1
|
Mishra AK, Hossain MM, Sata TN, Pant K, Yadav AK, Sah AK, Gupta P, Ismail M, Nayak B, Shalimar, Venugopal SK. ALR inhibits HBV replication and autophagosome formation by ameliorating HBV-induced ROS production in hepatic cells. Virus Genes 2025; 61:167-178. [PMID: 39934594 DOI: 10.1007/s11262-025-02139-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
HBV has a small genome and thrives in the infected hepatocytes by hijacking the cellular machinery and cellular pathways. HBV induces incomplete autophagy for its replication and survival. This study showed that HBV replication induces Reactive oxygen species (ROS) production, which in turn augments the formation of autophagosomes. Augmenter of liver regeneration (ALR) is a sufhydryl oxidase and has an anti-oxidative property. We sought to determine the interplay between HBV and antioxidant protein ALR. We showed that HBV downregulated ALR expression in hepatic cells. There was increased ROS production in HBV-infected cells while ALR downregulated ROS levels and expression of NADPH oxidase NOX4. N-acetyl cysteine, a ROS scavenger, downregulated ROS level and autophagosome formation in HBV-expressing cells. ALR overexpression in HBV-expressing cells downregulated the expression of autophagy marker proteins while upregulated the expression of p-MTOR. ALR overexpression decreased the expression of HBx, HBsAg, and total HBV load. This study showed that HBx relieved ALR-mediated inhibition by upregulating the miR-181a expression in HBV-infected cells, which in turn downregulated ALR expression.
Collapse
Affiliation(s)
- Amit Kumar Mishra
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Md Musa Hossain
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
| | - Teja Naveen Sata
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
| | - Kishor Pant
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Ajay K Yadav
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
- Indiana University, Bloomington, IN, USA
| | - Amrendra Kumar Sah
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
| | - Parul Gupta
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
- UT Southwestern Medical Center, Dallas, TX, USA
| | - Md Ismail
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
| | - Baibaswata Nayak
- Dept. of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Shalimar
- Dept. of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Senthil Kumar Venugopal
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India.
| |
Collapse
|
2
|
Chen L, Kang X, Meng X, Huang L, Du Y, Zeng Y, Liao C. MALAT1-mediated EZH2 Recruitment to the GFER Promoter Region Curbs Normal Hepatocyte Proliferation in Acute Liver Injury. J Clin Transl Hepatol 2023; 11:97-109. [PMID: 36406327 PMCID: PMC9647095 DOI: 10.14218/jcth.2021.00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/12/2021] [Accepted: 03/04/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS The goal of this study was to investigate the mechanism by which the long noncoding RNA MALAT1 inhibited hepatocyte proliferation in acute liver injury (ALI). METHODS Lipopolysaccharide (LPS) was used to induce an ALI cellular model in HL7702 cells, in which lentivirus vectors containing MALAT1/EZH2/GFER overexpression or knockdown were introduced. A series of experiments were performed to determine their roles in liver injury, oxidative stress injury, and cell biological processes. The interaction of MALAT1 with EZH2 and enrichment of EZH2 and H3K27me3 in the GFER promoter region were identified. Rats were treated with MALAT1 knockdown or GFER overexpression before LPS induction to verify the results derived from the in vitro assay. RESULTS MALAT1 levels were elevated and GFER levels were reduced in ALI patients and the LPS-induced cell model. MALAT1 knockdown or GFER overexpression suppressed cell apoptosis and oxidative stress injury induced cell proliferation, and reduced ALI. Functionally, MALAT1 interacted directly with EZH2 and increased the enrichment of EZH2 and H3K27me3 in the GFER promoter region to reduce GFER expression. Moreover, MALAT1/EZH2/GFER was activated the AMPK/mTOR signaling pathway. CONCLUSION Our study highlighted the inhibitory role of reduced MALAT1 in ALI through the modulation of EZH2-mediated GFER.
