1
|
Fletcher E, Miserlis D, Papoutsi E, Steiner JL, Gordon B, Haynatzki G, Pacher P, Koutakis P. Chronic alcohol consumption exacerbates ischemia-associated skeletal muscle mitochondrial dysfunction in a murine model of peripheral artery disease. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167584. [PMID: 39581559 PMCID: PMC11931404 DOI: 10.1016/j.bbadis.2024.167584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE Peripheral artery disease (PAD) causes ischemic mitochondriopathy-associated muscle damage, amplifying patient disability and mortality. Although alcohol and a high-fat diet enhance PAD predisposition and severity, their impact on PAD myopathy is unclear. Using our murine model of PAD, we investigated the combined effect of chronic alcohol and fat consumption on intramuscular oxidative stress and mitochondrial content, function, and quality control. The potential relationship between intramuscular aldehyde dehydrogenase 2 (ALDH2) content, oxidative stress and mitochondriopathy was also explored. METHODS Twenty-four male, 24 female, 8-month-old C57BL/6 J mice received high-fat-sucrose (HFS) or low-fat-sucrose (LFS) diets for 16-weeks, followed by either 20 % ethanol (EtOH) supplemented in the drinking water or continued water access for another 12-weeks (n = 12 mice/4 groups). The left femoral artery was ligated to induce hindlimb ischemia (HLI), and mice 4-weeks post-ligation were euthanized. RESULTS Chronic HLI was associated with an ischemic muscle mitochondriopathy, which was exacerbated by concurrent HFS and EtOH feeding. Intramuscular ALDH2 was also reduced in mice consuming HFS + EtOH, particularly in the ischemic limb, but increased in their LFS + EtOH-consuming counterparts. Moreover, reduced ALDH2 was strongly correlated with markers of oxidative stress and mitochondrial dysfunction. CONCLUSIONS ALDH2 could be a promising therapeutic target to optimize intramuscular mitochondrial function in PAD patients, particularly those who habitually consume a diet high in fat and alcohol.
Collapse
Affiliation(s)
- Emma Fletcher
- Department of Public Health, Usha Kundu MD College of Health, University of West Florida, Pensacola, FL, USA
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Evlampia Papoutsi
- Department of Public Health, Usha Kundu MD College of Health, University of West Florida, Pensacola, FL, USA
| | - Jennifer L Steiner
- Department of Health, Nutrition and Food Sciences, Florida State University, 600 W. College Avenue, Tallahassee, FL 32306, USA; Institute of Sports Sciences and Medicine, Florida State University, 600 W. College Avenue, Tallahassee, FL 32306, USA
| | - Bradley Gordon
- Department of Health, Nutrition and Food Sciences, Florida State University, 600 W. College Avenue, Tallahassee, FL 32306, USA; Institute of Sports Sciences and Medicine, Florida State University, 600 W. College Avenue, Tallahassee, FL 32306, USA
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center College of Public Health, 984375 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Panagiotis Koutakis
- Department of Public Health, Usha Kundu MD College of Health, University of West Florida, Pensacola, FL, USA; Department of Biology, Baylor University, Waco, TX, USA.
| |
Collapse
|
2
|
Heizmann AN, Morel A, Boissier C, Le Hello C. Spontaneous walking characteristics of patients with peripheral arterial disease. VASA 2025; 54:20-26. [PMID: 39636784 DOI: 10.1024/0301-1526/a001149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Background: Walking rehabilitation is the cornerstone of patients with peripheral arterial disease (PAD) treatment. In order to propose a personalised walking rehabilitation program to each patient, it is important to know the PAD-patients walking characteristics. Such data are lacking in the literature. The aim of this study was to analyse the spontaneous walking characteristics of PAD patients. Patients and methods: This study was conducted between May 2016 and March 2018. Walking characteristics (cadence, stride, number of daily walking episodes, duration of an episode, distance covered during an episode, daily total walking duration and distance, walking speed) were recorded by Withings Pulse O2® activity trackers for one week in patients with asymptomatic or symptomatic PAD. Walking intensity was classified as ambling pace (<2 METs), slow walking (2-3 METs) and active walking (>3 METs). Study protocol has been approved by an independent ethics committee. Results: Eighty-seven patients were included (males 87%, mean age 66 ± 9 years, intermittent claudication 86%, right ankle brachial index (ABI) = 0.80 ± 0.19 and left ABI = 0.79 ± 0.15). The mean recording duration was 8 ± 1.2 days. Most of the steps were shuffling pace (shuffling pace 55.7%, active walking 32.8%, slow walking 11.5%). There was no significant difference between weekdays and weekend days nor for cadence, stride, episode duration, distance covered during an episode, number of daily walking episodes, daily total walking duration and distance. The average duration of active walking episodes was 3 minutes. Duration of active walking was less than 3 minutes in 66% of patients with a mean duration of 1 minute and 55 seconds. Conclusion: Analysis of PAD patients spontaneous walking characteristics with an activity tracker can get the maximum active walking duration achieved by each patient and be useful to offer a personalised walking rehabilitation program.
Collapse
Affiliation(s)
| | - Antoine Morel
- Département de Médecine Vasculaire et Thérapeutique, Centre Hospitalier Universitaire, Saint-Étienne, France
| | - Christian Boissier
- Département de Médecine Vasculaire et Thérapeutique, Centre Hospitalier Universitaire, Saint-Étienne, France
- Campus Santé et Innovations, Université Jean Monnet, Saint-Priest-en-Jarez, France
| | - Claire Le Hello
- INSERM, U1059-SAINBIOSE, Université Jean Monnet, Mines Saint-Étienne, France
- Département de Médecine Vasculaire et Thérapeutique, Centre Hospitalier Universitaire, Saint-Étienne, France
- Campus Santé et Innovations, Université Jean Monnet, Saint-Priest-en-Jarez, France
| |
Collapse
|
3
|
Allen MF, Park SY, Kwak YS. Oxidative stress and vascular dysfunction: Potential therapeutic targets and therapies in peripheral artery disease. Microvasc Res 2024; 155:104713. [PMID: 38914307 DOI: 10.1016/j.mvr.2024.104713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Peripheral artery disease (PAD) is the manifestation of atherosclerosis characterized by the accumulation of plaques in the arteries of the lower limbs. Interestingly, growing evidence suggests that the pathology of PAD is multifaceted and encompasses both vascular and skeletal muscle dysfunctions, which contributes to blunted physical capabilities and diminished quality of life. Importantly, it has been suggested that many of these pathological impairments may stem from blunted reduction-oxidation (redox) handling. Of note, in those with PAD, excessive production of reactive oxygen species (ROS) outweighs antioxidant capabilities resulting in oxidative damage, which may have systemic consequences. It has been suggested that antioxidant supplementation may be able to assist in handling ROS. However, the activation of various ROS production sites makes it difficult to determine the efficacy of these antioxidant supplements. Therefore, this review focuses on the common cellular mechanisms that facilitate ROS production and discusses how excessive ROS may impair vascular and skeletal muscle function in PAD. Furthermore, we provide insight for current and potential antioxidant therapies, specifically highlighting activation of the Kelch-like ECH-associated protein 1 (Keap1) - Nuclear Factor Erythroid 2-related factor 2 (Nrf2) pathway as a potential pharmacological therapy to combat ROS accumulation and aid in vascular function, and physical performance in patients with PAD. Altogether, this review provides a better understanding of excessive ROS in the pathophysiology of PAD and enhances our perception of potential therapeutic targets that may improve vascular function, skeletal muscle function, walking capacity, and quality of life in patients with PAD.
Collapse
Affiliation(s)
- Michael F Allen
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, United States of America
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, United States of America; Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Yi-Sub Kwak
- Department of Physical Education, College of Arts, Design, and Sports Science, Dong-Eui University, Busan, Republic of Korea.
| |
Collapse
|
4
|
Costa D, Ielapi N, Perri P, Minici R, Faga T, Michael A, Bracale UM, Andreucci M, Serra R. Molecular Insight into Acute Limb Ischemia. Biomolecules 2024; 14:838. [PMID: 39062551 PMCID: PMC11274792 DOI: 10.3390/biom14070838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Acute limb ischemia (ALI) is defined as a sudden reduction in blood flow to a limb, resulting in cessation of blood flow and, therefore, cessation of the delivery of nutrients and oxygen to the tissues of the lower limb. Despite optimal treatment to restore blood flow to ischemic tissues, some patients may suffer from ischemia/reperfusion (I/R) syndrome, the most severe complication after a revascularization procedure used to restore blood flow. There are multiple molecular and cellular factors that are involved in each phase of ALI. This review focuses firstly on molecular and cellular factors of arterial thrombosis, highlighting the role of atherosclerotic plaques, smooth muscle cells (SMCs), and cytokine which may alter key components of the extracellular matrix (ECM). Then, molecular and cellular factors of arterial embolism will be discussed, highlighting the importance of thrombi composition. Molecular and cellular factors of ischemia/reperfusion syndrome are analyzed in depth, highlighting several important mechanisms related to tissue damage, such as inflammation, apoptosis, autophagy, necrosis, and necroptosis. Furthermore, local and general complications of ALI are discussed in the context of molecular alterations. Ultimately, the role of novel biomarkers and targeted therapies is discussed.
Collapse
Affiliation(s)
- Davide Costa
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
- Interuniversity Center of Phlebolymphology (CIFL), "Magna Graecia" University, 88100 Catanzaro, Italy
| | - Nicola Ielapi
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
- Interuniversity Center of Phlebolymphology (CIFL), "Magna Graecia" University, 88100 Catanzaro, Italy
- Department of Public Health and Infectious Disease, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Paolo Perri
- Department of Vascular and Endovascular Surgery, Annunziata Hospital, 1 Via Migliori, 87100 Cosenza, Italy
| | - Roberto Minici
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Teresa Faga
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Ashour Michael
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | | | - Michele Andreucci
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
- Interuniversity Center of Phlebolymphology (CIFL), "Magna Graecia" University, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Özer A, Şengel N, Küçük A, Yığman Z, Özdemir Ç, Kılıç Y, Dursun AD, Bostancı H, Kip G, Arslan M. The Effect of Cerium Oxide (CeO 2) on Ischemia-Reperfusion Injury in Skeletal Muscle in Mice with Streptozocin-Induced Diabetes. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:752. [PMID: 38792935 PMCID: PMC11122892 DOI: 10.3390/medicina60050752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024]
Abstract
Objective: Lower extremity ischemia-reperfusion injury (IRI) may occur with trauma-related vascular injury and various vascular diseases, during the use of a tourniquet, in temporary clamping of the aorta in aortic surgery, or following acute or bilateral acute femoral artery occlusion. Mitochondrial dysfunction and increased basal oxidative stress in diabetes may cause an increase in the effects of increased reactive oxygen species (ROS) and mitochondrial dysfunction due to IRI. It is of great importance to examine therapeutic approaches that can minimize the effects of IRI, especially for patient groups under chronic oxidative stress such as DM. Cerium oxide (CeO2) nanoparticles mimic antioxidant enzymes and act as a catalyst that scavenges ROS. In this study, it was aimed to investigate whether CeO2 has protective effects on skeletal muscles in lower extremity IRI in mice with streptozocin-induced diabetes. Methods: A total of 38 Swiss albino mice were divided into six groups as follows: control group (group C, n = 6), diabetes group (group D, n = 8), diabetes-CeO2 (group DCO, n = 8), diabetes-ischemia/reperfusion (group DIR, n = 8), and diabetes-ischemia/reperfusion-CeO2 (group DIRCO, n = 8). The DCO and DIRCO groups were given doses of CeO2 of 0.5 mg/kg intraperitoneally 30 min before the IR procedure. A 120 min ischemia-120 min reperfusion period with 100% O2 was performed. At the end of the reperfusion period, muscle tissues were removed for histopathological and biochemical examinations. Results: Total antioxidant status (TAS) levels were found to be significantly lower in group DIR compared with group D (p = 0.047 and p = 0.022, respectively). In group DIRCO, total oxidant status (TOS) levels were found to be significantly higher than in group DIR (p < 0.001). The oxidative stress index (OSI) was found to be significantly lower in group DIR compared with group DCO (p < 0.001). Paraoxanase (PON) enzyme activity was found to be significantly increased in group DIR compared with group DCO (p < 0.001). The disorganization and degeneration score for muscle cells, inflammatory cell infiltration score, and total injury score in group DIRCO were found to be significantly lower than in group DIR (p = 0.002, p = 0.034, and p = 0.001, respectively). Conclusions: Our results confirm that CeO2, with its antioxidative properties, reduces skeletal muscle damage in lower extremity IRI in diabetic mice.
Collapse
Affiliation(s)
- Abdullah Özer
- Department of Cardiovascular Surgery, Faculty of Medicine, Gazi University, Ankara 06510, Turkey;
| | - Necmiye Şengel
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Gazi University, Ankara 06490, Turkey;
| | - Ayşegül Küçük
- Department of Physiology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya 43020, Turkey;
| | - Zeynep Yığman
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara 06510, Turkey;
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara 06830, Turkey
| | - Çağrı Özdemir
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey; (Ç.Ö.); (G.K.)
| | - Yiğit Kılıç
- Department of Pediatric Cardiovascular Surgery, Gazi Yaşargil Education Research Hospital, Diyarbakır 21010, Turkey;
| | - Ali Doğan Dursun
- Department of Physiology, Faculty of Medicine, Atılım University, Ankara 06830, Turkey;
| | - Hasan Bostancı
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara 06510, Turkey;
| | - Gülay Kip
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey; (Ç.Ö.); (G.K.)
| | - Mustafa Arslan
- Life Sciences Application and Research Center, Gazi University, Ankara 06830, Turkey
- Laboratory Animal Breeding and Experimental Researches Center (GÜDAM), Gazi University, Ankara 06510, Turkey
| |
Collapse
|
6
|
Kim K, Fazzone B, Cort TA, Kunz EM, Alvarez S, Moerschel J, Palzkill VR, Dong G, Anderson EM, O'Malley KA, Berceli SA, Ryan TE, Scali ST. Mitochondrial targeted catalase improves muscle strength following arteriovenous fistula creation in mice with chronic kidney disease. Sci Rep 2024; 14:8288. [PMID: 38594299 PMCID: PMC11004135 DOI: 10.1038/s41598-024-58805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Hand dysfunction is a common observation after arteriovenous fistula (AVF) creation for hemodialysis access and has a variable clinical phenotype; however, the underlying mechanism responsible is unclear. Grip strength changes are a common metric used to assess AVF-associated hand disability but has previously been found to poorly correlate with the hemodynamic perturbations post-AVF placement implicating other tissue-level factors as drivers of hand outcomes. In this study, we sought to test if expression of a mitochondrial targeted catalase (mCAT) in skeletal muscle could reduce AVF-related limb dysfunction in mice with chronic kidney disease (CKD). Male and female C57BL/6J mice were fed an adenine-supplemented diet to induce CKD prior to placement of an AVF in the iliac vascular bundle. Adeno-associated virus was used to drive expression of either a green fluorescent protein (control) or mCAT using the muscle-specific human skeletal actin (HSA) gene promoter prior to AVF creation. As expected, the muscle-specific AAV-HSA-mCAT treatment did not impact blood urea nitrogen levels (P = 0.72), body weight (P = 0.84), or central hemodynamics including infrarenal aorta and inferior vena cava diameters (P > 0.18) or velocities (P > 0.38). Hindlimb perfusion recovery and muscle capillary densities were also unaffected by AAV-HSA-mCAT treatment. In contrast to muscle mass and myofiber size which were not different between groups, both absolute and specific muscle contractile forces measured via a nerve-mediated in-situ preparation were significantly greater in AAV-HSA-mCAT treated mice (P = 0.0012 and P = 0.0002). Morphological analysis of the post-synaptic neuromuscular junction uncovered greater acetylcholine receptor cluster areas (P = 0.0094) and lower fragmentation (P = 0.0010) in AAV-HSA-mCAT treated mice. Muscle mitochondrial oxidative phosphorylation was not different between groups, but AAV-HSA-mCAT treated mice had lower succinate-fueled mitochondrial hydrogen peroxide emission compared to AAV-HSA-GFP mice (P < 0.001). In summary, muscle-specific scavenging of mitochondrial hydrogen peroxide significantly improves neuromotor function in mice with CKD following AVF creation.
