1
|
Feng LL, Bie SY, Deng ZH, Bai SM, Shi J, Qin CL, Liu HL, Li JX, Chen WY, Zhou JY, Jiao CM, Ma Y, Qiu MB, Ai HS, Zheng J, Hung MC, Wang YL, Wan XB, Fan XJ. Ubiquitin-induced RNF168 condensation promotes DNA double-strand break repair. Proc Natl Acad Sci U S A 2024; 121:e2322972121. [PMID: 38968116 PMCID: PMC11252754 DOI: 10.1073/pnas.2322972121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/22/2024] [Indexed: 07/07/2024] Open
Abstract
Rapid accumulation of repair factors at DNA double-strand breaks (DSBs) is essential for DSB repair. Several factors involved in DSB repair have been found undergoing liquid-liquid phase separation (LLPS) at DSB sites to facilitate DNA repair. RNF168, a RING-type E3 ubiquitin ligase, catalyzes H2A.X ubiquitination for recruiting DNA repair factors. Yet, whether RNF168 undergoes LLPS at DSB sites remains unclear. Here, we identified K63-linked polyubiquitin-triggered RNF168 condensation which further promoted RNF168-mediated DSB repair. RNF168 formed liquid-like condensates upon irradiation in the nucleus while purified RNF168 protein also condensed in vitro. An intrinsically disordered region containing amino acids 460-550 was identified as the essential domain for RNF168 condensation. Interestingly, LLPS of RNF168 was significantly enhanced by K63-linked polyubiquitin chains, and LLPS largely enhanced the RNF168-mediated H2A.X ubiquitination, suggesting a positive feedback loop to facilitate RNF168 rapid accumulation and its catalytic activity. Functionally, LLPS deficiency of RNF168 resulted in delayed recruitment of 53BP1 and BRCA1 and subsequent impairment in DSB repair. Taken together, our finding demonstrates the pivotal effect of LLPS in RNF168-mediated DSB repair.
Collapse
Affiliation(s)
- Li-Li Feng
- Department of Pathology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450052, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan450052, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong510060, China
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong510060, China
| | - Shu-Ying Bie
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong510655, China
| | - Zhi-Heng Deng
- Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Shao-Mei Bai
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong510655, China
| | - Jie Shi
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong510655, China
- Department of Radiation Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, China
| | - Cao-Litao Qin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong510655, China
- Department of Radiation Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, China
| | - Huan-Lei Liu
- Department of Pathology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450052, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan450052, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450052, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan450052, China
| | - Jia-Xu Li
- Department of Pathology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450052, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan450052, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450052, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan450052, China
| | - Wan-Ying Chen
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan450052, China
| | - Jin-Ying Zhou
- Department of Pathology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450052, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan450052, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450052, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan450052, China
| | - Chun-Mei Jiao
- Department of Pathology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450052, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan450052, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450052, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan450052, China
| | - Yi Ma
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong510655, China
| | - Meng-Bo Qiu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan450052, China
| | - Hua-Song Ai
- Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Jian Zheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong510655, China
- Department of Radiation Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, China
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung406, Taiwan (Republic of China)
| | - Yun-Long Wang
- Department of Pathology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450052, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan450052, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450052, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan450052, China
| | - Xiang-Bo Wan
- Department of Pathology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450052, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan450052, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450052, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan450052, China
| | - Xin-Juan Fan
- Department of Pathology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450052, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan450052, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan450052, China
| |
Collapse
|
2
|
Packard JE, Kumar N, Weitzman MD, Dembowski JA. Identifying Protein Interactions with Viral DNA Genomes during Virus Infection. Viruses 2024; 16:845. [PMID: 38932138 PMCID: PMC11209293 DOI: 10.3390/v16060845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Viruses exploit the host cell machinery to enable infection and propagation. This review discusses the complex landscape of DNA virus-host interactions, focusing primarily on herpesviruses and adenoviruses, which replicate in the nucleus of infected cells, and vaccinia virus, which replicates in the cytoplasm. We discuss experimental approaches used to discover and validate interactions of host proteins with viral genomes and how these interactions impact processes that occur during infection, including the host DNA damage response and viral genome replication, repair, and transcription. We highlight the current state of knowledge regarding virus-host protein interactions and also outline emerging areas and future directions for research.
Collapse
Affiliation(s)
- Jessica E. Packard
- Department of Biological Sciences, School of Science and Engineering, Duquesne University, Pittsburgh, PA 15282, USA
| | - Namrata Kumar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew D. Weitzman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jill A. Dembowski
- Department of Biological Sciences, School of Science and Engineering, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
3
|
Muggiolu G, Torfeh E, Simon M, Devès G, Seznec H, Barberet P. Recruitment Kinetics of XRCC1 and RNF8 Following MeV Proton and α-Particle Micro-Irradiation. BIOLOGY 2023; 12:921. [PMID: 37508352 PMCID: PMC10376363 DOI: 10.3390/biology12070921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023]
Abstract
Time-lapse fluorescence imaging coupled to micro-irradiation devices provides information on the kinetics of DNA repair protein accumulation, from a few seconds to several minutes after irradiation. Charged-particle microbeams are valuable tools for such studies since they provide a way to selectively irradiate micrometric areas within a cell nucleus, control the dose and the micro-dosimetric quantities by means of advanced detection systems and Monte Carlo simulations and monitor the early cell response by means of beamline microscopy. We used the charged-particle microbeam installed at the AIFIRA facility to perform micro-irradiation experiments and measure the recruitment kinetics of two proteins involved in DNA signaling and repair pathways following exposure to protons and α-particles. We developed and validated image acquisition and processing methods to enable a systematic study of the recruitment kinetics of GFP-XRCC1 and GFP-RNF8. We show that XRCC1 is recruited to DNA damage sites a few seconds after irradiation as a function of the total deposited energy and quite independently of the particle LET. RNF8 is recruited to DNA damage sites a few minutes after irradiation and its recruitment kinetics depends on the particle LET.