Collapse
Affiliation(s)
- Li Chen
- Department of Infectious Diseases, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Correspondence to: Li Chen, Department of Infectious Diseases, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan 410013, China. ORCID: https://orcid.org/0000-0003-2385-2858. Tel: +86-13755192409, E-mail:
| | - Xintong Kang
- Department of Hepatology, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Xiujuan Meng
- Hospital-Acquired Infection Control Center, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Liang Huang
- Department of Hepatology, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Yiting Du
- Department of Emergency, Chengdu Women’s and Children’s Central Hospital, Chengdu, Sichuan, China
| | - Yilan Zeng
- Department of Hepatology, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Chunfeng Liao
- Department of Cardiovascular Medicine, The First Hospital of Changsha, Changsha, Hunan, China
| |
Collapse
|
3
|
Dong Y, Zhang Y, Feng Y, An W. The protective roles of augmenter of liver regeneration in hepatocytes in the non-alcoholic fatty liver disease. Front Pharmacol 2022; 13:928606. [PMID: 36304168 PMCID: PMC9592723 DOI: 10.3389/fphar.2022.928606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) occurs in 25% of the global population and manifests as lipid deposition, hepatocyte injury, activation of Kupffer and stellate cells, and steatohepatitis. Predominantly expressed in hepatocytes, the augmenter of liver regeneration (ALR) is a key factor in liver regulation that can alleviate fatty liver disease and protect the liver from abnormal liver lipid metabolism. ALR has three isoforms (15-, 21-, and 23-kDa), amongst which 23-kDa ALR is the most extensively studied. The 23-kDa ALR isoform is a sulfhydryl oxidase that resides primarily in the mitochondrial intermembrane space (IMS), whereby it protects the liver against various types of injury. In this review, we describe the role of ALR in regulating hepatocytes in the context of NAFLD. We also discuss questions about ALR that remain to be explored in the future. In conclusion, ALR appears to be a promising therapeutic target for treating NAFLD.
Collapse
Affiliation(s)
- Yuan Dong
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuejie Zhang
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yingmei Feng
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yingmei Feng, ; Wei An,
| | - Wei An
- Department of Cell Biology, Capital Medical University and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Beijing, China
- *Correspondence: Yingmei Feng, ; Wei An,
| |
Collapse
|
4
|
Gupta P, Sata TN, Ahamad N, Islam R, Yadav AK, Mishra A, Nithyananthan S, Thirunavukkarasu C, Sanal MG, Venugopal SK. Augmenter of liver regeneration enhances cell proliferation through the microRNA-26a/Akt/cyclin D1 pathway in hepatic cells. Hepatol Res 2019; 49:1341-1352. [PMID: 31267617 DOI: 10.1111/hepr.13404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/23/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
AIM Hepatocytes can proliferate and regenerate when injured by toxins, viral infections, and so on. Augmenter of liver regeneration (ALR) is a key regulator of liver regeneration, but the mechanism is unknown. The role of ALR in other cell types is not known. In the present study, we investigated the relationship between microRNA (miRNA)-26a and ALR in the Huh7 cell line and adipose tissue-derived mesenchymal cells from chronic liver disease patients and healthy individuals. METHODS Huh7 cells were transfected independently with ALR and miRNA-26a expression vectors, and their effects on cell proliferation, the expression of miRNA-26a, and activation of the phosphatase and tensin homolog and Akt signaling pathways were determined. The experiments were repeated on mesenchymal stem cells derived from healthy individuals and chronic liver disease patients to see whether the observations can be replicated in primary cells. RESULTS Overexpression of ALR or miRNA-26a resulted in an increase of the phosphorylation of Akt and cyclin D1 expression, whereas it resulted in decreased levels of p-GSK-3β and phosphatase and tensin homolog in Huh7 cells. The inhibition of ALR expression by ALR siRNA or anti-miR-26a decreased the Akt/cyclin D1 signaling pathway, leading to decreased proliferation. Mesenchymal stem cells isolated from the chronic liver disease patients had a higher ALR expression, while the mesenchymal stem cells isolated from healthy volunteers responded to the growth factor treatments for increased ALR expression. It was found that there was a significant increase in miRNA-26a expression and proliferation. CONCLUSIONS These data clearly showed that ALR induced the expression of miRNA-26a, which downregulated phosphatase and tensin homolog, resulting in an increased p-Akt/cyclin D1 pathway and enhanced proliferation in hepatic cells.
