patients with pancreatic tumors that are not eligible for surgery, precancerous lesions, inflammatory disease or cancer-free patients as a potential early diagnostic tool. Methods Whole saliva samples from patients with pancreatic cancer (n = 7), pancreatitis (n = 4), IPMN (n = 2), or healthy controls (n = 4) were obtained during endoscopic examination. After total RNA isolation, expression of 94 candidate miRNAs was screened by q(RT)PCR using Biomark Fluidgm. Human-derived pancreatic cancer cells were xenografted in athymic mice as an experimental model of pancreatic cancer. Results We identified hsa-miR-21, hsa-miR-23a, hsa-miR-23b and miR-29c as being significantly upregulated in saliva of pancreatic cancer patients compared to control, showing sensitivities of 71.4%, 85.7%, 85,7% and 57%, respectively and excellent specificity (100%). Interestingly, hsa-miR-23a and hsa-miR23b are overexpressed in the saliva of patients with pancreatic cancer precursor lesions. We found that hsa-miR-210 and let-7c are overexpressed in the saliva of patients with pancreatitis as compared to the control group, with sensitivity of 100% and 75%, and specificity of 100% and 80%, respectively. Last hsa-miR-216 was upregulated in cancer patients as compared to patients diagnosed with pancreatitis, with sensitivity of 50% and specificity of 100%. In experimental models of PDAC, salivary microRNA detection precedes systemic detection of cancer cells markers. Conclusions Our novel findings indicate that salivary miRNA are discriminatory in pancreatic cancer patients that are not eligible for surgery. In addition, we demonstrate in experimental models that salivary miRNA detection precedes systemic detection of cancer cells markers. This study stems for the use of salivary miRNA as biomarker for the early diagnosis of patients with unresectable pancreatic cancer.
Collapse
Affiliation(s)
- Marine Humeau
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France
- Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France
- Department of Surgery, CHU Toulouse- Rangueil, Toulouse, France
| | - Alix Vignolle-Vidoni
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France
- Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France
- Department of Gastroenterology, CHU Toulouse- Rangueil, Toulouse, France
| | - Flavie Sicard
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France
- Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France
| | - Frédéric Martins
- Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France
- INSERM U1048, F-31000 Toulouse, France
| | - Barbara Bournet
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France
- Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France
- Department of Gastroenterology, CHU Toulouse- Rangueil, Toulouse, France
| | - Louis Buscail
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France
- Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France
- Department of Gastroenterology, CHU Toulouse- Rangueil, Toulouse, France
| | - Jérôme Torrisani
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France
- Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France
| | - Pierre Cordelier
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France
- Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France
- * E-mail:
| |
Collapse
|
33
|
Sánchez-Martínez D, Azaceta G, Muntasell A, Aguiló N, Núñez D, Gálvez EM, Naval J, Anel A, Palomera L, Vilches C, Marzo I, Villalba M, Pardo J. Human NK cells activated by EBV + lymphoblastoid cells overcome anti-apoptotic mechanisms of drug resistance in haematological cancer cells. Oncoimmunology 2015; 4:e991613. [PMID: 25949911 DOI: 10.4161/2162402x.2014.991613] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/21/2014] [Indexed: 01/01/2023] Open
Abstract
Natural killer (NK) cells recognize and eliminate transformed or infected cells that have downregulated MHC class-I and express specific activating ligands. Recent evidence indicates that allogeneic NK cells are useful to eliminate haematological cancer cells independently of MHC-I expression. However, it is unclear if transformed cells expressing mutations that confer anti-apoptotic properties and chemoresistance will be susceptible to NK cells. Allogeneic primary human NK cells were activated using different protocols and prospectively tested for their ability to eliminate diverse mutant haematological and apoptotic-resistant cancer cell lines as well as patient-derived B-cell chronic lymphocytic leukemia cells with chemotherapy multiresistance. Here, we show that human NK cells from healthy donors activated in vitro with Epstein Barr virus positive (EBV+)-lymphoblastoid cells display an enhanced cytotoxic and proliferative potential in comparison to other protocols of activation such a K562 cells plus interleukin (IL)2. This enhancement enables them to kill more efficiently a variety of haematological cancer cell lines, including a panel of transfectants that mimic natural mutations leading to oncogenic transformation and chemoresistance (e.g., overexpression of Bcl-2, Bcl-XL and Mcl-1 or downregulation of p53, Bak/Bax or caspase activity). The effect was also observed against blasts from B-cell chronic lymphocytic leukemia patients showing multi-resistance to chemotherapy. Our findings demonstrate that particular in vitro activated NK cells may overcome anti-apoptotic mechanisms and oncogenic alterations frequently occurring in transformed cells, pointing toward the use of EBV+-lymphoblastoid cells as a desirable strategy to activate NK cells in vitro for the purpose of treating haematological neoplasia with poor prognosis.