Collapse
Affiliation(s)
- Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Brian Fazzone
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Tomas A Cort
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Eric M Kunz
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Samuel Alvarez
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Jack Moerschel
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Victoria R Palzkill
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Gengfu Dong
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Erik M Anderson
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Kerri A O'Malley
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Scott A Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA.
- Center for Exercise Science, University of Florida, Gainesville, FL, USA.
| | - Salvatore T Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA.
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA.
| |
Collapse
|
7
|
Paradis S, Charles AL, Giannini M, Meyer A, Lejay A, Talha S, Laverny G, Charloux A, Geny B. Targeting Mitochondrial Dynamics during Lower-Limb Ischemia Reperfusion in Young and Old Mice: Effect of Mitochondrial Fission Inhibitor-1 (mDivi-1). Int J Mol Sci 2024; 25:4025. [PMID: 38612835 PMCID: PMC11012338 DOI: 10.3390/ijms25074025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Peripheral arterial disease (PAD) strikes more than 200 million people worldwide and has a severe prognosis by potentially leading to limb amputation and/or death, particularly in older patients. Skeletal muscle mitochondrial dysfunctions and oxidative stress play major roles in this disease in relation with ischemia-reperfusion (IR) cycles. Mitochondrial dynamics through impairment of fission-fusion balance may contribute to skeletal muscle pathophysiology, but no data were reported in the setting of lower-limb IR despite the need for new therapeutic options. We, therefore, investigated the potential protective effect of mitochondrial division inhibitor-1 (mDivi-1; 50 mg/kg) in young (23 weeks) and old (83 weeks) mice submitted to two-hour ischemia followed by two-hour reperfusion on systemic lactate, muscle mitochondrial respiration and calcium retention capacity, and on transcripts specific for oxidative stress and mitochondrial dynamics. At the systemic levels, an IR-related increase in circulating lactate was still major despite mDivi-1 use (+305.9% p < 0.0001, and +269.4% p < 0.0001 in young and old mice, respectively). Further, IR-induced skeletal muscle mitochondrial dysfunctions (more severely impaired mitochondrial respiration in old mice (OXPHOS CI state, -68.2% p < 0.0001 and -84.9% p < 0.0001 in 23- and 83-week mice) and reduced calcium retention capacity (-46.1% p < 0.001 and -48.2% p = 0.09, respectively) were not corrected by mDivi-1 preconditioning, whatever the age. Further, mDivi-1 treatment did not oppose superoxide anion production (+71.4% p < 0.0001 and +37.5% p < 0.05, respectively). At the transcript level, markers of antioxidant enzymes (SOD 1, SOD 2, catalase, and GPx) and fission markers (Drp1, Fis) remained unchanged or tended to be decreased in the ischemic leg. Fusion markers such as mitofusin 1 or 2 decreased significantly after IR in both groups. In conclusion, aging enhanced the deleterious effects or IR on muscle mitochondrial respiration, and in this setting of lower-limb IR, mDivi-1 failed to protect the skeletal muscle both in young and old mice.
Collapse
Affiliation(s)
- Stéphanie Paradis
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Anne-Laure Charles
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
| | - Margherita Giannini
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Alain Meyer
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Anne Lejay
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
- Vascular Surgery Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Samy Talha
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Gilles Laverny
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
| | - Anne Charloux
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Bernard Geny
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
8
|
Fletcher E, Miserlis D, Sorokolet K, Wilburn D, Bradley C, Papoutsi E, Wilkinson T, Ring A, Ferrer L, Haynatzki G, Smith RS, Bohannon WT, Koutakis P. Diet-induced obesity augments ischemic myopathy and functional decline in a murine model of peripheral artery disease. Transl Res 2023; 260:17-31. [PMID: 37220835 PMCID: PMC11388035 DOI: 10.1016/j.trsl.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
Peripheral artery disease (PAD) causes an ischemic myopathy contributing to patient disability and mortality. Most preclinical models to date use young, healthy rodents with limited translatability to human disease. Although PAD incidence increases with age, and obesity is a common comorbidity, the pathophysiologic association between these risk factors and PAD myopathy is unknown. Using our murine model of PAD, we sought to elucidate the combined effect of age, diet-induced obesity and chronic hindlimb ischemia (HLI) on (1) mobility, (2) muscle contractility, and markers of muscle (3) mitochondrial content and function, (4) oxidative stress and inflammation, (5) proteolysis, and (6) cytoskeletal damage and fibrosis. Following 16-weeks of high-fat, high-sucrose, or low-fat, low-sucrose feeding, HLI was induced in 18-month-old C57BL/6J mice via the surgical ligation of the left femoral artery at 2 locations. Animals were euthanized 4-weeks post-ligation. Results indicate mice with and without obesity shared certain myopathic changes in response to chronic HLI, including impaired muscle contractility, altered mitochondrial electron transport chain complex content and function, and compromised antioxidant defense mechanisms. However, the extent of mitochondrial dysfunction and oxidative stress was significantly greater in obese ischemic muscle compared to non-obese ischemic muscle. Moreover, functional impediments, such as delayed post-surgical recovery of limb function and reduced 6-minute walking distance, as well as accelerated intramuscular protein breakdown, inflammation, cytoskeletal damage, and fibrosis were only evident in mice with obesity. As these features are consistent with human PAD myopathy, our model could be a valuable tool to test new therapeutics.
Collapse
Affiliation(s)
- Emma Fletcher
- Department of Biology, Baylor University, Waco, Texas
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas at Austin Dell Medical School, Austin, Texas
| | | | - Dylan Wilburn
- Department of Health, Human Performance and Recreation, Baylor University, Waco, Texas
| | | | | | | | - Andrew Ring
- Department of Biology, Baylor University, Waco, Texas
| | - Lucas Ferrer
- Department of Surgery, University of Texas at Austin Dell Medical School, Austin, Texas
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Robert S Smith
- Department of Surgery, Baylor Scott & White Medical Center, Temple, Texas
| | - William T Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, Temple, Texas
| | | |
Collapse
|
9
|
Khalifa AA, Ali MA, Elsokkary NH, Elblehi SS, El-Mas MM. Mitochondrial modulation of amplified preconditioning influences of remote ischemia plus erythropoietin against skeletal muscle ischemia/reperfusion injury in rats. Life Sci 2023; 329:121979. [PMID: 37516431 DOI: 10.1016/j.lfs.2023.121979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
AIMS Skeletal muscle ischemia and reperfusion (S-I/R) injury is relieved by interventions like remote ischemic preconditioning (RIPC). Here, we tested the hypothesis that simultaneous exposure to a minimal dose of erythropoietin (EPO) boosts the protection conferred by RIPC against S-I/R injury and concomitant mitochondrial oxidative and apoptotic defects. MAIN METHODS S-I/R injury was induced in rats by 3-h right hindlimb ischemia followed by 3-h of reperfusion, whereas RIPC involved 3 brief consecutive I/R cycles of the contralateral hindlimb. KEY FINDINGS S-I/R injury caused (i) rises in serum lactate dehydrogenase and creatine kinase and falls in serum pyruvate, (ii) structural deformities like sarcoplasm vacuolations, segmental necrosis, and inflammatory cells infiltration, and (iii) decreased amplitude and increased duration of electromyography action potentials. These defects were partially ameliorated by RIPC and dose-dependently by EPO (500 or 5000 IU/kg). Further, greater repairs of S-I/R-evoked damages were seen after prior exposure to the combined RIPC/EPO-500 intervention. The latter also caused more effective (i) preservation of mitochondrial number (confocal microscopy assessed Mitotracker red staining) and function (citrate synthase activity), (ii) suppression of mitochondrial DNA damage and indices of oxidative stress and apoptosis (succinate dehydrogenase, myeloperoxidase, cardiolipin, and cytochrome c), (iii) preventing calcium and nitric oxide metabolites (NOx) accumulation and glycogen consumption, and (iv) upregulating EPO receptors (EPO-R) gene expression. SIGNIFICANCE dual RIPC/EPO conditioning exceptionally mends structural, functional, and neuronal deficits caused by I/R injury and interrelated mitochondrial oxidative and apoptotic damage. Clinically, the utilization of relatively low EPO doses could minimize the hormone-related adverse effects.
Collapse
Affiliation(s)
- Asmaa A Khalifa
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Mennatallah A Ali
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Nahed H Elsokkary
- Department of Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Behera, Egypt.
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
10
|
Xie K, Sugimoto K, Tanaka M, Akasaka H, Fujimoto T, Takahashi T, Onishi Y, Minami T, Yoshida S, Takami Y, Yamamoto K, Rakugi H. Effects of luseogliflozin treatment on hyperglycemia-induced muscle atrophy in rats. J Clin Biochem Nutr 2023; 72:248-255. [PMID: 37251965 PMCID: PMC10209601 DOI: 10.3164/jcbn.22-58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/04/2022] [Indexed: 10/22/2023] Open
Abstract
Diabetes mellitus is recognized as a risk factor for sarcopenia. Luseogliflozin, a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, reduces inflammation and oxidative stress by improving hyperglycemia, subsequently improving hepatosteatosis or kidney dysfunction. However, the effects of SGLT2 inhibitor on the regulation of skeletal muscle mass or function in hyperglycemia are still unknown. In this study, we investigated the effects of luseogliflozin-mediated attenuation of hyperglycemia on the prevention of muscle atrophy. Twenty-four male Sprague-Dawley rats were randomly divided into four groups: control, control with SGLT2 inhibitor treatment, hyperglycemia, and hyperglycemia with SGLT2 inhibitor treatment. The hyperglycemic rodent model was established using a single injection of streptozotocin, a compound with preferential toxicity toward pancreatic beta cells. Muscle atrophy in streptozotocin-induced hyperglycemic model rats was inhibited by the suppression of hyperglycemia using luseogliflozin, which consequently suppressed hyperglycemia-mediated increase in the levels of advanced glycation end products (AGEs) and activated the protein degradation pathway in muscle cells. Treatment with luseogliflozin can restore the hyperglycemia-induced loss in the muscle mass to some degree partly through the inhibition of AGEs-induced or homeostatic disruption of mitochondria-induced activation of muscle degradation.
Collapse
Affiliation(s)
- Keyu Xie
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ken Sugimoto
- Department of General Geriatric Medicine, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama 700-8505, Japan
| | - Minoru Tanaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomoga-oka, Suma, Kobe, Hyogo 654-0142, Japan
- Department of Rehabilitation Science, Osaka Health Science University, 1-9-27 Tenma, Kita-ku, Osaka 530-0043, Japan
| | - Hiroshi Akasaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Taku Fujimoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Institute for Biogenesis Research, Department of Anatomy Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Toshimasa Takahashi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yuri Onishi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tomohiro Minami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shino Yoshida
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoichi Takami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Mendhe B, Khan MB, Dunwody D, El Baradie KBY, Smith K, Zhi W, Sharma A, Lee TJ, Hamrick MW. Lyophilized Extracellular Vesicles from Adipose-Derived Stem Cells Increase Muscle Reperfusion but Degrade Muscle Structural Proteins in a Mouse Model of Hindlimb Ischemia-Reperfusion Injury. Cells 2023; 12:cells12040557. [PMID: 36831224 PMCID: PMC9953864 DOI: 10.3390/cells12040557] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury is a complication impacting multiple organs and tissues in clinical conditions ranging from peripheral arterial disease to musculoskeletal trauma and myocardial infarction. Stem cell-derived extracellular vesicles (EVs) may represent one therapeutic resource for preventing the tissue damage associated with I/R injury. Here we tested the hypothesis that lyophilized extracellular vesicles derived from adipose stem cells could serve as an "off-the-shelf" treatment modality for I/R injury in a mouse hindlimb ischemia model. Ischemia was induced for 90 min using a rubber band tourniquet and extracellular vesicles (0, 50, or 100 µg) administered via tail vein injection immediately prior to reperfusion. Perfusion was measured prior to, during, and after ischemia using laser Doppler imaging. Serum and tissue were collected 24 h after reperfusion. Mass spectrometry (MS)-based proteomics was used to characterize the EV cargo and proteins from the ischemic and non-ischemic hindlimb. Inflammatory cytokines were measured in muscle and serum using a multiplex array. Results indicate that EVs significantly increase reperfusion and significantly increase expression of the anti-inflammatory factor annexin a1 in skeletal muscle; however, the increased reperfusion was also associated with a marked decrease in muscle structural proteins such as dystrophin, plectin, and obscurin. Circulating inflammatory cytokines TNF-alpha and IL-6 were increased with EV treatment, and serum TNF-alpha showed a significant, positive correlation with reperfusion level. These findings suggest that, while EVs may enhance reperfusion, the increased reperfusion can negatively impact muscle tissue and possibly remote organs. Alternative approaches, such as targeting mitochondrial permeability, may be more effective at mitigating I/R injury.
Collapse
Affiliation(s)
- Bharati Mendhe
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mohammad B. Khan
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Damon Dunwody
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | | | - Kathryn Smith
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Wenbo Zhi
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ashok Sharma
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Tae Jin Lee
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mark W. Hamrick
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +706-721-1958; Fax: +706-721-6120
| |
Collapse
|
12
|
Zheng H, Zhang G, Liu G, Wang L. Up-regulation of lncRNA NEAT1 in cerebral ischemic stroke promotes activation of astrocytes by modulation of miR-488-3p/RAC1. Exp Brain Res 2023; 241:395-406. [PMID: 36562806 DOI: 10.1007/s00221-022-06519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
We aim to research the molecular mechanism of lncRNA NEAT1 in the activation of astrocytes in a cerebral ischemia-reperfusion injury model. Mouse model of cerebral ischemia-reperfusion injury was constructed, and shNEAT1 was transfected. The infarct area, brain water content, and neurological deficiency were detected. Immunofluorescence detection and fluorescence in situ hybridization (FISH) assay were processed to detect glial fibrillary acidic protein (GFAP) expression. Astrocyte cells were cultured for oxygen-glucose deprivation/re-oxygenation (OGD)/re-oxygenation model construction. After treatment by shNEAT1, miR-488-3p mimic, miR-488-3p inhibitor, Q-PCR assay, western blot and ELISA were undertaken to detect the expressions of NEAT1, miR-488-3p, RAC1, inflammatory cytokines, RAC1 and GFAP. Dual luciferase reporter assay and RNA-binding protein immunoprecipitation (RIP) assay were used to verify the binding of NEAT1, miR-488-3p and RAC1. The expression of NEAT1 in brain tissue was significantly higher than that in Sham operation group. Knockdown of NEAT1 inhibited the brain damage caused by middle cerebral artery occlusion (MCAO) treatment, reduced the inflammatory response, and suppressed the activation of astrocytes. By constructing an in vitro OGD/R cell model, it was found that NEAT1 knockdown also inhibited the activation of astrocytes caused by OGD/R. Knockdown of NEAT1 caused the up-regulation of miR-488-3p and the down-regulation of RAC1. Knockdown of miR-488-3p or over-expression of RAC1 reversed the inhibitory effect of shNEAT1 on OGD/R-induced astrocyte activation. Over-expression of NEAT1 in cerebral ischemic stroke promotes activation of astrocytes by modulation miR-488-3p/RAC1, which is proved in vitro. Our study may provide a new idea for the diagnosis and treatment of MCAO.