Collapse
Affiliation(s)
- Parul Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| | - Teja Naveen Sata
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| | - Naushad Ahamad
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| | - Rakibul Islam
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| | - Ajay K Yadav
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| | - Amit Mishra
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| | - Subramaniyam Nithyananthan
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, Tamil Nadu, India
| | | | - M G Sanal
- Department of Research, Institute of Liver and Biliary Sciences, D1 Vasant Kunj, New Delhi, India
| | - Senthil K Venugopal
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| |
Collapse
|
5
|
Augmenter of liver regeneration: Essential for growth and beyond. Cytokine Growth Factor Rev 2018; 45:65-80. [PMID: 30579845 DOI: 10.1016/j.cytogfr.2018.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022]
Abstract
Liver regeneration is a well-orchestrated process that is triggered by tissue loss due to trauma or surgical resection and by hepatocellular death induced by toxins or viral infections. Due to the central role of the liver for body homeostasis, intensive research was conducted to identify factors that might contribute to hepatic growth and regeneration. Using a model of partial hepatectomy several factors including cytokines and growth factors that regulate this process were discovered. Among them, a protein was identified to specifically support liver regeneration and therefore was named ALR (Augmenter of Liver Regeneration). ALR protein is encoded by GFER (growth factor erv1-like) gene and can be regulated by various stimuli. ALR is expressed in different tissues in three isoforms which are associated with multiple functions: The long forms of ALR were found in the inner-mitochondrial space (IMS) and the cytosol. Mitochondrial ALR (23 kDa) was shown to cooperate with Mia40 to insure adequate protein folding during import into IMS. On the other hand short form ALR, located mainly in the cytosol, was attributed with anti-apoptotic and anti-oxidative properties as well as its inflammation and metabolism modulating effects. Although a considerable amount of work has been devoted to summarizing the knowledge on ALR, an investigation of ALR expression in different organs (location, subcellular localization) as well as delineation between the isoforms and function of ALR is still missing. This review provides a comprehensive evaluation of ALR structure and expression of different ALR isoforms. Furthermore, we highlight the functional role of endogenously expressed and exogenously applied ALR, as well as an analysis of the clinical importance of ALR, with emphasis on liver disease and in vivo models, as well as the consequences of mutations in the GFER gene.
Collapse
|
6
|
Gupta P, Venugopal SK. Augmenter of liver regeneration: A key protein in liver regeneration and pathophysiology. Hepatol Res 2018; 48:587-596. [PMID: 29633440 DOI: 10.1111/hepr.13077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/10/2018] [Accepted: 03/29/2018] [Indexed: 12/22/2022]
Abstract
Liver is constantly exposed to pathogens, viruses, chemicals, and toxins, and several of them cause injury, leading to the loss of liver mass and sometimes resulting in cirrhosis and cancer. Under physiological conditions, liver can regenerate if the loss of cells is less than the proliferation of hepatocytes. If the loss is more than the proliferation, the radical treatment available is liver transplantation. Due to this reason, the search for an alternative therapeutic agent has been the focus of liver research. Liver regeneration is regulated by several growth factors; one of the key factors is augmenter of liver regeneration (ALR). Involvement of ALR has been reported in crucial processes such as oxidative phosphorylation, maintenance of mitochondria and mitochondrial biogenesis, and regulation of autophagy and cell proliferation. Augmenter of liver regeneration has been observed to be involved in liver regeneration by not only overcoming cell cycle inhibition but by maintaining the stem cell pool as well. These observations have created curiosity regarding the possible role of ALR in maintenance of liver health. Thus, this review brings a concise presentation of the work done in areas exploring the role of ALR in normal liver physiology and in liver health maintenance by fighting liver diseases, such as liver failure, non-alcoholic fatty liver disease/non-alcoholic steatohepatitis, viral infections, cirrhosis, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Parul Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | | |
Collapse
|
7
|
Lack of hepatic stimulator substance expression promotes hepatocellular carcinoma metastasis partly through ERK-activated epithelial-mesenchymal transition. J Transl Med 2018; 98:871-882. [PMID: 29497174 DOI: 10.1038/s41374-018-0039-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/18/2018] [Accepted: 01/30/2018] [Indexed: 12/29/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies due to its high frequency of metastasis via the epithelial-mesenchymal transition (EMT) pathway. Hepatic stimulator substance (HSS) can protect hepatocytes from injury and promote liver growth. Recent studies indicated that HSS expression is increased in HCC tissues; however, whether HSS expression is potentially associated with HCC metastasis, particularly through the EMT pathway, remains largely unknown. In this study, the relationship between HSS expression and HCC metastasis was investigated in clinical samples of HCC. Meanwhile, the regulation of HCC metastasis and EMT progression by HSS were also analyzed in both in vitro and in vivo models. The results showed that the expression of 23 kDa HSS was significantly decreased among HCC tissues with angioinvasion. A decrease in HSS predicted poor prognosis with a lower survival rate. Furthermore, the growth of xenograft tumors after inoculating MHCC97H-HSS-shRNA (HCC) cells into nude mice was notably accelerated compared to those inoculated with HSS-expressing cells. Further analysis revealed that knockdown of HSS expression in both MHCC97H and HepG2 cells could enhance the migration of these HCC cells. Concurrently, interference of HSS expression by shRNA promoted conversion of morphologically epithelial-like HCC cells into mesenchymal-like cells, together with downregulations of epithelial markers (such as E-cadherin and zonula occludens-1) and upregulation of mesenchymal-like makers (such as α-SMA, β-catenin, and fibronectin). Furthermore, it was demonstrated that, as well as promoting EMT, HSS-shRNA induced the phosphorylation of extracellular signal-regulated kinase (ERK) and elevated the expression of the EMT-related transcription factor Snail. Specific inhibition of HSS-shRNA-induced ERK phosphorylation by PD98059 attenuated HCC cell migration in a dose-dependent manner. In conclusion, we demonstrated that downregulation of HSS expression contributes to HCC metastasis partially through the ERK-activated EMT pathway.
Collapse
|
8
|
Weiss TS, Lupke M, Ibrahim S, Buechler C, Lorenz J, Ruemmele P, Hofmann U, Melter M, Dayoub R. Attenuated lipotoxicity and apoptosis is linked to exogenous and endogenous augmenter of liver regeneration by different pathways. PLoS One 2017; 12:e0184282. [PMID: 28877220 PMCID: PMC5587239 DOI: 10.1371/journal.pone.0184282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) covers a spectrum from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. Free fatty acids (FFA) induce steatosis and lipo-toxicity and correlate with severity of NAFLD. In this study we aimed to investigate the role of exogenous and endogenous ALR (augmenter of liver regeneration) for FFA induced ER (endoplasmatic reticulum) -stress and lipoapoptosis. Primary human hepatocytes or hepatoma cells either treated with recombinant human ALR (rhALR, 15kDa) or expressing short form ALR (sfALR, 15kDa) were incubated with palmitic acid (PA) and analyzed for lipo-toxicity, -apoptosis, activation of ER-stress response pathways, triacylglycerides (TAG), mRNA and protein expression of lipid metabolizing genes. Both, exogenous rhALR and cytosolic sfALR reduced PA induced caspase 3 activity and Bax protein expression and therefore lipotoxicity. Endogenous sfALR but not rhALR treatment lowered TAG levels, diminished activation of ER-stress mediators C-Jun N-terminal kinase (JNK), X-box binding protein-1 (XBP1) and proapoptotic transcription factor C/EBP-homologous protein (CHOP), and reduced death receptor 5 protein expression. Cellular ALR exerts its lipid lowering and anti-apoptotic actions by enhancing FABP1, which binds toxic FFA, increasing mitochondrial β-oxidation by elevating the mitochondrial FFA transporter CPT1α, and decreasing ELOVL6, which delivers toxic FFA metabolites. We found reduced hepatic mRNA levels of ALR in a high fat diet mouse model, and of ALR and FOXA2, a transcription factor inducing ALR expression, in human steatotic as well as NASH liver samples, which may explain increased lipid deposition and reduced β-oxidation in NASH patients. Present study shows that exogenous and endogenous ALR reduce PA induced lipoapoptosis. Furthermore, cytosolic sfALR changes mRNA and protein expression of genes regulating lipid metabolism, reduces ER-stress finally impeding progression of NASH.