Collapse
Key Words
- B-CLL, B cell chronic lymphocytic leukemia
- B lymphoblastoid cell line
- EBV, Epstein-Barr virus
- IAP, inhibitor of apoptosis
- KIR, killer inhibitory receptor
- LCL, lymphoblastoid B cell line
- NK cells
- NK, natural killer
- NKR, NK cell receptor
- PBL, peripheral blood lymphocyte
- PBMC, peripheral blood mononuclear cell
- Tc, cytotoxic T
- apoptosis
- haematological neoplasia
- multidrug acquired resistance
Collapse
Affiliation(s)
- Diego Sánchez-Martínez
- Immune Effector Cells Group (ICE); Aragón Health Research Institute (IIS Aragón); Edificio CIBA; Biomedical Research Center of Aragón (CIBA) ; Zaragoza, Spain ; Cell Immunity in Inflammation; Infection and Cancer Group; Department of Biochemistry and Molecular and Cell Biology; University of Zaragoza ; Zaragoza, Spain
| | - Gemma Azaceta
- Servicio de Hematología; Hospital Clínico Universitario; Instituto Aragonés de Ciencias de la Salud (IACS); Zaragoza, Spain
| | - Aura Muntasell
- Immunity and infection Lab; IMIM (Hospital del Mar Medical Research Institute) ; Barcelona, Spain
| | - Nacho Aguiló
- Apoptosis; Cancer and Immunity Group; Department of Biochemistry and Molecular and Cellular Biology; University of Zaragoza ; Zaragoza, Spain
| | - David Núñez
- Immune Effector Cells Group (ICE); Aragón Health Research Institute (IIS Aragón); Edificio CIBA; Biomedical Research Center of Aragón (CIBA) ; Zaragoza, Spain ; Cell Immunity in Inflammation; Infection and Cancer Group; Department of Biochemistry and Molecular and Cell Biology; University of Zaragoza ; Zaragoza, Spain
| | - Eva M Gálvez
- Immune Effector Cells Group (ICE); Aragón Health Research Institute (IIS Aragón); Edificio CIBA; Biomedical Research Center of Aragón (CIBA) ; Zaragoza, Spain ; Instituto de Carboquímica ICB-CSIC ; Zaragoza, Spain
| | - Javier Naval
- Immune Effector Cells Group (ICE); Aragón Health Research Institute (IIS Aragón); Edificio CIBA; Biomedical Research Center of Aragón (CIBA) ; Zaragoza, Spain ; Apoptosis; Cancer and Immunity Group; Department of Biochemistry and Molecular and Cellular Biology; University of Zaragoza ; Zaragoza, Spain
| | - Alberto Anel
- Immune Effector Cells Group (ICE); Aragón Health Research Institute (IIS Aragón); Edificio CIBA; Biomedical Research Center of Aragón (CIBA) ; Zaragoza, Spain ; Apoptosis; Cancer and Immunity Group; Department of Biochemistry and Molecular and Cellular Biology; University of Zaragoza ; Zaragoza, Spain
| | - Luis Palomera
- Servicio de Hematología; Hospital Clínico Universitario; Instituto Aragonés de Ciencias de la Salud (IACS); Zaragoza, Spain
| | - Carlos Vilches
- Immunogenetics & HLA; Instituto de Investigación Sanitaria Puerta de Hierro ; Majadahonda, Spain
| | - Isabel Marzo
- Immune Effector Cells Group (ICE); Aragón Health Research Institute (IIS Aragón); Edificio CIBA; Biomedical Research Center of Aragón (CIBA) ; Zaragoza, Spain ; Apoptosis; Cancer and Immunity Group; Department of Biochemistry and Molecular and Cellular Biology; University of Zaragoza ; Zaragoza, Spain
| | - Martín Villalba
- INSERM, U1040; Université de Montpellier 1; UFR Medecine; Montpellier , France ; Institut de Regenerative Medicine et Biothérapie (IRMB); CHU Montpellier ; Montpellier, France
| | - Julián Pardo
- Immune Effector Cells Group (ICE); Aragón Health Research Institute (IIS Aragón); Edificio CIBA; Biomedical Research Center of Aragón (CIBA) ; Zaragoza, Spain ; Cell Immunity in Inflammation; Infection and Cancer Group; Department of Biochemistry and Molecular and Cell Biology; University of Zaragoza ; Zaragoza, Spain ; Aragón I+D Foundation (ARAID); Government of Aragon , Zaragoza, Spain ; Nanoscience Institute of Aragon (INA); University of Zaragoza , Zaragoza, Spain
| |
Collapse
|
34
|
Comet NR, Aguiló JI, Rathoré MG, Catalán E, Garaude J, Uzé G, Naval J, Pardo J, Villalba M, Anel A. IFNα signaling through PKC-θ is essential for antitumor NK cell function. Oncoimmunology 2014; 3:e948705. [PMID: 25960930 DOI: 10.4161/21624011.2014.948705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 06/06/2014] [Indexed: 11/19/2022] Open
Abstract