Collapse
Affiliation(s)
- Haijian Zheng
- Department of General Medicine, The First Affiliated Hospital of Soochow University, NO. 899 Pinghai Road, Suzhou, 215006, People's Republic of China
| | - Gai Zhang
- Department of General Medicine, The First Affiliated Hospital of Soochow University, NO. 899 Pinghai Road, Suzhou, 215006, People's Republic of China
| | - Guanglan Liu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, NO. 899 Pinghai Road, Suzhou, 215006, People's Republic of China.
- Department of General surgery, Ganyu District People's Hospital, No.88 Haicheng road, Lianyungang, 222100, People's Republic of China.
| | - Ling Wang
- Department of General Medicine, The First Affiliated Hospital of Soochow University, NO. 899 Pinghai Road, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
13
|
Ischemic preconditioning upregulates Mitofusin2 and preserves muscle strength in tourniquet-induced ischemia/reperfusion. J Orthop Translat 2022; 35:113-121. [PMID: 36312592 PMCID: PMC9582561 DOI: 10.1016/j.jot.2022.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Background Tourniquet-induced ischemia and reperfusion (I/R) has been related to postoperative muscle atrophy through mechanisms involving protein synthesis/breakdown, cellular metabolism, mitochondrial dysfunction, and apoptosis. Ischemic preconditioning (IPC) could protect skeletal muscle against I/R injury. This study aims to determine the underlying mechanisms of IPC and its effect on muscle strength after total knee arthroplasty (TKA). Methods Twenty-four TKA patients were randomized to receive either sham IPC or IPC (3 cycles of 5-min ischemia followed by 5-min reperfusion). Vastus medialis muscle biopsies were collected at 30 min after tourniquet (TQ) inflation and the onset of reperfusion. Western blot analysis was performed in muscle protein for 4-HNE, SOD2, TNF-ɑ, IL-6, p-Drp1ser616, Drp1, Mfn1, Mfn2, Opa1, PGC-1ɑ, ETC complex I-V, cytochrome c, cleaved caspase-3, and caspase-3. Clinical outcomes including isokinetic muscle strength and quality of life were evaluated pre- and postoperatively. Results IPC significantly increased Mfn2 (2.0 ± 0.2 vs 1.2 ± 0.1, p = 0.001) and Opa1 (2.9 ± 0.3 vs 1.9 ± 0.2, p = 0.005) proteins expression at the onset of reperfusion, compared to the ischemic phase. There were no differences in 4-HNE, SOD2, TNF-ɑ, IL-6, p-Drp1ser616/Drp1, Mfn1, PGC-1ɑ, ETC complex I-V, cytochrome c, and cleaved caspase-3/caspase-3 expression between the ischemic and reperfusion periods, or between the groups. Clinically, postoperative peak torque for knee extension significantly reduced in the sham IPC group (-16.6 [-29.5, -3.6] N.m, p = 0.020), while that in the IPC group was preserved (-4.7 [-25.3, 16.0] N.m, p = 0.617). Conclusion In TKA with TQ application, IPC preserved postoperative quadriceps strength and prevented TQ-induced I/R injury partly by enhancing mitochondrial fusion proteins in the skeletal muscle. The translational potential of this article Mitochondrial fusion is a potential underlying mechanism of IPC in preventing skeletal muscle I/R injury. IPC applied before TQ-induced I/R preserved postoperative quadriceps muscle strength after TKA.
Collapse
Key Words
- 4-HNE, 4-hydroxy-2-nonenal
- ADP, Adenosine diphosphate
- ASA, American Society of Anesthesiologists
- ATP, Adenosine triphosphate
- BSA, Bovine serum albumin
- CAT, Catalase
- CHOP, C/EBP homologous protein
- Drp1, Dynamin-related protein-1
- ER, Endoplasmic reticulum
- ETC, Electron transport chain
- FGF21, Fibroblast growth factor 21
- Fis1, Fission protein-1
- GPx, Glutathione peroxidase
- I/R, Ischemia and reperfusion
- IL-6, Interleukin-6
- IPACK, Interspace between the popliteal artery and capsule of the posterior knee
- IPC, Ischemic preconditioning
- Ischemia reperfusion injury
- Ischemic preconditioning
- Knee arthroplasty
- MDA, Malondialdehyde
- Mfn, Mitofusin
- Mitochondrial dynamics
- MnSOD, Manganese superoxide dismutase
- NF-κB, Nuclear factor kappa B
- OXPHOS, Oxidative phosphorylation
- PGC-1ɑ, Peroxisome proliferator-activated receptor-gamma coactivator-1ɑ
- RIPC, Remote ischemic preconditioning
- ROS, Reactive oxygen species
- SBP, Systolic blood pressure
- SOD, Superoxide dismutase
- TKA, Total knee arthroplasty
- TNF, Tumor necrosis factor
- TQ, Tourniquet
- Tourniquet
- UPR, Unfolded protein response
- mPTP, Mitochondrial permeability transition pore
Collapse
|
14
|
Zhao X, Liu Y, Wang L, Yan C, Liu H, Zhang W, Zhao H, Cheng C, Chen Z, Xu T, Li K, Cai J, Qiao T. Oridonin attenuates hind limb ischemia-reperfusion injury by modulating Nrf2-mediated oxidative stress and NLRP3-mediated inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115206. [PMID: 35301099 DOI: 10.1016/j.jep.2022.115206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oridonin (Ori), extracted from Isodon rubescens (Hemsl.) H.Hara, is a well-known traditional Chinese herbal medicinal product that possesses antioxidant and anti-inflammatory activities. Oxidative stress and inflammation are the main pathophysiological mechanisms in hindlimb IR injury. However, whether Ori has a protective effect on hind limb IR injury is unknown. AIM OF THE STUDY The present study was designed to determine the effect of Ori on hindlimb IR injury and its relationship with oxidative stress and inflammation. MATERIALS AND METHODS The hind limb IR injury model in mice was used to evaluate the protective effect and related mechanisms of Ori. Forty-eight C57BL/6 mice (n = 12 per group) were randomly divided into four groups: Sham group; IR group; IR + Ori (10 mg/kg) group and IR + Ori (20 mg/kg) group. Mice in the IR and IR + Ori groups were subjected to hindlimb IR injury, while mice in the Sham group were subjected to no hindlimb IR injury. HE staining, Masson's staining, TTC staining, DHE staining, TUNEL staining, western blotting analysis and quantitative real-time PCR were employed to explore the mechanisms by which Ori exerts a protective effect on a classical hindlimb IR model in mice. RESULTS We found that Ori pretreatment prevented muscle damage and decreased cell apoptosis levels compared with the vehicle control. Moreover, the SOD2, CAT, MDA and ROS levels in muscle showed that Ori could significantly reduce oxidative stress in hindlimb IR mice, while the IL-1β and TNF-α levels in muscle showed that Ori could significantly attenuate IR-induced inflammation. We also found that Ori could increase the expression of Nrf2 and its downstream protein HO-1 and inhibit the expression levels of NLRP3-related proteins (NLRP3, ASC and Caspase-1) in vivo. CONCLUSIONS Our study suggested that Ori has a protective effect on hindlimb IR injury, which may be related to Nrf2-mediated oxidative stress and NLRP3-mediated inflammasome activation.
Collapse
Affiliation(s)
- Xiaoqi Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Yutong Liu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Lei Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Chaolong Yan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Han Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Wenxin Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Hongting Zhao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Chen Cheng
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Zhipeng Chen
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Tianze Xu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Jing Cai
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Tong Qiao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
15
|
Resolution of Inflammation after Skeletal Muscle Ischemia-Reperfusion Injury: A Focus on the Lipid Mediators Lipoxins, Resolvins, Protectins and Maresins. Antioxidants (Basel) 2022; 11:antiox11061213. [PMID: 35740110 PMCID: PMC9220296 DOI: 10.3390/antiox11061213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Skeletal muscle ischemia reperfusion is very frequent in humans and results not only in muscle destruction but also in multi-organ failure and death via systemic effects related to inflammation and oxidative stress. In addition to overabundance of pro-inflammatory stimuli, excessive and uncontrolled inflammation can also result from defects in resolution signaling. Importantly, the resolution of inflammation is an active process also based on specific lipid mediators including lipoxins, resolvins and maresins that orchestrate the potential return to tissue homeostasis. Thus, lipid mediators have received growing attention since they dampen deleterious effects related to ischemia–reperfusion. For instance, the treatment of skeletal muscles with resolvins prior to ischemia decreases polymorphonuclear leukocyte (PMN) infiltration. Additionally, remote alterations in lungs or kidneys are reduced when enhancing lipid mediators’ functions. Accordingly, lipoxins prevented oxidative-stress-mediated tissue injuries, macrophage polarization was modified and in mice lacking DRV2 receptors, ischemia/reperfusion resulted in excessive leukocyte accumulation. In this review, we first aimed to describe the inflammatory response during ischemia and reperfusion in skeletal muscle and then discuss recent discoveries in resolution pathways. We focused on the role of specialized pro-resolving mediators (SPMs) derived from polyunsaturated fatty acids (PUFAs) and their potential therapeutic applications.
Collapse
|
16
|
Apichartpiyakul P, Shinlapawittayatorn K, Rerkasem K, Chattipakorn SC, Chattipakorn N. Mechanisms and Interventions on Acute Lower Limb Ischemia/Reperfusion Injury: A Review and Insights from Cell to Clinical Investigations. Ann Vasc Surg 2022; 86:452-481. [PMID: 35589030 DOI: 10.1016/j.avsg.2022.04.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 12/19/2022]
Abstract
AIM This review aims to highlight mechanistic insights on skeletal muscle ischemia/reperfusion injury (IRI), a potentially life-threatening complication after acute lower limb ischemia. Lower limb IRI produces a wide spectrum of manifestations, ranging from local skeletal muscle necrosis to multi-organ failure. There is increasing evidence from both in vitro and in vivo reports to demonstrate several promising interventions that have successfully reduced IRI in skeletal muscle ischemic models. However, clinical studies to confirm their benefits are still lacking. METHOD We conducted a comprehensive search of English literature listed in the PubMed database (All related published articles shown in PubMed until September 2020 have been included in this review), using the following keywords: acute limb ischemia, acute arterial occlusion, compartment syndrome, ischemic reperfusion injury, revascularization and hypoxic reoxygenation. RESULT 58 articles pertinent to acute limb ischemia models were identified. The underlying mechanisms associated with IRI in skeletal muscle are due to excessive mitochondrial production of reactive oxygen species (ROS), cellular apoptosis and activation of inflammatory cascades. Several therapeutic interventions including both pharmacological and non-pharmacological treatments have been investigated and some showed promising results. These interventions include antioxidation, anti-inflammation, anti-hypertension, controlled-reperfusion and ischemic preconditioning. Further clinical studies are needed to warrant their use in a clinical setting for lower limb IRI treatment. CONCLUSION This review comprehensively summarizes the mechanisms underlying IRI in lower limb ischemia. The reports currently available regarding the potential therapeutic interventions against lower limb IRI from in vitro, in vivo and clinical studies are presented and discussed. These findings may provide mechanistic insights for devising the strategies to improve the clinical outcomes in IRI patients in the near future. Further clinical studies are needed to warrant their use in a clinical setting for lower limb IRI treatment.
Collapse
Affiliation(s)
- Poon Apichartpiyakul
- Vascular Surgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kittipan Rerkasem
- Vascular Surgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
17
|
Guillot M, Charles AL, Lejay A, Pottecher J, Meyer A, Georg I, Goupilleau F, Diemunsch P, Geny B. Deleterious Effects of Remote Ischaemic Per-conditioning During Lower Limb Ischaemia-Reperfusion in Mice. Eur J Vasc Endovasc Surg 2021; 62:953-959. [PMID: 34364768 DOI: 10.1016/j.ejvs.2021.06.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The aim of this study was to investigate whether remote ischaemic per-conditioning might protect skeletal muscle during lower limb ischaemia-reperfusion (IR). METHODS Twenty-three male C57BL/6 mice were randomised into three groups: sham group (n = 7), IR group (unilateral tourniquet induced three hours of ischaemia followed by 24 hours of reperfusion, n = 8), and remote ischaemic per-conditioning group (RIPerC) (three cycles of 10 minute IR episodes on the non-ischaemic contralateral hindlimb, n = 8). Oxygraphy, spectrofluorometry, and electron paramagnetic resonance spectroscopy were performed in order to determine mitochondrial respiratory chain complexes activities, mitochondrial calcium retention capacity (CRC) and reactive oxygen species (ROS) production in skeletal muscle. RESULTS IR impaired mitochondrial respiration (3.66 ± 0.98 vs. 7.31 ± 0. 54 μmol/min/g in ischaemic and sham muscles, p = .009 and p = .003 respectively) and tended to impair CRC (2.53 ± 0.32 vs. 3.64 ± 0.66 μmol/mg in ischaemic and sham muscles respectively, p = .066). IR did not modify ROS production (0.082 ± 0.004 vs. 0.070 ± 0.004 μmol/min/mg in ischaemic and sham muscles respectively, p = .74). RIPerC failed to restore mitochondrial respiration (3.82 ± 0.40 vs. 3.66 ± 0.98 μmol/min/g in ischaemic muscles from the RIPerC group and the IR group respectively, p = .45) and CRC (2.76 ± 0.3 vs. 2.53 ± 0.32 μmol/mg in ischaemic muscles from the RIPerC group and the IR group respectively, p = .25). RIPerC even impaired contralateral limb mitochondrial respiration (3.85 ± 0.34 vs. 7.31 ± 0. 54 μmol/min/g in contralateral muscles and sham muscles respectively, -47.3%, p = .009). CONCLUSION RIPerC failed to protect ischaemic muscles and induced deleterious effects on the contralateral non-ischaemic muscles. These data do not support the concept of RIPerC.