Collapse
Affiliation(s)
- Thomas S. Weiss
- Children’s University Hospital, University of Regensburg, Regensburg, Germany
- Center for Liver Cell Research, University of Regensburg Hospital, Regensburg, Germany
- * E-mail:
| | - Madeleine Lupke
- Children’s University Hospital, University of Regensburg, Regensburg, Germany
| | - Sara Ibrahim
- Children’s University Hospital, University of Regensburg, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Julia Lorenz
- Children’s University Hospital, University of Regensburg, Regensburg, Germany
| | - Petra Ruemmele
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | - Michael Melter
- Children’s University Hospital, University of Regensburg, Regensburg, Germany
| | - Rania Dayoub
- Children’s University Hospital, University of Regensburg, Regensburg, Germany
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syria
| |
Collapse
|
9
|
Han LH, Dong LY, Yu H, Sun GY, Wu Y, Gao J, Thasler W, An W. Deceleration of liver regeneration by knockdown of augmenter of liver regeneration gene is associated with impairment of mitochondrial DNA synthesis in mice. Am J Physiol Gastrointest Liver Physiol 2015; 309:G112-22. [PMID: 25977511 DOI: 10.1152/ajpgi.00435.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/11/2015] [Indexed: 01/31/2023]
Abstract
Hepatic stimulator substance, also known as augmenter of liver regeneration (ALR), is a novel hepatic mitogen that stimulates liver regeneration after partial hepatectomy (PH). Recent work has indicated that a lack of ALR expression inhibited liver regeneration in rats, and the mechanism seems to be related to increased cell apoptosis. The mitochondria play an important role during liver regeneration. Adequate ATP supply, which is largely dependent on effective mitochondrial biogenesis, is essential for progress of liver regeneration. However, ALR gene expression during liver regeneration, particularly its function with mitochondrial DNA synthesis, remains poorly understood. In this study, ALR expression in hepatocytes of mice was suppressed with ALR short-hairpin RNA interference or ALR deletion (knockout, KO). The ALR-defective mice underwent PH, and the liver was allowed to regenerate for 1 wk. Analysis of liver growth and its correlation with mitochondrial biogenesis showed that both ALR mRNA and protein levels increased robustly in control mice with a maximum at days 3 and 4 post-PH. However, ALR knockdown inhibited hepatic DNA synthesis and decelerated liver regeneration after PH. Furthermore, both in the ALR-knockdown and ALR-KO mice, expression of mitochondrial transcription factor A and peroxisome proliferator-activated receptor-γ coactivator-1α were reduced, resulting in impaired mitochondrial biogenesis. In conclusion, ALR is apparently required to ensure appropriate liver regeneration following PH in mice, and deletion of the ALR gene may delay liver regeneration in part due to impaired mitochondrial biogenesis.
Collapse
Affiliation(s)
- Li-hong Han
- Department of Cell Biology and Municipal Laboratory of Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China; and
| | - Ling-yue Dong
- Department of Cell Biology and Municipal Laboratory of Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China; and
| | - Hao Yu
- Department of Cell Biology and Municipal Laboratory of Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China; and
| | - Guang-yong Sun
- Department of Cell Biology and Municipal Laboratory of Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China; and
| | - Yuan Wu
- Department of Cell Biology and Municipal Laboratory of Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China; and
| | - Jian Gao
- Department of Cell Biology and Municipal Laboratory of Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China; and
| | | | - Wei An
- Department of Cell Biology and Municipal Laboratory of Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China; and
| |
Collapse
|