We have previously shown that the development of a major histocompatibility complex class I (MHC-I)-deficient tumor was favored in protein kinase C-θ knockout (PKC-θ-/-) mice compared to that occurring in wild-type mice. This phenomenon was associated with scarce recruitment of natural killer (NK) cells to the tumor site, as well as impaired NK cell activation and reduced cytotoxicity ex vivo. Poly-inosinic:cytidylic acid (poly I:C) treatment activated PKC-θ in NK cells depending on the presence of a soluble factor produced by a different splenocyte subset. In the present work, we sought to analyze whether interleukin-15 (IL-15) and/or interferon-α (IFNα) mediate PKC-θ-dependent antitumor NK cell function. We found that IL-15 improves NK cell viability, granzyme B expression, degranulation capacity and interferon-γ (IFNγ) secretion independently of PKC-θ. In contrast, we found that IFNα improves the degranulation capability of NK cells against target cancer cells in a PKC-θ-dependent fashion both ex vivo and in vivo. Furthermore, IFNα induces PKC-θ auto-phosphorylation in NK cells, in a signal transduction pathway involving both phosphatidylinositol-3-kinase (PI3K) and phospholipase-C (PLC) activation. PKC-θ dependence was further implicated in IFNα-induced transcriptional upregulation of chemokine (C-X-C motif) ligand 10 (CXCL10), a signal transducer and activator of transcription-1 (STAT-1)-dependent target of IFNα. The absence of PKC-θ did not affect IFNα-induced STAT-1 Tyr701 phosphorylation but affected the increase in STAT-1 phosphorylation on Ser727, attenuating CXCL10 secretion. This connection between IFNα and PKC-θ in NK cells may be exploited in NK cell-based tumor immunotherapy.
Collapse
Key Words
- CDK8, cyclin-dependent kinase 8
- CXCL10
- CXCL10, (C-X-C motif) ligand 10/CXCL10
- FCS, fetal calf serum
- IFN-α, IL-15
- IFNA1
- IFNα, interferon-α
- IFNγ, interferon-γ, IFNG
- IL-15, interleukin-15/IL15
- MACS, magnetic cell separation
- MEF, murine embryonic fibroblast
- MHC-I, major histocompability complex class I/MHC-I
- NK cells
- NK, natural killer
- PI3K, phosphatidylinositol-3-kinase
- PKC-θ
- PKC-θ, protein kinase C-θ, PRKCQ
- PLC, phospholipase-C
- Poly I:C, poly-inosinic:cytidilic acid
- RT-PCR, real-time polymerase chain reaction
- STAT-1, signal transducer and activator of transcription-1/STAT1.
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Natalia R Comet
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| | - Juan Ignacio Aguiló
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| | - Moeez G Rathoré
- INSERM U1040; Université de Montpellier 1; UFR Médecine ; Montpellier, France
| | - Elena Catalán
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| | - Johan Garaude
- INSERM U1040; Université de Montpellier 1; UFR Médecine ; Montpellier, France
| | - Gilles Uzé
- CNRS UMR 5235; Université de Montpellier II; Place Eugene Bataillon ; Montpellier, France
| | - Javier Naval
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| | - Julián Pardo
- Immune Effector Cells Group; IIS Aragón; Biomedical Research Center of Aragón (CIBA); Nanoscience Institute of Aragon (INA); Zaragoza, Spain ; Aragón I+D Foundation (ARAID) ; Zaragoza, Spain
| | - Martín Villalba
- INSERM U1040; Université de Montpellier 1; UFR Médecine ; Montpellier, France ; Institut de Recherche en Biothérapie (IRB); CHU Montpellier ; Montpellier, France
| | - Alberto Anel
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| |
Collapse
|
35
|
Canonical and new generation anticancer drugs also target energy metabolism. Arch Toxicol 2014; 88:1327-50. [PMID: 24792321 DOI: 10.1007/s00204-014-1246-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/15/2014] [Indexed: 01/05/2023]
Abstract
Significant efforts have been made for the development of new anticancer drugs (protein kinase or proteasome inhibitors, monoclonal humanized antibodies) with presumably low or negligible side effects and high specificity. However, an in-depth analysis of the side effects of several currently used canonical (platin-based drugs, taxanes, anthracyclines, etoposides, antimetabolites) and new generation anticancer drugs as the first line of clinical treatment reveals significant perturbation of glycolysis and oxidative phosphorylation. Canonical and new generation drug side effects include decreased (1) intracellular ATP levels, (2) glycolytic/mitochondrial enzyme/transporter activities and/or (3) mitochondrial electrical membrane potentials. Furthermore, the anti-proliferative effects of these drugs are markedly attenuated in tumor rho (0) cells, in which functional mitochondria are absent; in addition, several anticancer drugs directly interact with isolated mitochondria affecting their functions. Therefore, several anticancer drugs also target the energy metabolism, and hence, the documented inhibitory effect of anticancer drugs on cancer growth should also be linked to the blocking of ATP supply pathways. These often overlooked effects of canonical and new generation anticancer drugs emphasize the role of energy metabolism in maintaining cancer cells viable and its targeting as a complementary and successful strategy for cancer treatment.
Collapse
|