Collapse
Affiliation(s)
- Max Guillot
- University of Strasbourg, FMTS, Research Unit 3072, Mitochondria, Oxidative Stress and Muscular Protection, Strasbourg, France; Department of Reanimation, University Hospital of Strasbourg, France
| | - Anne-Laure Charles
- University of Strasbourg, FMTS, Research Unit 3072, Mitochondria, Oxidative Stress and Muscular Protection, Strasbourg, France; Department of Physiology, University Hospital of Strasbourg, France
| | - Anne Lejay
- University of Strasbourg, FMTS, Research Unit 3072, Mitochondria, Oxidative Stress and Muscular Protection, Strasbourg, France; Department of Vascular Surgery and Kidney Transplantation, University Hospital of Strasbourg, France.
| | - Julien Pottecher
- University of Strasbourg, FMTS, Research Unit 3072, Mitochondria, Oxidative Stress and Muscular Protection, Strasbourg, France; Department of Anaesthesiology, Critical Care and Peri-operative Medicine, University Hospital of Strasbourg, France
| | - Alain Meyer
- University of Strasbourg, FMTS, Research Unit 3072, Mitochondria, Oxidative Stress and Muscular Protection, Strasbourg, France; Department of Physiology, University Hospital of Strasbourg, France
| | - Isabelle Georg
- University of Strasbourg, FMTS, Research Unit 3072, Mitochondria, Oxidative Stress and Muscular Protection, Strasbourg, France
| | - Fabienne Goupilleau
- University of Strasbourg, FMTS, Research Unit 3072, Mitochondria, Oxidative Stress and Muscular Protection, Strasbourg, France
| | - Pierre Diemunsch
- University of Strasbourg, FMTS, Research Unit 3072, Mitochondria, Oxidative Stress and Muscular Protection, Strasbourg, France; Department of Vascular Surgery and Kidney Transplantation, University Hospital of Strasbourg, France
| | - Bernard Geny
- University of Strasbourg, FMTS, Research Unit 3072, Mitochondria, Oxidative Stress and Muscular Protection, Strasbourg, France; Department of Physiology, University Hospital of Strasbourg, France
| |
Collapse
|
18
|
The effect of leg ischemia/reperfusion injury on the liver in an experimental breast cancer model. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.1003837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Ca 2+-mediated coupling between neuromuscular junction and mitochondria in skeletal muscle. Neurosci Lett 2021; 754:135899. [PMID: 33865940 DOI: 10.1016/j.neulet.2021.135899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022]
Abstract
The volitional movement of skeletal is controlled by the motor neuron at the site of neuromuscular junction (NMJ) where the retrograde signals are also passed back from muscle to the motor neuron. As the normal function of muscle largely depends on mitochondria that determine the fate of a skeletal muscle myofiber, there must exist a fine-controlled functional coupling between NMJ and mitochondria in myofibers. This mini-review discusses recent publications that reveal how spatiotemporal profiles of intracellular free Ca2+ could couple mitochondrial function with the activity of NMJ in skeletal muscle myofibers.
Collapse
|
20
|
Damal Villivalam S, Ebert SM, Lim HW, Kim J, You D, Jung BC, Palacios HH, Tcheau T, Adams CM, Kang S. A necessary role of DNMT3A in endurance exercise by suppressing ALDH1L1-mediated oxidative stress. EMBO J 2021; 40:e106491. [PMID: 33847380 DOI: 10.15252/embj.2020106491] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/25/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Exercise can alter the skeletal muscle DNA methylome, yet little is known about the role of the DNA methylation machinery in exercise capacity. Here, we show that DNMT3A expression in oxidative red muscle increases greatly following a bout of endurance exercise. Muscle-specific Dnmt3a knockout mice have reduced tolerance to endurance exercise, accompanied by reduction in oxidative capacity and mitochondrial respiration. Moreover, Dnmt3a-deficient muscle overproduces reactive oxygen species (ROS), the major contributors to muscle dysfunction. Mechanistically, we show that DNMT3A suppresses the Aldh1l1 transcription by binding to its promoter region, altering its epigenetic profile. Forced expression of ALDH1L1 elevates NADPH levels, which results in overproduction of ROS by the action of NADPH oxidase complex, ultimately resulting in mitochondrial defects in myotubes. Thus, inhibition of ALDH1L1 pathway can rescue oxidative stress and mitochondrial dysfunction from Dnmt3a deficiency in myotubes. Finally, we show that in vivo knockdown of Aldh1l1 largely rescues exercise intolerance in Dnmt3a-deficient mice. Together, we establish that DNMT3A in skeletal muscle plays a pivotal role in endurance exercise by controlling intracellular oxidative stress.
Collapse
Affiliation(s)
- Sneha Damal Villivalam
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Scott M Ebert
- Departments of Internal Medicine and Molecular Physiology and Biophysics and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA.,Emmyon, Inc., Coralville, IA, USA
| | - Hee Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics & Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA
| | - Jinse Kim
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Dongjoo You
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Byung Chul Jung
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Hector H Palacios
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Tabitha Tcheau
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Christopher M Adams
- Departments of Internal Medicine and Molecular Physiology and Biophysics and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA.,Emmyon, Inc., Coralville, IA, USA.,Iowa City Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
21
|
The cyclophilin inhibitor NIM-811 increases muscle cell survival with hypoxia in vitro and improves gait performance following ischemia-reperfusion in vivo. Sci Rep 2021; 11:6152. [PMID: 33731782 PMCID: PMC7969970 DOI: 10.1038/s41598-021-85753-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/26/2021] [Indexed: 11/30/2022] Open
Abstract
Acute ischemia–reperfusion injury in skeletal muscle is a significant clinical concern in the trauma setting. The mitochondrial permeability transition inhibitor NIM-811 has previously been shown to reduce ischemic injury in the liver and kidney. The effects of this treatment on skeletal muscle are, however, not well understood. We first used an in vitro model of muscle cell ischemia in which primary human skeletal myoblasts were exposed to hypoxic conditions (1% O2 and 5% CO2) for 6 h. Cells were treated with NIM-811 (0–20 µM). MTS assay was used to quantify cell survival and LDH assay to quantify cytotoxicity 2 h after treatment. Results indicate that NIM-811 treatment of ischemic myotubes significantly increased cell survival and decreased LDH in a dose-dependent manner. We then examined NIM-811 effects in vivo using orthodontic rubber bands (ORBs) for 90 min of single hindlimb ischemia. Mice received vehicle or NIM-811 (10 mg/kg BW) 10 min before reperfusion and 3 h later. Ischemia and reperfusion were monitored using laser speckle imaging. In vivo data demonstrate that mice treated with NIM-811 showed increased gait speed and improved Tarlov scores compared to vehicle-treated mice. The ischemic limbs of female mice treated with NIM-811 showed significantly lower levels of MCP-1, IL-23, IL-6, and IL-1α compared to limbs of vehicle-treated mice. Similarly, male mice treated with NIM-811 showed significantly lower levels of MCP-1 and IL-1a. These findings are clinically relevant as MCP-1, IL-23, IL-6, and IL-1α are all pro-inflammatory factors that are thought to contribute directly to tissue damage after ischemic injury. Results from the in vitro and in vivo experiments suggest that NIM-811 and possibly other mitochondrial permeability transition inhibitors may be effective for improving skeletal muscle salvage and survival after ischemia–reperfusion injury.
Collapse
|
22
|
Terwilliger ZS, Ryan TE, Goldberg EJ, Schmidt CA, Yamaguchi DJ, Karnekar R, Brophy P, Green TD, Zeczycki TN, Mac Gabhann F, Annex BH, McClung JM. Racial differences in the limb skeletal muscle transcriptional programs of patients with critical limb ischemia. Vasc Med 2021; 26:247-258. [PMID: 33685287 DOI: 10.1177/1358863x20983918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Critical limb ischemia (CLI) is the most severe manifestation of peripheral artery disease (PAD) and is characterized by high rates of morbidity and mortality. As with most severe cardiovascular disease manifestations, Black individuals disproportionately present with CLI. Accordingly, there remains a clear need to better understand the reasons for this discrepancy and to facilitate personalized therapeutic options specific for this population. Gastrocnemius muscle was obtained from White and Black healthy adult volunteers and patients with CLI for whole transcriptome shotgun sequencing (WTSS) and enrichment analysis was performed to identify alterations in specific Reactome pathways. When compared to their race-matched healthy controls, both White and Black patients with CLI demonstrated similar reductions in nuclear and mitochondrial encoded genes and mitochondrial oxygen consumption across multiple substrates, indicating a common bioenergetic paradigm associated with amputation outcomes regardless of race. Direct comparisons between tissues of White and Black patients with CLI revealed hemostasis, extracellular matrix organization, platelet regulation, and vascular wall interactions to be uniquely altered in limb muscles of Black individuals. Among traditional vascular growth factor signaling targets, WTSS revealed only Tie1 to be significantly altered from White levels in Black limb muscle tissues. Quantitative reverse transcription polymerase chain reaction validation of select identified targets verified WTSS directional changes and supports reductions in MMP9 and increases in NUDT4P1 and GRIK2 as unique to limb muscles of Black patients with CLI. This represents a critical first step in better understanding the transcriptional program similarities and differences between Black and White patients in the setting of amputations related to CLI and provides a promising start for therapeutic development in this population.
Collapse
Affiliation(s)
- Zoe S Terwilliger
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Physiology, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Emma J Goldberg
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Physiology, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Cameron A Schmidt
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Physiology, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Dean J Yamaguchi
- Department of Cardiovascular Sciences, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Division of Surgery, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Reema Karnekar
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Physiology, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Patricia Brophy
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Thomas D Green
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Physiology, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Tonya N Zeczycki
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Biochemistry, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brian H Annex
- Department of Medicine, Medical College of Georgia, Augusta, GA, USA.,Vascular Biology Center, Medical College of Georgia, Augusta, GA, USA
| | - Joseph M McClung
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Physiology, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Cardiovascular Sciences, East Carolina University, Brody Medical Center, Greenville, NC, USA
| |
Collapse
|
23
|
Matveev DV, Kuznetsov MR, Matveev AD, Evteev AV, Fedorov EE. [Reperfusion syndrome: state of the art]. ANGIOLOGII︠A︡ I SOSUDISTAI︠A︡ KHIRURGII︠A︡ = ANGIOLOGY AND VASCULAR SURGERY 2020; 26:176-183. [PMID: 33332321 DOI: 10.33529/angio2020421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Reperfusion syndrome is a complex series of clinical manifestations resulting from restoration of blood flow to previously ischaemic tissues. It is accompanied by damage to cells, tissues and organs at various levels, followed by the development of multiple organ failure. This review deals with the main pathophysiological mechanisms of the development of reperfusion syndrome in lesions of cardiac, cerebral and lower-limb vessels. Oxidative stress is considered to be the most important marker of ischaemia-reperfusion injury irrespective of the type of tissues affected. Presented herein are the data on contemporary possibilities of influencing various stages and components of the development of reperfusion injury by means of drug therapy, demonstrating that due to the importance of oxidative stress as a key link of reperfusion injury, antioxidant therapy should be the main component of prevention and treatment of reperfusion injury.
Collapse
Affiliation(s)
- D V Matveev
- Department of Surgery, Russian Medical Academy of Continuous Professional Education, RF Ministry of Public Health, Moscow, Russia
| | - M R Kuznetsov
- Institute of Cluster Oncology named after L.L. Levshin, I.M. Sechenov First Moscow Medical University, Moscow, Russia
| | - A D Matveev
- Department of Surgery, Russian Medical Academy of Continuous Professional Education, RF Ministry of Public Health, Moscow, Russia
| | - A V Evteev
- Scientific Company "Flamena", Reutov, Moscow Region, Russia
| | - E E Fedorov
- Surgical Department #1, Municipal Clinical Hospital #29 named after N.E. Bauman, Moscow, Russia
| |
Collapse
|
24
|
Li A, Yi J, Li X, Zhou J. Physiological Ca 2+ Transients Versus Pathological Steady-State Ca 2+ Elevation, Who Flips the ROS Coin in Skeletal Muscle Mitochondria. Front Physiol 2020; 11:595800. [PMID: 33192612 PMCID: PMC7642813 DOI: 10.3389/fphys.2020.595800] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are both the primary provider of ATP and the pivotal regulator of cell death, which are essential for physiological muscle activities. Ca2+ plays a multifaceted role in mitochondrial function. During muscle contraction, Ca2+ influx into mitochondria activates multiple enzymes related to tricarboxylic acid (TCA) cycle and oxidative phosphorylation, resulting in increased ATP synthesis to meet the energy demand. Pathophysiological conditions such as skeletal muscle denervation or unloading also lead to elevated Ca2+ levels inside mitochondria. However, the outcomes of this steady-state elevation of mitochondrial Ca2+ level include exacerbated reactive oxygen species (ROS) generation, sensitized opening of mitochondrial permeability transition pore (mPTP), induction of programmed cell death, and ultimately muscle atrophy. Previously, both acute and long-term endurance exercises have been reported to activate certain signaling pathways to counteract ROS production. Meanwhile, electrical stimulation is known to help prevent apoptosis and alleviate muscle atrophy in denervated animal models and patients with motor impairment. There are various mechanistic studies that focus on the excitation-transcription coupling framework to understand the beneficial role of exercise and electrical stimulation. Interestingly, a recent study has revealed an unexpected role of rapid mitochondrial Ca2+ transients in keeping mPTP at a closed state with reduced mitochondrial ROS production. This discovery motivated us to contribute this review article to inspire further discussion about the potential mechanisms underlying differential outcomes of physiological mitochondrial Ca2+ transients and pathological mitochondrial Ca2+ elevation in skeletal muscle ROS production.
Collapse
Affiliation(s)
- Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
25
|
Tanaka M, Sugimoto K, Fujimoto T, Xie K, Takahashi T, Akasaka H, Yasunobe Y, Takeya Y, Yamamoto K, Hirabayashi T, Fujino H, Rakugi H. Differential effects of pre-exercise on cancer cachexia-induced muscle atrophy in fast- and slow-twitch muscles. FASEB J 2020; 34:14389-14406. [PMID: 32892438 DOI: 10.1096/fj.202001330r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022]
Abstract
We hypothesized that pre-exercise may effectively prevent cancer cachexia-induced muscle atrophy in both fast- and slow-twitch muscle types. Additionally, the fast-twitch muscle may be more affected by cancer cachexia than slow-twitch muscle. This study aimed to evaluate the effects of pre-exercise on cancer cachexia-induced atrophy and on atrophy in fast- and slow-twitch muscles. Twelve male Wistar rats were randomly divided into sedentary and exercise groups, and another 24 rats were randomly divided into control, pre-exercise, cancer cachexia induced by intraperitoneal injections of ascites hepatoma AH130 cells, and pre-exercise plus cancer cachexia groups. We analyzed changes in muscle mass and in gene and protein expression levels of major regulators and indicators of muscle protein degradation and synthesis pathways, angiogenic factors, and mitochondrial function in both the plantaris and soleus muscles. Pre-exercise inhibited muscle mass loss, rescued protein synthesis, prevented capillary regression, and suppressed hypoxia in the plantaris and soleus muscles. Pre-exercise inhibited mitochondrial dysfunction differently in fast- and slow-twitch muscles. These results suggested that pre-exercise has the potential to inhibit cancer-cachexia-induced muscle atrophy in both fast- and slow-twitch muscles. Furthermore, the different progressions of cancer-cachexia-induced muscle atrophy in fast- and slow-twitch muscles are related to differences in mitochondrial function.