Collapse
Affiliation(s)
| | - Eva Torfeh
- University Bordeaux, CNRS, LP2I, UMR 5797, 33170 Gradignan, France
| | - Marina Simon
- University Bordeaux, CNRS, LP2I, UMR 5797, 33170 Gradignan, France
| | - Guillaume Devès
- University Bordeaux, CNRS, LP2I, UMR 5797, 33170 Gradignan, France
| | - Hervé Seznec
- University Bordeaux, CNRS, LP2I, UMR 5797, 33170 Gradignan, France
| | | |
Collapse
|
4
|
Muggiolu G, Pomorski M, Claverie G, Berthet G, Mer-Calfati C, Saada S, Devès G, Simon M, Seznec H, Barberet P. Single α-particle irradiation permits real-time visualization of RNF8 accumulation at DNA damaged sites. Sci Rep 2017; 7:41764. [PMID: 28139723 PMCID: PMC5282495 DOI: 10.1038/srep41764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/22/2016] [Indexed: 11/22/2022] Open
Abstract
As well as being a significant source of environmental radiation exposure, α-particles are increasingly considered for use in targeted radiation therapy. A better understanding of α-particle induced damage at the DNA scale can be achieved by following their tracks in real-time in targeted living cells. Focused α-particle microbeams can facilitate this but, due to their low energy (up to a few MeV) and limited range, α-particles detection, delivery, and follow-up observations of radiation-induced damage remain difficult. In this study, we developed a thin Boron-doped Nano-Crystalline Diamond membrane that allows reliable single α-particles detection and single cell irradiation with negligible beam scattering. The radiation-induced responses of single 3 MeV α-particles delivered with focused microbeam are visualized in situ over thirty minutes after irradiation by the accumulation of the GFP-tagged RNF8 protein at DNA damaged sites.
Collapse
Affiliation(s)
- Giovanna Muggiolu
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France
| | - Michal Pomorski
- CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette F-91191, France
| | - Gérard Claverie
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France
| | - Guillaume Berthet
- CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette F-91191, France
| | | | - Samuel Saada
- CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette F-91191, France
| | - Guillaume Devès
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France
| | - Marina Simon
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France
| | - Hervé Seznec
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France
| | - Philippe Barberet
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France
| |
Collapse
|
5
|
Kongsema M, Zona S, Karunarathna U, Cabrera E, Man EPS, Yao S, Shibakawa A, Khoo US, Medema RH, Freire R, Lam EWF. RNF168 cooperates with RNF8 to mediate FOXM1 ubiquitination and degradation in breast cancer epirubicin treatment. Oncogenesis 2016; 5:e252. [PMID: 27526106 PMCID: PMC5007831 DOI: 10.1038/oncsis.2016.57] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/20/2016] [Accepted: 06/29/2016] [Indexed: 12/16/2022] Open
Abstract
The forkhead box M1 (FOXM1) transcription factor has a central role in genotoxic agent response in breast cancer. FOXM1 is regulated at the post-translational level upon DNA damage, but the key mechanism involved remained enigmatic. RNF168 is a ubiquitination E3-ligase involved in DNA damage response. Western blot and gene promoter-reporter analyses showed that the expression level and transcriptional activity of FOXM1 reduced upon RNF168 overexpression and increased with RNF168 depletion by siRNA, suggesting that RNF168 negatively regulates FOXM1 expression. Co-immunoprecipitation studies in MCF-7 cells revealed that RNF168 interacted with FOXM1 and that upon epirubicin treatment FOXM1 downregulation was associated with an increase in RNF168 binding and conjugation to the protein degradation-associated K48-linked polyubiquitin chains. Consistently, RNF168 overexpression resulted in an increase in turnover of FOXM1 in MCF-7 cells treated with the protein synthesis inhibitor cycloheximide. Conversely, RNF168, knockdown significantly enhanced the half-life of FOXM1 in both absence and presence of epirubicin. Using a SUMOylation-defective FOXM1-5x(K>R) mutant, we demonstrated that SUMOylation is required for the recruitment of RNF168 to mediate FOXM1 degradation. In addition, clonogenic assays also showed that RNF168 mediates epirubicin action through targeting FOXM1, as RNF168 could synergise with epirubicin to repress clonal formation in wild-type but not in FOXM1-deficient mouse embryo fibroblasts (MEFs). The physiological relevance of RNF168-mediated FOXM1 repression is further emphasized by the significant inverse correlation between FOXM1 and RNF168 expression in breast cancer patient samples. Moreover, we also obtained evidence that RNF8 recruits RNF168 to FOXM1 upon epirubicin treatment and cooperates with RNF168 to catalyse FOXM1 ubiquitination and degradation. Collectively, these data suggest that RNF168 cooperates with RNF8 to mediate the ubiquitination and degradation of SUMOylated FOXM1 in breast cancer genotoxic response.
Collapse
Affiliation(s)
- M Kongsema
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - S Zona
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - U Karunarathna
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - E Cabrera
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, La Laguna, Tenerife, Spain
| | - E P S Man
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - S Yao
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - A Shibakawa
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - U-S Khoo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - R H Medema
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - R Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, La Laguna, Tenerife, Spain
| | - E W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|