Collapse
Affiliation(s)
- Minoru Tanaka
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan.,Department of Rehabilitation Science, Osaka Health Science University, Osaka, Japan
| | - Ken Sugimoto
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taku Fujimoto
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keyu Xie
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshimasa Takahashi
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Akasaka
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yukiko Yasunobe
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasushi Takeya
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Yamamoto
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takumi Hirabayashi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hiromi Rakugi
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
26
|
The Soluble Adenylyl Cyclase Inhibitor LRE1 Prevents Hepatic Ischemia/Reperfusion Damage Through Improvement of Mitochondrial Function. Int J Mol Sci 2020; 21:ijms21144896. [PMID: 32664470 PMCID: PMC7402335 DOI: 10.3390/ijms21144896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury is a leading cause of organ dysfunction and failure in numerous pathological and surgical settings. At the core of this issue lies mitochondrial dysfunction. Hence, strategies that prime mitochondria towards damage resilience might prove applicable in a clinical setting. A promising approach has been to induce a mitohormetic response, removing less capable organelles, and replacing them with more competent ones, in preparation for an insult. Recently, a soluble form of adenylyl cyclase (sAC) has been shown to exist within mitochondria, the activation of which improved mitochondrial function. Here, we sought to understand if inhibiting mitochondrial sAC would elicit mitohormesis and protect the liver from I/R injury. Wistar male rats were pretreated with LRE1, a specific sAC inhibitor, prior to the induction of hepatic I/R injury, after which mitochondria were collected and their metabolic function was assessed. We find LRE1 to be an effective inducer of a mitohormetic response based on all parameters tested, a phenomenon that appears to require the activity of the NAD+-dependent sirtuin deacylase (SirT3) and the subsequent deacetylation of mitochondrial proteins. We conclude that LRE1 pretreatment leads to a mitohormetic response that protects mitochondrial function during I/R injury.
Collapse
|
27
|
Zhou Y, Gao G, Li Z, Jiang L. Protective Effect of Mitogen- and Stress-Activated Protein Kinase on the Rats with Focal Ischemia-Reperfusion Injury. Inflammation 2020; 42:2159-2169. [PMID: 31529230 DOI: 10.1007/s10753-019-01080-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mitogen- and stress-activated protein kinase (MSK) is a recently identified nuclear cAMP-regulated enhancer B (CREB) and histone H3 kinase that responds to both mitogen- and stress-activated protein kinases. This study was designed to investigate the protective effect of MSK on the rats with focal ischemia-reperfusion injury. The rat model was established by inserting thread into the middle cerebral artery. The protein expression was measured by immunoblotting. The localization of MSK was measured by immunofluorescence assay. Highly-differentiated pheochromocytoma 12 (PC12) is used as a sympathetic neuron-like cell line and treated with glutamate to induce neurotoxicity. MSK was knocked down and overexpressed by siRNA and MSK over-expressing vector, respectively. The cell viability was measured by cell counting kit (CCK-8) assay. The coronal sections were isolated and stained with 2, 3, 5-triphenyltetrazolium chloride (TTC) to determine infarct volume. Finally, astrocytes were separated from cerebral cortexes of normal rats to analyze the effects of MSK on inflammatory response. In the rats with focal ischemia-reperfusion injury, the expression of MSK was reduced, reaching the lowest level at 3 d after ischemia-reperfusion, and then recovered gradually. MSK was found mainly localized in neurons and astrocytes. The expression levels of caspase-3, caspase-8, caspase-9, and INOS showed the opposite trend with respect to MSK. Further analysis showed that overexpression of MSK exerted a protective effect on glutamate-induced neurotoxicity through inhibiting apoptosis of PC12 cells, as well as decreased the infarct size in rat with focal ischemia-reperfusion injury. On the contrary, knockdown of MSK showed opposite results. Finally, MSK suppressed LPS-induced inflammatory response by decreasing the expression of inducible nitric oxide synthase (INOS) and increasing the expression of interleukin-10 (IL-10) in astrocytes from cerebral cortexes of normal rats. In conclusion, MSK exerted a protective effect on rat with focal ischemia-reperfusion injury through its anti-apoptotic effect on neurons and anti-inflammatory effect on astrocytes.
Collapse
Affiliation(s)
- Yanfeng Zhou
- Departments of Neurosurgery, The First Affiliated Hospital of Soochow University, Soochow, 215006, China.,Departments of Neurosurgery, The First People's Hospital of Taizhou, Taizhou, 225300, China
| | - Guangzhong Gao
- Departments of Neurosurgery, The First People's Hospital of Taizhou, Taizhou, 225300, China
| | - Zhen Li
- Departments of Neurosurgery, The First People's Hospital of Taizhou, Taizhou, 225300, China
| | - Lin Jiang
- Departments of Neurosurgery, The First People's Hospital of Taizhou, Taizhou, 225300, China.
| |
Collapse
|
28
|
Pizzimenti M, Riou M, Charles AL, Talha S, Meyer A, Andres E, Chakfé N, Lejay A, Geny B. The Rise of Mitochondria in Peripheral Arterial Disease Physiopathology: Experimental and Clinical Data. J Clin Med 2019; 8:jcm8122125. [PMID: 31810355 PMCID: PMC6947197 DOI: 10.3390/jcm8122125] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
Peripheral arterial disease (PAD) is a frequent and serious condition, potentially life-threatening and leading to lower-limb amputation. Its pathophysiology is generally related to ischemia-reperfusion cycles, secondary to reduction or interruption of the arterial blood flow followed by reperfusion episodes that are necessary but also—per se—deleterious. Skeletal muscles alterations significantly participate in PAD injuries, and interestingly, muscle mitochondrial dysfunctions have been demonstrated to be key events and to have a prognosis value. Decreased oxidative capacity due to mitochondrial respiratory chain impairment is associated with increased release of reactive oxygen species and reduction of calcium retention capacity leading thus to enhanced apoptosis. Therefore, targeting mitochondria might be a promising therapeutic approach in PAD.
Collapse
Affiliation(s)
- Mégane Pizzimenti
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Marianne Riou
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Anne-Laure Charles
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
| | - Samy Talha
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Alain Meyer
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Emmanuel Andres
- Internal Medicine, Diabete and Metabolic Diseases Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France;
| | - Nabil Chakfé
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Vascular Surgery and Kidney Transplantation Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Anne Lejay
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Vascular Surgery and Kidney Transplantation Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Bernard Geny
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
- Correspondence:
| |
Collapse
|
29
|
Berru FN, Gray SE, Thome T, Kumar RA, Salyers ZR, Coleman M, Dennis Le, O'Malley K, Ferreira LF, Berceli SA, Scali ST, Ryan TE. Chronic kidney disease exacerbates ischemic limb myopathy in mice via altered mitochondrial energetics. Sci Rep 2019; 9:15547. [PMID: 31664123 PMCID: PMC6820860 DOI: 10.1038/s41598-019-52107-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/12/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) substantially increases the severity of peripheral arterial disease (PAD) symptomology, however, the biological mechanisms remain unclear. The objective herein was to determine the impact of CKD on PAD pathology in mice. C57BL6/J mice were subjected to a diet-induced model of CKD by delivery of adenine for six weeks. CKD was confirmed by measurements of glomerular filtration rate, blood urea nitrogen, and kidney histopathology. Mice with CKD displayed lower muscle force production and greater ischemic lesions in the tibialis anterior muscle (78.1 ± 14.5% vs. 2.5 ± 0.5% in control mice, P < 0.0001, N = 5-10/group) and decreased myofiber size (1661 ± 134 μm2 vs. 2221 ± 100 μm2 in control mice, P < 0.01, N = 5-10/group). This skeletal myopathy occurred despite normal capillary density (516 ± 59 vs. 466 ± 45 capillaries/20x field of view) and limb perfusion. CKD mice displayed a ~50-65% reduction in muscle mitochondrial respiratory capacity in ischemic muscle, whereas control mice had normal mitochondrial function. Hydrogen peroxide emission was modestly higher in the ischemic muscle of CKD mice, which coincided with decreased oxidant buffering. Exposure of cultured myotubes to CKD serum resulted in myotube atrophy and elevated oxidative stress, which were attenuated by mitochondrial-targeted therapies. Taken together, these findings suggest that mitochondrial impairments caused by CKD contribute to the exacerbation of ischemic pathology.
Collapse
Affiliation(s)
- Fabian N Berru
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Sarah E Gray
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, USA
- Malcolm Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Trace Thome
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Ravi A Kumar
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Zachary R Salyers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Madeline Coleman
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Dennis Le
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Kerri O'Malley
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, USA
- Malcolm Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
- Center for Exercise Science, University of Florida, Gainesville, FL, USA
| | - Scott A Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, USA
- Malcolm Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Salvatore T Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, USA
- Malcolm Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
- Center for Exercise Science, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
30
|
Ederlé C, Charles AL, Khayath N, Poirot A, Meyer A, Clere-Jehl R, Andres E, De Blay F, Geny B. Mitochondrial Function in Peripheral Blood Mononuclear Cells (PBMC) Is Enhanced, Together with Increased Reactive Oxygen Species, in Severe Asthmatic Patients in Exacerbation. J Clin Med 2019; 8:jcm8101613. [PMID: 31623409 PMCID: PMC6833034 DOI: 10.3390/jcm8101613] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
Asthma is a chronic inflammatory lung syndrome with an increasing prevalence and a rare but significant risk of death. Its pathophysiology is complex, and therefore we investigated at the systemic level a potential implication of oxidative stress and of peripheral blood mononuclear cells’ (PBMC) mitochondrial function. Twenty severe asthmatic patients with severe exacerbation (GINA 4–5) and 20 healthy volunteers participated at the study. Mitochondrial respiratory chain complexes activities using different substrates and reactive oxygen species (ROS) production were determined in both groups by high-resolution respirometry and electronic paramagnetic resonance, respectively. Healthy PBMC were also incubated with a pool of plasma of severe asthmatics or healthy controls. Mitochondrial respiratory chain complexes activity (+52.45%, p = 0.015 for VADP) and ROS production (+34.3%, p = 0.02) were increased in asthmatic patients. Increased ROS did not originate mainly from mitochondria. Plasma of severe asthmatics significantly increased healthy PBMC mitochondrial dioxygen consumption (+56.8%, p = 0.031). In conclusion, such asthma endotype, characterized by increased PMBCs mitochondrial oxidative capacity and ROS production likely related to a plasma constituent, may reflect activation of the immune system. Further studies are needed to determine whether increased PBMC mitochondrial respiration might have protective effects, opening thus new therapeutic approaches.
Collapse
Affiliation(s)
- Carole Ederlé
- Pôle de Pathologie Thoracique, Service de Pneumologie, Nouvel Hôpital Civil, 1, Place de l'Hôpital, FHU OMICARE Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Equipe d'Accueil 3072, «Mitochondrie, Stress Oxydant, et Protection Musculaire», 11 Rue Humann, Université de Strasbourg, 67000 Strasbourg, France.
| | - Anne-Laure Charles
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Equipe d'Accueil 3072, «Mitochondrie, Stress Oxydant, et Protection Musculaire», 11 Rue Humann, Université de Strasbourg, 67000 Strasbourg, France.
| | - Naji Khayath
- Pôle de Pathologie Thoracique, Service de Pneumologie, Nouvel Hôpital Civil, 1, Place de l'Hôpital, FHU OMICARE Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Equipe d'Accueil 3072, «Mitochondrie, Stress Oxydant, et Protection Musculaire», 11 Rue Humann, Université de Strasbourg, 67000 Strasbourg, France.
| | - Anh Poirot
- Pôle de Pathologie Thoracique, Service de Pneumologie, Nouvel Hôpital Civil, 1, Place de l'Hôpital, FHU OMICARE Université de Strasbourg, 67000 Strasbourg, France.
| | - Alain Meyer
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Equipe d'Accueil 3072, «Mitochondrie, Stress Oxydant, et Protection Musculaire», 11 Rue Humann, Université de Strasbourg, 67000 Strasbourg, France.
- Service de Physiologie et d'Explorations Fonctionnelles, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1 Place de l'Hôpital, 67091 Strasbourg CEDEX, France.
| | - Raphaël Clere-Jehl
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Equipe d'Accueil 3072, «Mitochondrie, Stress Oxydant, et Protection Musculaire», 11 Rue Humann, Université de Strasbourg, 67000 Strasbourg, France.
| | - Emmanuel Andres
- Service de Médecine Interne, Diabète et Maladies Métaboliques, Pôle M.I.R.N.E.D., Hôpitaux Universitaires, 67000 CHRU Strasbourg CEDEX, France.
| | - Frédéric De Blay
- Pôle de Pathologie Thoracique, Service de Pneumologie, Nouvel Hôpital Civil, 1, Place de l'Hôpital, FHU OMICARE Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Equipe d'Accueil 3072, «Mitochondrie, Stress Oxydant, et Protection Musculaire», 11 Rue Humann, Université de Strasbourg, 67000 Strasbourg, France.
| | - Bernard Geny
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Equipe d'Accueil 3072, «Mitochondrie, Stress Oxydant, et Protection Musculaire», 11 Rue Humann, Université de Strasbourg, 67000 Strasbourg, France.
- Service de Physiologie et d'Explorations Fonctionnelles, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1 Place de l'Hôpital, 67091 Strasbourg CEDEX, France.
| |
Collapse
|
31
|
Critical Limb Ischaemia Exacerbates Mitochondrial Dysfunction in ApoE-/- Mice Compared with ApoE+/+ Mice, but N-acetyl Cysteine still Confers Protection. Eur J Vasc Endovasc Surg 2019; 58:576-582. [PMID: 31422047 DOI: 10.1016/j.ejvs.2019.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The current study was performed in order to determine the influence of hypercholesterolaemia on critical limb ischaemia (CLI) and whether targeting oxidative stress by antioxidant therapies such as N-acetyl cysteine (NAC), considered to be a direct scavenger of reactive oxygen species, could confer muscle protection. METHODS Apolipoprotein E (ApoE)-/- mice (n = 9, 29 weeks old) and their genetic controls ApoE+/+ mice (n = 9, 29 weeks old) were submitted to sequential right femoral and iliac ligations; the left limb served as control. ApoE+/+ mice were divided into two groups: Group 1 (n = 4) and Group 2 (n = 5); as well as ApoE-/- mice: Group 3 (n = 3), and Group 4 (n = 6). NAC treatment was administered to Groups 2 and 4 in drinking water. Mice were sacrificed on Day 40 and gastrocnemius muscles were harvested to study mitochondrial respiration by oxygraphy, calcium retention capacity by spectrofluorometry, and production of reactive oxygen species by electron paramagnetic resonance. RESULTS CLI associated with ApoE deficiency resulted in more severe mitochondrial dysfunction: maximum oxidative capacity and calcium retention capacity were decreased (-42.9% vs. -25.1%, p = .010; and -73.1% vs. -40.3%, p = .003 respectively) and production of reactive oxygen species was enhanced (+63.6% vs. +41.4%, p = .03) in ApoE-/- mice compared with ApoE+/+ mice respectively. Antioxidant treatment restored oxidative capacity, calcium retention capacity and decreased production of reactive oxygen species in both mice strands. CONCLUSIONS In this small murine study, hypercholesterolaemia exacerbated mitochondrial dysfunction, as clinically expected; but antioxidant therapy appeared protective, which is counter to clinical experience. Further work is clearly needed.
Collapse
|
32
|
Mitochondrial transplantation ameliorates acute limb ischemia. J Vasc Surg 2019; 71:1014-1026. [PMID: 31353269 DOI: 10.1016/j.jvs.2019.03.079] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/26/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Acute limb ischemia (ALI), the most challenging form of ischemia-reperfusion injury (IRI) in skeletal muscle tissue, leads to decreased skeletal muscle viability and limb function. Mitochondrial injury has been shown to play a key role in skeletal muscle IRI. In previous studies, we have demonstrated that mitochondrial transplantation (MT) is an efficacious therapeutic strategy to replace or to augment mitochondria damaged by IRI, allowing enhanced muscle viability and function in cardiac tissue. In this study, we investigated the efficacy of MT in a murine ALI model. METHODS C57BL/6J mice (male, 10-12 weeks) were used in a model of ALI. Ischemia was induced by applying a tourniquet on the left hindlimb. After 2 hours of ischemia, the tourniquet was released, and reperfusion of the hindlimb was re-established; either vehicle alone (n = 15) or vehicle containing mitochondria (n = 33) was injected directly into all the muscles of the hindlimb. Mitochondria were delivered at concentrations of 1 × 106 to 1 × 109 per gram wet weight to each muscle, and the animals were allowed to recover. Sham mice received no ischemia or injections but were anesthetized for 2 hours and allowed to recover. After 24 hours of recovery, limb function was assessed by DigiGait (Mouse Specifics Inc, Boston, Mass), and animals were euthanized; the gastrocnemius, soleus, and vastus medialis muscles were collected for analysis. RESULTS After 24 hours of hindlimb reperfusion, infarct size (percentage of total mass) and apoptosis were significantly decreased (P < .001, each) in the gastrocnemius, soleus, and vastus medialis muscles in MT mice compared with vehicle mice for all mitochondrial concentrations (1 × 106 to 1 × 109 per gram wet weight). DigiGait analysis at 24 hours of reperfusion showed that percentage shared stance time was significantly increased (P < .001) and stance factor was significantly decreased (P = .001) in vehicle compared with MT and sham mice. No significant differences in percentage shared stance time (P = .160) or stance factor (P = .545) were observed between MT and sham mice. CONCLUSIONS MT ameliorates skeletal muscle injury and enhances hindlimb function in the murine model of ALI.
Collapse
|
33
|
Paradis S, Charles AL, Georg I, Goupilleau F, Meyer A, Kindo M, Laverny G, Metzger D, Geny B. Aging Exacerbates Ischemia-Reperfusion-Induced Mitochondrial Respiration Impairment in Skeletal Muscle. Antioxidants (Basel) 2019; 8:antiox8060168. [PMID: 31181751 PMCID: PMC6616544 DOI: 10.3390/antiox8060168] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cycles of ischemia-reperfusion (IR) that occur during peripheral arterial disease (PAD) are associated with significant morbi-mortality, and aging is an irreversible risk factor of PAD. However, the effects of advanced age on IR-induced skeletal muscle mitochondrial dysfunction are not well known. Young and aged mice were therefore submitted to hindlimb IR (2 h ischemia followed by 2 h reperfusion). Skeletal muscle mitochondrial respiration, calcium retention capacity (CRC) and reactive oxygen species (ROS) production were determined using high resolution respirometry, spectrofluorometry and electronic paramagnetic resonance. IR-induced impairment in mitochondrial respiration was enhanced in old animals (VADP; from 33.0 ± 2.4 to 18.4 ± 3.8 and 32.8 ± 1.3 to 5.9 ± 2.7 pmol/s/mg wet weight; −44.2 ± 11.4% vs. −82.0 ± 8.1%, in young and aged mice, respectively). Baseline CRC was lower in old animals and IR similarly decreased the CRC in both groups (from 11.8 ± 0.9 to 4.6 ± 0.9 and 5.5 ± 0.9 to 2.1 ± 0.3 µmol/mg dry weight; −60.9 ± 7.3 and −60.9 ± 4.6%, in young and aged mice, respectively). Further, IR-induced ROS production tended to be higher in aged mice. In conclusion, aging exacerbated the deleterious effects of IR on skeletal muscle mitochondrial respiration, potentially in relation to an increased oxidative stress.
Collapse
Affiliation(s)
- Stéphanie Paradis
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, 67000 Strasbourg, France.
- Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de Strasbourg, 67000 Strasbourg, France.
| | - Anne-Laure Charles
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, 67000 Strasbourg, France.
- Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de Strasbourg, 67000 Strasbourg, France.
| | - Isabelle Georg
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, 67000 Strasbourg, France.
- Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de Strasbourg, 67000 Strasbourg, France.
| | - Fabienne Goupilleau
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, 67000 Strasbourg, France.
- Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de Strasbourg, 67000 Strasbourg, France.
| | - Alain Meyer
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, 67000 Strasbourg, France.
- Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de Strasbourg, 67000 Strasbourg, France.
| | - Michel Kindo
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, 67000 Strasbourg, France.
- Service de Chirurgie Cardiaque, Pôle de Pathologie Cardiaque, Nouvel Hôpital Civil, CHRU de Strasbourg, 67000 Strasbourg, France.
| | - Gilles Laverny
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France.
| | - Daniel Metzger
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France.
| | - Bernard Geny
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, 67000 Strasbourg, France.
- Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
34
|
Fu J, Cheng X, Zhang L. Effect of hydrogen sulphide on inflammatory factors of the mitochondria after limb ischaemia-reperfusion injury in rats. Int Wound J 2019; 16:595-600. [PMID: 30693651 PMCID: PMC7948542 DOI: 10.1111/iwj.13068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/18/2018] [Accepted: 12/28/2018] [Indexed: 12/24/2022] Open
Abstract
The goal of this study was to evaluate the effect of hydrogen sulphide on inflammatory factors and the energy metabolism of mitochondria after limb reperfusion injury in rats. Sixty Wistar rats were divided into three groups: the sham operated group, the control group (the ischaemia-reperfusion injury [IRI] + normal saline group), and the experimental group (the IRI + H2 S group). An experimental rat model of limb IRI was established. Skeletal muscle samples were collected to observe the content of necrotic products (including myoglobin (MB), lysophosphatidylcholine (LPC), and lipid peroxidation (LPO)); blood samples were collected to observe changes in the contents of interleukin-1 (IL-1), Interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α); and the mitochondria of skeletal muscle cells were extracted for mitochondrial transmembrane potential measurement and adenosine triphosphate (ATP) content determination. The results underwent further statistical analysis. The contents of MB, LPC, and LPO in the limb skeletal muscle, liver, lung, and kidney tissues of rats in the control group were significantly increased (P < 0.05) after IRI, which was markedly attenuated by treatment with hydrogen sulphide (P < 0.05). Ischaemia/reperfusion of the lower extremities in rats triggered a significant increase in serum levels of IL-1, IL-6, and TNF-α, which was significantly inhibited by treatment with H2 S during ischaemia/reperfusion. In addition, the inhibitory effect tended to be time-dependent. After limb ischaemia/reperfusion, the mitochondrial transmembrane potential of skeletal muscle cells in the control group decreased significantly (P < 0.05), while the potential energy of the mitochondrial membrane in the experimental group was significantly higher than that in the control group (P < 0.05). The content of ATP in mitochondria of skeletal muscle cells of ischaemia-reperfusion rats in the control group was significantly lower than that in the sham operated group (P < 0.05), while the content of ATP of mitochondria in the experimental group after H2 S treatment was significantly higher than the control group (P < 0.05). Hydrogen sulphide can alleviate the injury of skeletal muscle and distal organs after limb ischaemia-reperfusion and reduce local inflammatory reaction, which is essential in alleviating mitochondrial transmembrane potential and energy metabolism disorder during reperfusion injury. The purpose of the study is to summarise the available information and provide theoretical support for the application of hydrogen sulphide in the treatment of limb IRI in skeletal muscle and distal organs.
Collapse
Affiliation(s)
- Jun Fu
- Department of Anesthesiology, Renmin HospitalHubei University of MedicineShiyanChina
| | - Xin‐Hua Cheng
- Department of Microscopic Orthopaedic, Renmin HospitalHubei University of MedicineShiyanChina
| | - Lei Zhang
- Department of Orthopedic Surgery, Renmin HospitalHubei University of MedicineShiyanChina
| |
Collapse
|
35
|
Tetsi L, Charles AL, Georg I, Goupilleau F, Lejay A, Talha S, Maumy-Bertrand M, Lugnier C, Geny B. Effect of the Phosphodiesterase 5 Inhibitor Sildenafil on Ischemia-Reperfusion-Induced Muscle Mitochondrial Dysfunction and Oxidative Stress. Antioxidants (Basel) 2019; 8:antiox8040093. [PMID: 30959961 PMCID: PMC6523910 DOI: 10.3390/antiox8040093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022] Open
Abstract
Lower-limb ischemia-reperfusion (IR) is frequent and associated with significant morbidity and mortality. Phosphodiesterase 5 inhibitors demonstrated antioxidant and beneficial effects in several organs submitted to IR, but their effects on muscle mitochondrial functions after lower-limb IR are unknown. Unilateral hindlimb IR (2 h tourniquet followed by 2 h reperfusion) without or with sildenafil (1mg/kg ip 30 minutes before ischemia) was performed in 18 mice. Maximal oxidative capacity (VMax), relative contribution of the mitochondrial respiratory chain complexes, calcium retention capacity (CRC)—a marker of apoptosis—and reactive oxygen species (ROS) production were determined using high-resolution respirometry, spectrofluorometry, and electron paramagnetic resonance in gastrocnemius muscles from both hindlimbs. IR significantly reduced mitochondrial VMax (from 11.79 ± 1.74 to 4.65 ± 1.11 pmol/s*mg wet weight (ww), p < 0.05, −50.2 ± 16.3%) and CRC (from 2.33 ± 0.41 to 0.84 ± 0.18 µmol/mg dry weight (dw), p < 0.05; −61.1 ± 6.8%). ROS tended to increase in the ischemic limb (+64.3 ± 31.9%, p = 0.08). Although tending to reduce IR-related ROS production (−42.4%), sildenafil failed to reduce muscle mitochondrial dysfunctions (−63.3 ± 9.2%, p < 0.001 and −55.2 ± 7.6% p < 0.01 for VMax, and CRC, respectively). In conclusion, lower limb IR impaired skeletal muscle mitochondrial function, but, despite tending to reduce ROS production, pharmacological preconditioning with sildenafil did not show protective effects.
Collapse
Affiliation(s)
- Liliane Tetsi
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
| | - Anne-Laure Charles
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
| | - Isabelle Georg
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
| | - Fabienne Goupilleau
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
| | - Anne Lejay
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
- Hôpitaux Universitaires de Strasbourg, Service de Physiologie et d'Explorations Fonctionnelles, 67000 Strasbourg, France.
- Hôpitaux Universitaires de Strasbourg, Service de Chirurgie vasculaire et de transplantation rénale, 67000 Strasbourg, France.
| | - Samy Talha
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
- Hôpitaux Universitaires de Strasbourg, Service de Physiologie et d'Explorations Fonctionnelles, 67000 Strasbourg, France.
| | - Myriam Maumy-Bertrand
- IRMA, équipe MoCo et LabEx IRMIA, 7 rue René Descartes, 67084 Strasbourg CEDEX, France.
| | - Claire Lugnier
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
| | - Bernard Geny
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
- Hôpitaux Universitaires de Strasbourg, Service de Physiologie et d'Explorations Fonctionnelles, 67000 Strasbourg, France.
| |
Collapse
|
36
|
Geny B, Charles AL, Lejay A, Meyer A. Pollution et stress oxydant. REVUE FRANÇAISE D'ALLERGOLOGIE 2019. [DOI: 10.1016/j.reval.2019.02.195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Chatel B, Messonnier LA, Vilmen C, Bernard M, Pialoux V, Bendahan D. Ischaemia-induced muscle metabolic abnormalities are poorly alleviated by endurance training in a mouse model of sickle cell disease. Exp Physiol 2019; 104:398-406. [PMID: 30578584 DOI: 10.1113/ep087430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/17/2018] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The aim of this study was to evaluate the potential beneficial effects of endurance training during an ischaemia-reperfusion protocol in a mouse model of sickle cell disease (SCD). What is the main finding and its importance? Endurance training did not reverse the metabolic defects induced by a simulated vaso-occlusive crisis in SCD mice, with regard to intramuscular acidosis, mitochondrial dysfunction or anatomical properties. Our results suggest that endurance training would reduce the number of vaso-occlusive crises rather than the complications related to vaso-occlusive crises. ABSTRACT The aim of this study was to investigate whether endurance training could limit the abnormalities described in a mouse model of sickle cell disease (SCD) in response to an ischaemia-reperfusion (I/R) protocol. Ten sedentary (HbSS-SED) and nine endurance-trained (HbSS-END) SCD mice were submitted to a standardized protocol of I/R of the leg, during which ATP, phosphocreatine and inorganic phosphate concentrations and intramuscular pH were measured using magnetic resonance spectroscopy. Forty-eight hours later, skeletal muscles were harvested. Oxidative stress markers were then measured. Although the time course of protons accumulation was slightly different between trained and sedentary mice (P < 0.05), the extent of acidosis was similar at the end of the ischaemic period. The initial rate of phosphocreatine resynthesis measured at blood flow restoration, illustrating mitochondrial function, was not altered in trained mice compared with sedentary mice. Although several oxidative stress markers were not different between groups (P > 0.05), the I/R-related increase of uric acid concentration observed in sedentary SCD mice (P < 0.05) was not present in the trained group. The spleen weight, generally used as a marker of the severity of the disease, was not different between groups (P > 0.05). In conclusion, endurance training did not limit the metabolic consequences of an I/R protocol in skeletal muscle of SCD mice, suggesting that the reduction in the severity of the disease previously demonstrated in the basal state would be attributable to a reduction of the occurrence of vaso-occlusive crises rather than a decrease of the deleterious effects of vaso-occlusive crises.
Collapse
Affiliation(s)
| | - Laurent A Messonnier
- Université Savoie Mont Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, F-73000, Chambéry, France
| | | | | | - Vincent Pialoux
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, Villeurbanne, France
| | | |
Collapse
|
38
|
Exacerbated metabolic changes in skeletal muscle of sickle cell mice submitted to an acute ischemia-reperfusion paradigm. Clin Sci (Lond) 2018; 132:2103-2115. [PMID: 30185507 DOI: 10.1042/cs20180268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/27/2018] [Accepted: 09/05/2018] [Indexed: 11/17/2022]
Abstract
Sickle cell disease (SCD) is characterized by painful vaso-occlusive crisis. While there are several metabolic abnormalities potentially associated with muscular ischemia-reperfusion cycles that could be harmful in the context of SCD, the metabolic consequences of such events are still unknown. Ten controls (HbAA), thirteen heterozygous (HbAS), and ten homozygous (HbSS) SCD mice were submitted to a standardized protocol of rest-ischemia-reperfusion of the left leg during which adenosine triphosphate, phosphocreatine, and inorganic phosphate concentrations as well as intramuscular pH were measured using phosphorous magnetic resonance spectroscopy (MRS). Forty-eight hours later, skeletal muscles were harvested. Oxidative stress markers were then measured on the tibialis anterior. At the end of the ischemic period, HbSS mice had a lower pH value as compared with the HbAA and HbAS groups (P<0.01). During the reperfusion period, the initial rate of phosphocreatine resynthesis was lower in HbSS mice as compared with HbAA (P<0.05) and HbAS (P<0.01) animals. No significant difference among groups was observed regarding oxidative stress markers. HbSS mice displayed a higher intramuscular acidosis during the ischemic period while their mitochondrial function was impaired as compared with their HbAA and HbAS counterparts. These metabolic abnormalities could worsen the complications related to the pathology of SCD.
Collapse
|
39
|
Lejay A, Paradis S, Lambert A, Charles AL, Talha S, Enache I, Thaveau F, Chakfe N, Geny B. N-Acetyl Cysteine Restores Limb Function, Improves Mitochondrial Respiration, and Reduces Oxidative Stress in a Murine Model of Critical Limb Ischaemia. Eur J Vasc Endovasc Surg 2018; 56:730-738. [PMID: 30172667 DOI: 10.1016/j.ejvs.2018.07.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/12/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVE/BACKGROUND The aim of this study was to investigate whether antioxidant therapy might decrease oxidative stress related deleterious effects in the setting of critical limb ischaemia (CLI). METHODS Twenty Swiss mice were submitted to sequential right femoral and iliac ligatures; the left limb served as control. The mice were assigned to two groups: in the first group (no-treatment group, n = 10) no treatment was administered; in the second group (N-acetyl cysteine [NAC] group, n = 10) NAC was administered by dissolution in drinking water for 4 weeks, starting on day 7, when CLI was effective. Clinical and functional scores were assessed by two blinded investigators. Mice were killed on day 40 and mitochondrial respiratory chain complex activities, calcium retention capacity, oxidative stress, and histological analysis were analysed. RESULTS Ischaemic muscles in the no-treatment group showed significantly impaired mitochondrial respiration and calcium retention capacity, with increased production of reactive oxygen species; but no statistical difference was noticed when comparing ischaemic muscles in the NAC group (n = 10) to contralateral muscles (n = 10) and to control muscles in the no-treatment group (n = 10). Ischaemic muscles in the no-treatment group exhibited myopathic features such as wider range in fibre size, rounded shape, centrally located nuclei, and smaller cross sectional areas, but none of these features were observed in contralateral muscles or in NAC-group muscles (ischaemic or controls). CONCLUSION Targeting inhibition of oxidative stress may be a potential therapeutic strategy for muscle protection in CLI and might be considered as potential adjunctive therapy to revascularisation procedures.
Collapse
Affiliation(s)
- Anne Lejay
- Université de Strasbourg, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de Physiologie, 67000 Strasbourg, France; Department of Vascular Surgery and Kidney Transplantation, University Hospital, B.P. 426, 67091 Strasbourg, France; Department of Physiology and Functional Explorations, University Hospital, B.P. 426, 67091 Strasbourg, France.
| | - Stéphanie Paradis
- Université de Strasbourg, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de Physiologie, 67000 Strasbourg, France
| | - Aude Lambert
- Department of Pharmacology, University Hospital, B.P. 426, 67091 Strasbourg, France
| | - Anne-Laure Charles
- Université de Strasbourg, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de Physiologie, 67000 Strasbourg, France
| | - Samy Talha
- Université de Strasbourg, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de Physiologie, 67000 Strasbourg, France
| | - Irina Enache
- Université de Strasbourg, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de Physiologie, 67000 Strasbourg, France
| | - Fabien Thaveau
- Université de Strasbourg, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de Physiologie, 67000 Strasbourg, France; Department of Vascular Surgery and Kidney Transplantation, University Hospital, B.P. 426, 67091 Strasbourg, France
| | - Nabil Chakfe
- Université de Strasbourg, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de Physiologie, 67000 Strasbourg, France; Department of Vascular Surgery and Kidney Transplantation, University Hospital, B.P. 426, 67091 Strasbourg, France
| | - Bernard Geny
- Université de Strasbourg, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de Physiologie, 67000 Strasbourg, France; Department of Physiology and Functional Explorations, University Hospital, B.P. 426, 67091 Strasbourg, France
| |
Collapse
|
40
|
Pottecher J, Adamopoulos C, Lejay A, Bouitbir J, Charles AL, Meyer A, Singer M, Wolff V, Diemunsch P, Laverny G, Metzger D, Geny B. Diabetes Worsens Skeletal Muscle Mitochondrial Function, Oxidative Stress, and Apoptosis After Lower-Limb Ischemia-Reperfusion: Implication of the RISK and SAFE Pathways? Front Physiol 2018; 9:579. [PMID: 29872405 PMCID: PMC5972292 DOI: 10.3389/fphys.2018.00579] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/01/2018] [Indexed: 12/22/2022] Open
Abstract
Objectives: Diabetic patients respond poorly to revascularization for peripheral arterial disease (PAD) but the underlying mechanisms are not well understood. We aimed to determine whether diabetes worsens ischemia-reperfusion (IR)-induced muscle dysfunction and the involvement of endogenous protective kinases in this process. Materials and Methods: Streptozotocin-induced diabetic and non-diabetic rats were randomized to control or to IR injury (3 h of aortic cross-clamping and 2 h of reperfusion). Mitochondrial respiration, reactive oxygen species (ROS) production, protein levels of superoxide dismutase (SOD2) and endogenous protective kinases (RISK and SAFE pathways) were investigated in rat gastrocnemius, together with upstream (GSK-3β) and downstream (cleaved caspase-3) effectors of apoptosis. Results: Although already impaired when compared to non-diabetic controls at baseline, the decline in mitochondrial respiration after IR was more severe in diabetic rats. In diabetic animals, IR-triggered oxidative stress (increased ROS production and reduced SOD2 levels) and effectors of apoptosis (reduced GSK-3β inactivation and higher cleaved caspase-3 levels) were increased to a higher level than in the non-diabetics. IR had no effect on the RISK pathway in non-diabetics and diabetic rats, but increased STAT 3 only in the latter. Conclusion: Type 1 diabetes worsens IR-induced skeletal muscle injury, endogenous protective pathways not being efficiently stimulated.
Collapse
Affiliation(s)
- Julien Pottecher
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, Strasbourg, France.,Pôle Anesthésie Réanimations Chirurgicales SAMU/SMUR (POLARS), Hôpital de Hautepierre, Service d'Anesthésie-Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Chris Adamopoulos
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, Strasbourg, France.,Department of Cardiology, St. Paul General Hospital, Thessaloniki, Greece
| | - Anne Lejay
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, Strasbourg, France.,Service de Chirurgie Vasculaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jamal Bouitbir
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, Strasbourg, France
| | - Anne-Laure Charles
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, Strasbourg, France.,Service de Physiologie et d'Explorations Fonctionnelles, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Alain Meyer
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, Strasbourg, France.,Service de Physiologie et d'Explorations Fonctionnelles, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, United Kingdom
| | - Valerie Wolff
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, Strasbourg, France.,Unité Neurovasculaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Pierre Diemunsch
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, Strasbourg, France.,Pôle Anesthésie Réanimations Chirurgicales SAMU/SMUR (POLARS), Hôpital de Hautepierre, Service d'Anesthésie-Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Gilles Laverny
- Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
| | - Daniel Metzger
- Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
| | - Bernard Geny
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, Strasbourg, France.,Service de Physiologie et d'Explorations Fonctionnelles, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
41
|
Protective effects of mitochondrion-targeted peptide SS-31 against hind limb ischemia-reperfusion injury. J Physiol Biochem 2018; 74:335-343. [PMID: 29589186 DOI: 10.1007/s13105-018-0617-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022]
Abstract
Hind limb ischemia-reperfusion injury is an important pathology in vascular surgery. Reactive oxygen species are thought to be involved in the pathogenesis of hind limb ischemia-reperfusion injury. SS-31, which belongs to a family of mitochondrion-targeted peptide antioxidants, was shown to reduce mitochondrial reactive oxygen species production. In this study, we investigated whether the treatment of SS-31 could protect hind limb from ischemia-reperfusion injury in a mouse model. The results showed that SS-31 treatment either before or after ischemia exhibited similar protective effects. Histopathologically, SS-31 treatment prevented the IR-induced histological deterioration compared with the corresponding vehicle control. SS-31 treatment diminished oxidative stress revealed by the reduced malondialdehyde level and increased activities and protein levels of Sod and catalase. Cellular ATP contents and mitochondrial membrane potential increased and the level of cytosolic cytC was decreased after SS-31 treatment in this IR model, demonstrating that mitochondria were protected. The IR-induced increase of levels of inflammatory factors, such as Tnf-α and Il-1β, was prevented by SS-31 treatment. In agreement with the reduced cytosolic cytC, cleaved-caspase 3 was kept at a very low level after SS-31 treatment. Overall, the effect of SS-31 treatment before ischemia is mildly more effective than that after ischemia. In conclusion, our results demonstrate that SS-31 confers a protective effect in the mouse model of hind limb ischemia-reperfusion injury preventatively and therapeutically.
Collapse
|
42
|
Franz A, Behringer M, Harmsen JF, Mayer C, Krauspe R, Zilkens C, Schumann M. Ischemic Preconditioning Blunts Muscle Damage Responses Induced by Eccentric Exercise. Med Sci Sports Exerc 2018; 50:109-115. [PMID: 28832392 DOI: 10.1249/mss.0000000000001406] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Ischemic preconditioning (IPC) is known to reduce muscle damage induced by ischemia and reperfusion injury during surgery. Because of similarities between the pathophysiological formation of ischemia and reperfusion injury and eccentric exercise-induced muscle damage (EIMD), as characterized by an intracellular accumulation of Ca, an increased production of reactive oxygen species, and increased proinflammatory signaling, the purpose of the present study was to investigate whether IPC performed before eccentric exercise may also protect against EIMD. METHODS Nineteen healthy men were matched to an eccentric-only (ECC; n = 9) or eccentric proceeded by IPC group (IPC + ECC; n = 10). The exercise protocol consisted of bilateral biceps curls (3 × 10 repetitions at 80% of the concentric one-repetition maximum). In IPC + ECC, IPC was applied bilaterally at the upper arms by a tourniquet (200 mm Hg) immediately before the exercise (3 × 5 min of occlusion, separated by 5 min of reperfusion). Creatine kinase (CK), arm circumference, subjective pain (visual analog scale score), and radial displacement (tensiomyography, maximal radial displacement) were assessed before IPC, preexercise, postexercise, and 20 min, 2 h, 24 h, 48 h, and 72 h postexercise. RESULTS CK differed from baseline only in ECC at 48 h (P < 0.001) and 72 h (P < 0.001) postexercise. After 24, 48, and 72 h, CK was increased in ECC compared with IPC + ECC (between groups: 24 h, P = 0.004; 48 h, P < 0.001; 72 h, P < 0.001). The visual analog scale score was significantly higher in ECC at 24-72 h postexercise when compared with IPC + ECC (between groups: all P values < 0.001). The maximal radial displacement was decreased on all postexercise days in ECC (all P values < 0.001) but remained statistically unchanged in IPC + ECC (between groups: P < 0.01). CONCLUSIONS These findings indicate that IPC performed before a bout of eccentric exercise of the elbow flexors blunts EIMD and exercise-induced pain while maintaining the contractile properties of the muscle.
Collapse
Affiliation(s)
- Alexander Franz
- 1Department of Orthopedics, University Hospital Duesseldorf, Duesseldorf, GERMANY; 2Faculty of Sport Sciences, Goethe University Frankfurt, Frankfurt, GERMANY; and 3Department of Molecular and Cellular Sport Medicine, German Sport University, Cologne, GERMANY
| | | | | | | | | | | | | |
Collapse
|
43
|
Mandel ER, Dunford EC, Abdifarkosh G, Turnbull PC, Perry CGR, Riddell MC, Haas TL. The superoxide dismutase mimetic tempol does not alleviate glucocorticoid-mediated rarefaction of rat skeletal muscle capillaries. Physiol Rep 2018; 5:e13243. [PMID: 28533261 PMCID: PMC5449555 DOI: 10.14814/phy2.13243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 12/17/2022] Open
Abstract
Sustained elevations in circulating glucocorticoids elicit reductions in skeletal muscle microvascular content, but little is known of the underlying mechanisms. We hypothesized that glucocorticoid‐induced oxidative stress contributes to this phenomenon. In rats that were implanted with corticosterone (CORT) or control pellets, CORT caused a significant decrease in muscle glutathione levels and a corresponding increase in protein carbonylation, an irreversible oxidative modification of proteins. Decreased endothelial nitric oxide synthase and increased endothelin‐1 mRNA levels were detected after 9 days of CORT, and blood flow to glycolytic muscles was diminished. Control and CORT rats were treated concurrently with drinking water containing the superoxide dismutase mimetic tempol (172 mg/L) or the α‐1 adrenergic receptor antagonist prazosin (50 mg/L) for 6 or 16 days. Both tempol and prazosin alleviated skeletal muscle protein carbonylation. Tempol failed to prevent CORT‐mediated capillary rarefaction and was ineffective in restoring skeletal muscle blood flow. In contrast, prazosin blocked capillary rarefaction and restored skeletal muscle blood flow to control levels. The failure of tempol to prevent CORT‐induced skeletal muscle microvascular rarefaction does not support a dominant role of superoxide‐induced oxidative stress in this process. Although a decrease in protein carbonylation was observed with prazosin treatment, our data suggest that the maintenance of skeletal muscle microvascular content is related more closely with counteracting the CORT‐mediated influence on skeletal muscle vascular tone.
Collapse
Affiliation(s)
- Erin R Mandel
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Emily C Dunford
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Ghoncheh Abdifarkosh
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Patrick C Turnbull
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Christopher G R Perry
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Michael C Riddell
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Tara L Haas
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Wilson RJ, Drake JC, Cui D, Lewellen BM, Fisher CC, Zhang M, Kashatus DF, Palmer LA, Murphy MP, Yan Z. Mitochondrial protein S-nitrosation protects against ischemia reperfusion-induced denervation at neuromuscular junction in skeletal muscle. Free Radic Biol Med 2018; 117:180-190. [PMID: 29432799 PMCID: PMC5896769 DOI: 10.1016/j.freeradbiomed.2018.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 01/08/2023]
Abstract
Deterioration of neuromuscular junction (NMJ) integrity and function is causal to muscle atrophy and frailty, ultimately hindering quality of life and increasing the risk of death. In particular, NMJ is vulnerable to ischemia reperfusion (IR) injury when blood flow is restricted followed by restoration. However, little is known about the underlying mechanism(s) and hence the lack of effective interventions. New evidence suggests that mitochondrial oxidative stress plays a causal role in IR injury, which can be precluded by enhancing mitochondrial protein S-nitrosation (SNO). To elucidate the role of IR and mitochondrial protein SNO in skeletal muscle, we utilized a clinically relevant model and showed that IR resulted in significant muscle and motor nerve injuries with evidence of elevated muscle creatine kinase in the serum, denervation at NMJ, myofiber degeneration and regeneration, as well as muscle atrophy. Interestingly, we observed that neuromuscular transmission improved prior to muscle recovery, suggesting the importance of the motor nerve in muscle functional recovery. Injection of a mitochondria-targeted S-nitrosation enhancing agent, MitoSNO, into ischemic muscle prior to reperfusion reduced mitochondrial oxidative stress in the motor nerve and NMJ, attenuated denervation at NMJ, and resulted in accelerated functional recovery of the muscle. These findings demonstrate that enhancing mitochondrial protein SNO protects against IR-induced denervation at NMJ in skeletal muscle and accelerates functional regeneration. This could be an efficacious intervention for protecting neuromuscular injury under the condition of IR and other related pathological conditions.
Collapse
Affiliation(s)
- Rebecca J Wilson
- Departments of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joshua C Drake
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Di Cui
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Bevan M Lewellen
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Carleigh C Fisher
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mei Zhang
- Departments of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - David F Kashatus
- Departments of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Lisa A Palmer
- Departments of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Zhen Yan
- Departments of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Departments of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Departments of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
45
|
Sultan S, Kavanagh EP, Hynes N. Minimising failure in critical lower limb ischaemia intervention: Adjuvant capillary bed recruitment is the missed opportunity. Vascular 2018; 26:449-454. [PMID: 29419359 DOI: 10.1177/1708538117753213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Critical limb ischaemia is the end stage of peripheral arterial disease before limb loss. Contemporary interventions to restore blood flow have high morbidity and mortality and fail to provide sustained restoration of peripheral circulation. Cell-based therapies designed to promote neovascularisation or angiogenesis have been shown in trials to be safe but clinically ineffective. Notwithstanding endless research in the area, no headway has been made in identifying a successful therapy designed specifically to target muscle disease in critical lower limb ischaemia. Thus, the quest to find an effective, lasting solution for critical lower limb ischaemia continues and requires more innovative therapeutic tactics. Our aim is to highlight the crucially interlinked role of the capillary bed, skeletal muscle mass and mitochondria in critical lower limb ischaemia patients and to identify novel therapeutic mechanisms that the vascular interventionalist can add to their armamentarium.
Collapse
Affiliation(s)
- Sherif Sultan
- 1 Department of Vascular and Endovascular Surgery, Western Vascular Institute, University Hospital Galway, National University of Ireland Galway, Galway, Ireland.,2 Department of Vascular Surgery and Endovascular Surgery, Galway Clinic, Doughiska, Galway, Ireland.,3 Royal College of Surgeons in Ireland Affiliated Hospitals, National University of Ireland Galway Affiliated Hospitals, Galway, Ireland
| | - Edel Patricia Kavanagh
- 1 Department of Vascular and Endovascular Surgery, Western Vascular Institute, University Hospital Galway, National University of Ireland Galway, Galway, Ireland.,2 Department of Vascular Surgery and Endovascular Surgery, Galway Clinic, Doughiska, Galway, Ireland.,3 Royal College of Surgeons in Ireland Affiliated Hospitals, National University of Ireland Galway Affiliated Hospitals, Galway, Ireland
| | - Niamh Hynes
- 1 Department of Vascular and Endovascular Surgery, Western Vascular Institute, University Hospital Galway, National University of Ireland Galway, Galway, Ireland.,2 Department of Vascular Surgery and Endovascular Surgery, Galway Clinic, Doughiska, Galway, Ireland.,3 Royal College of Surgeons in Ireland Affiliated Hospitals, National University of Ireland Galway Affiliated Hospitals, Galway, Ireland
| |
Collapse
|
46
|
Zhang S, Jiang S, Wang H, Di W, Deng C, Jin Z, Yi W, Xiao X, Nie Y, Yang Y. SIRT6 protects against hepatic ischemia/reperfusion injury by inhibiting apoptosis and autophagy related cell death. Free Radic Biol Med 2018; 115:18-30. [PMID: 29129519 DOI: 10.1016/j.freeradbiomed.2017.11.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 12/22/2022]
Abstract
Silent information regulator 6 (SIRT6), a class III histone deacetylase, has been revealed to participate in multiple metabolic processes in the liver, and it plays important roles in protecting against ischemia/reperfusion (I/R) injury in multiple organs. In this study, we explored whether SIRT6 is protective against hepatic I/R injury and elucidated the underlying mechanisms. The expression of SIRT6 was significantly decreased during reperfusion compared with the control group. SIRT6-LKO mice exhibited significantly aggravated oxidative stress, mitochondrial dysfunction, inflammatory responses, mitogen-activated protein kinase (MAPK) signaling activation, and apoptosis and autophagy related hepatocyte death compared with control mice. In vitro studies in SIRT6-KO hepatocytes exhibited similar results. In contrast, SIRT6 upregulation alleviated liver damage during hepatic I/R injury. Our study demonstrated for the first time that SIRT6 upregulation effectively protects against hepatic I/R injury. The underlying mechanisms involve the maintenance of oxidative homeostasis and mitochondrial function, which subsequently inhibit the inflammatory responses and MAPK signaling, and finally attenuate apoptosis and autophagy related hepatocyte death. These results suggest that the activation of SIRT6 exerts multifaceted protective effects during hepatic I/R injury, which can provide a novel therapeutic target for hepatic I/R injury.
Collapse
Affiliation(s)
- Song Zhang
- State Key Laboratory of Cancer Biology, Department of Gastroenterology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Haiping Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, 199 Changan South Road, Xi'an 710062, China
| | - Wencheng Di
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Chao Deng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Xiao Xiao
- State Key Laboratory of Cancer Biology, Department of Gastroenterology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, Department of Gastroenterology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China.
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
47
|
Wilson RJ, Drake JC, Cui D, Zhang M, Perry HM, Kashatus JA, Kusminski CM, Scherer PE, Kashatus DF, Okusa MD, Yan Z. Conditional MitoTimer reporter mice for assessment of mitochondrial structure, oxidative stress, and mitophagy. Mitochondrion 2017; 44:20-26. [PMID: 29274400 PMCID: PMC6387589 DOI: 10.1016/j.mito.2017.12.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/24/2017] [Accepted: 12/15/2017] [Indexed: 11/18/2022]
Abstract
Assessment of structural and functional changes of mitochondria is vital for biomedical research as mitochondria are the power plants essential for biological processes and tissue/organ functions. Others and we have developed a novel reporter gene, pMitoTimer, which codes for a redox sensitive mitochondrial targeted protein that switches from green fluorescence protein (GFP) to red fluorescent protein (DsRed) when oxidized. It has been shown in transfected cells, transgenic C. elegans and Drosophila m., as well as somatically transfected adult skeletal muscle that this reporter gene allows quantifiable assessment of mitochondrial structure, oxidative stress, and lysosomal targeting of mitochondria-containing autophagosomes. Here, we generated CAG-CAT-MitoTimer transgenic mice using a transgene containing MitoTimer downstream of LoxP-flanked bacterial chloramphenicol acetyltransferase (CAT) gene with stop codon under the control of the cytomegalovirus (CMV) enhancer fused to the chicken β-actin promoter (CAG). When CAG-CAT-MitoTimer mice were crossbred with various tissue-specific (muscle, adipose tissue, kidney, and pancreatic tumor) or global Cre transgenic mice, the double transgenic offspring showed MitoTimer expression in tissue-specific or global manner. Lastly, we show that hindlimb ischemia-reperfusion caused early, transient increases of mitochondrial oxidative stress, mitochondrial fragmentation and lysosomal targeting of autophagosomes containing mitochondria as well as a later reduction of mitochondrial content in skeletal muscle along with mitochondrial oxidative stress in sciatic nerve. Thus, we have generated conditional MitoTimer mice and provided proof of principle evidence of their utility to simultaneously assess mitochondrial structure, oxidative stress, and mitophagy in vivo in a tissue-specific, controllable fashion.
Collapse
Affiliation(s)
- Rebecca J Wilson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States; Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Joshua C Drake
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Di Cui
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Mei Zhang
- Department of Medicine-Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States; Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Heather M Perry
- Department of Medicine-Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Jennifer A Kashatus
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | | | - Philipp E Scherer
- Department of Internal Medicine, UT Southwestern, Dallas, TX, United States
| | - David F Kashatus
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Mark D Okusa
- Department of Medicine-Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Zhen Yan
- Department of Medicine-Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, United States; Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States.
| |
Collapse
|
48
|
Franz A, Queitsch FP, Behringer M, Mayer C, Krauspe R, Zilkens C. Blood flow restriction training as a prehabilitation concept in total knee arthroplasty: A narrative review about current preoperative interventions and the potential impact of BFR. Med Hypotheses 2017; 110:53-59. [PMID: 29317069 DOI: 10.1016/j.mehy.2017.10.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/28/2017] [Indexed: 01/09/2023]
Abstract
Osteoarthritis of the knee is one of the most commonly diagnosed joint ailments and responsible for increased rates of total knee arthroplasty surgeries worldwide. Whereas the surgical approach is able to diminish the perceived knee pain of concerned patients', the postoperative recovery is often accompanied by persistent skeletal muscle dysfunctions and atrophy, which is responsible for functional deficits for up to several years. Recent findings indicate that surgery induced adverse effects on skeletal muscles are largely associated with the use of pneumatic tourniquets, wherefore several studies try to reduce tourniquet use in orthopedic surgery. However, due to comparable incidence of muscle impairment and increased surgical challenge, the most frequently applied surgical technique in TKA is still associated with the use of tourniquets. When attenuating TKA induced adverse effects, the preoperative preparation of patients by specific exercises (called prehabilitation) was able to enhance preoperative overall fitness through associated accelerated recovery. Based on patients' limited functional activity, prehabilitation techniques have to be particularly designed to allow regular adherence. The present paper is based on a narrative review of current literature, and provides a novel hypothesis by which blood flow restriction exercises (BFR) are able to improve patients' compliance to prehabilitation. BFR training is characterized by the application of low-resistance exercise with similar intensities as daily living tasks in association with a suppression of venous blood flow in an extremity, achieving significant morphological and neuromuscular adaptations in skeletal muscles. In addition, preoperative enhancements in muscle health with corresponding benefits in overall fitness, BFR induced molecular alterations could also be able to interfere with TKA induced pathological signaling. Therefore, based on the known major impact of BFR on skeletal muscle physiology, the present paper aims to illustrate the potential beneficial impact of BFR training as a prehabilitation concept to promote patients regular adherence to preoperative exercises and thus achieve an accelerated recovery and increases in patients' satisfaction.
Collapse
Affiliation(s)
- Alexander Franz
- Department of Orthopedics, University Hospital Duesseldorf, Duesseldorf, Germany.
| | | | - Michael Behringer
- Faculty of Sport Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Constantin Mayer
- Department of Orthopedics, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Rüdiger Krauspe
- Department of Orthopedics, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Christoph Zilkens
- Department of Orthopedics, University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
49
|
IFN-β-induced reactive oxygen species and mitochondrial damage contribute to muscle impairment and inflammation maintenance in dermatomyositis. Acta Neuropathol 2017. [PMID: 28623559 DOI: 10.1007/s00401-017-1731-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dermatomyositis (DM) is an autoimmune disease associated with enhanced type I interferon (IFN) signalling in skeletal muscle, but the mechanisms underlying muscle dysfunction and inflammation perpetuation remain unknown. Transcriptomic analysis of early untreated DM muscles revealed that the main cluster of down-regulated genes was mitochondria-related. Histochemical, electron microscopy, and in situ oxygraphy analysis showed mitochondrial abnormalities, including increased reactive oxygen species (ROS) production and decreased respiration, which was correlated with low exercise capacities and a type I IFN signature. Moreover, IFN-β induced ROS production in human myotubes was found to contribute to mitochondrial malfunctions. Importantly, the ROS scavenger N-acetyl cysteine (NAC) prevented mitochondrial dysfunctions, type I IFN-stimulated transcript levels, inflammatory cell infiltrate, and muscle weakness in an experimental autoimmune myositis mouse model. Thus, these data highlight a central role of mitochondria and ROS in DM. Mitochondrial dysfunctions, mediated by IFN-β induced-ROS, contribute to poor exercise capacity. In addition, mitochondrial dysfunctions increase ROS production that drive type I IFN-inducible gene expression and muscle inflammation, and may thus self-sustain the disease. Given that current DM treatments only induce partial recovery and expose to serious adverse events (including muscular toxicity), protecting mitochondria from dysfunctions may open new therapeutic avenues for DM.
Collapse
|
50
|
Lejay A, Laverny G, Paradis S, Schlagowski AI, Charles AL, Singh F, Zoll J, Thaveau F, Lonsdorfer E, Dufour S, Favret F, Wolff V, Metzger D, Chakfe N, Geny B. Moderate Exercise Allows for shorter Recovery Time in Critical Limb Ischemia. Front Physiol 2017; 8:523. [PMID: 28790926 PMCID: PMC5524729 DOI: 10.3389/fphys.2017.00523] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/07/2017] [Indexed: 12/25/2022] Open
Abstract
Whether and how moderate exercise might allow for accelerated limb recovery in chronic critical limb ischemia (CLI) remains to be determined. Chronic CLI was surgically induced in mice, and the effect of moderate exercise (training five times per week over a 3-week period) was investigated. Tissue damages and functional scores were assessed on the 4th, 6th, 10th, 20th, and 30th day after surgery. Mice were sacrificed 48 h after the last exercise session in order to assess muscle structure, mitochondrial respiration, calcium retention capacity, oxidative stress and transcript levels of genes encoding proteins controlling mitochondrial functions (PGC1α, PGC1β, NRF1) and anti-oxidant defenses markers (SOD1, SOD2, catalase). CLI resulted in tissue damages and impaired functional scores. Mitochondrial respiration and calcium retention capacity were decreased in the ischemic limb of the non-exercised group (Vmax = 7.11 ± 1.14 vs. 9.86 ± 0.86 mmol 02/min/g dw, p < 0.001; CRC = 7.01 ± 0.97 vs. 11.96 ± 0.92 microM/mg dw, p < 0.001, respectively). Moderate exercise reduced tissue damages, improved functional scores, and restored mitochondrial respiration and calcium retention capacity in the ischemic limb (Vmax = 9.75 ± 1.00 vs. 9.82 ± 0.68 mmol 02/min/g dw; CRC = 11.36 ± 1.33 vs. 12.01 ± 1.24 microM/mg dw, respectively). Exercise also enhanced the transcript levels of PGC1α, PGC1β, NRF1, as well as SOD1, SOD2, and catalase. Moderate exercise restores mitochondrial respiration and calcium retention capacity, and it has beneficial functional effects in chronic CLI, likely by stimulating reactive oxygen species-induced biogenesis and anti-oxidant defenses. These data support further development of exercise therapy even in advanced peripheral arterial disease.
Collapse
Affiliation(s)
- Anne Lejay
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Service de Physiologie et Explorations Fonctionnelles Respiratoires, Hôpitaux Universitaires de StrasbourgStrasbourg, France.,Service de Chirurgie Vasculaire et Transplantation Rénale, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| | - Gilles Laverny
- Institut de Génétique et Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104/Institut National de la Santé et de la Recherche Médicale U964, Université de StrasbourgStrasbourg, France
| | - Stéphanie Paradis
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France
| | - Anna-Isabel Schlagowski
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France
| | - Anne-Laure Charles
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Service de Physiologie et Explorations Fonctionnelles Respiratoires, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| | - François Singh
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France
| | - Joffrey Zoll
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Service de Physiologie et Explorations Fonctionnelles Respiratoires, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| | - Fabien Thaveau
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Service de Chirurgie Vasculaire et Transplantation Rénale, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| | - Evelyne Lonsdorfer
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Service de Physiologie et Explorations Fonctionnelles Respiratoires, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| | - Stéphane Dufour
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Faculté des Sciences du Sport, Université de StrasbourgStrasbourg, France
| | - Fabrice Favret
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Faculté des Sciences du Sport, Université de StrasbourgStrasbourg, France
| | - Valérie Wolff
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Unité Neurovasculaire, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| | - Daniel Metzger
- Institut de Génétique et Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104/Institut National de la Santé et de la Recherche Médicale U964, Université de StrasbourgStrasbourg, France
| | - Nabil Chakfe
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Service de Chirurgie Vasculaire et Transplantation Rénale, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| | - Bernard Geny
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Service de Physiologie et Explorations Fonctionnelles Respiratoires, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| |
Collapse
|