1
|
Xia ZY, Wang Y, Shi N, Lu MQ, Deng YX, Qi YJ, Wang XL, Zhao J, Jiang DY. Fetal mice dermal mesenchymal stem cells promote wound healing by inducing M2 type macrophage polarization. World J Stem Cells 2025; 17:101030. [DOI: 10.4252/wjsc.v17.i2.101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/09/2024] [Accepted: 02/07/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Mesenchymal stem cells, found in various tissues, possess significant healing and immunomodulatory properties, influencing macrophage polarization, which is essential for wound repair. However, chronic wounds present significant therapeutic challenges, requiring novel strategies to improve healing outcomes.
AIM To investigate the potential of fetal dermal mesenchymal stem cells (FDMSCs) in enhancing wound healing through modulation of macrophage polarization, specifically by promoting the M2 phenotype to address inflammatory responses in chronic wounds.
METHODS FDMSCs were isolated from BalB/C mice and co-cultured with RAW264.7 macrophages to assess their effects on macrophage polarization. Flow cytometry, quantitative reverse transcriptase polymerase chain reaction, and histological analyses were employed to evaluate shifts in macrophage phenotype and wound healing in a mouse model. Statistical analysis was performed using GraphPad Prism.
RESULTS FDMSCs induced macrophage polarization from the M1 to M2 phenotype, as demonstrated by a reduction in pro-inflammatory markers (inducible nitric oxide synthase, interleukin-6) and an increase in anti-inflammatory markers [mannose receptor (CD206), arginase-1] in co-cultured RAW264.7 macrophages. These shifts were confirmed by flow cytometry. In an acute skin wound model, FDMSC-treated mice exhibited faster wound healing, enhanced collagen deposition, and improved vascular regeneration compared to controls. Significantly higher expression of arginase-1 further indicated an enriched M2 macrophage environment.
CONCLUSION FDMSCs effectively modulate macrophage polarization from M1 to M2, reduce inflammation, and enhance tissue repair, demonstrating their potential as an immunomodulatory strategy in wound healing. These findings highlight the promising therapeutic application of FDMSCs in managing chronic wounds.
Collapse
Affiliation(s)
- Zhen-Yu Xia
- Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Yi Wang
- Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Nian Shi
- Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Mei-Qi Lu
- Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Yun-Xiang Deng
- Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Yong-Jun Qi
- Department of Plastic Surgery & Burns, The Second Hospital of Shandong University, Jinan 250033, Shandong Province, China
| | - Xing-Lei Wang
- Emergency Medicine Center, The Second Hospital of Shandong University, Jinan 250033, Shandong Province, China
| | - Jie Zhao
- Emergency Medicine Center, The Second Hospital of Shandong University, Jinan 250033, Shandong Province, China
| | - Du-Yin Jiang
- Emergency Medicine Center, The Second Hospital of Shandong University, Jinan 250033, Shandong Province, China
| |
Collapse
|
2
|
Cui F, Xu Z, Hu J, Lv Y. Spindle pole body component 25 and platelet-derived growth factor mediate crosstalk between tumor-associated macrophages and prostate cancer cells. Front Immunol 2022; 13:907636. [PMID: 35967419 PMCID: PMC9363606 DOI: 10.3389/fimmu.2022.907636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are involved in the growth of prostate cancer (PrC), while the molecular mechanisms underlying the interactive crosstalk between TAM and PrC cells remain largely unknown. Platelet-derived growth factor (PDGF) is known to promote mesenchymal stromal cell chemotaxis to the tumor microenvironment. Recently, activation of spindle pole body component 25 (SPC25) has been shown to promote PrC cell proliferation and is associated with PrC stemness. Here, the relationship between SPC25 and PDGF in the crosstalk between TAM and PrC was investigated. Significant increases in both PDGF and SPC25 levels were detected in PrC specimens compared to paired adjacent normal prostate tissues. A significant correlation was detected between PDGF and SPC25 levels in PrC specimens and cell lines. SPC25 increased PDGF production and tumor cell growth in cultured PrC cells and in xenotransplantation. Mechanistically, SPC25 appeared to activate PDGF in PrC likely through Early Growth Response 1 (Egr1), while the secreted PDGF signaled to TAM through PDGFR on macrophages and polarized macrophages, which, in turn, induced the growth of PrC cells likely through their production and secretion of transforming growth factor β1 (TGFβ1). Thus, our data suggest that SPC25 triggers the crosstalk between TAM and PrC cells via SPC25/PDGF/PDGFR/TGFβ1 receptor signaling to enhance PrC growth.
Collapse
Affiliation(s)
- Feilun Cui
- Department of Urology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Zhipeng Xu
- Department of Urology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jianpeng Hu
- Department of Urology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Jianpeng Hu, ; Yumei Lv,
| | - Yumei Lv
- Department of Health Management Section, Zhenjiang College, Zhenjiang, China
- *Correspondence: Jianpeng Hu, ; Yumei Lv,
| |
Collapse
|
3
|
Goodarzi A, Valikhani M, Amiri F, Safari A. The mechanisms of mutual relationship between malignant hematologic cells and mesenchymal stem cells: Does it contradict the nursing role of mesenchymal stem cells? Cell Commun Signal 2022; 20:21. [PMID: 35236376 PMCID: PMC8889655 DOI: 10.1186/s12964-022-00822-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/18/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are known as the issue in biology because of some unpredictable characteristics in the different microenvironments especially in their bone marrow niche. MSCs are used in the regenerative medicine because of their unique potentials for trans-differentiation, immunomodulation, and paracrine capacity. But, their pathogenic and pro-survival effects in tumors/cancers including hematologic malignancies are indisputable. MSCs and/or their derivatives might be involved in tumor growth, metastasis and drug resistance in the leukemias. One of important relationship is MSCs and hematologic malignancy-derived cells which affects markedly the outcome of disease. The communication between these two cells may be contact-dependent and/or contact-independent. In this review, we studied the crosstalk between MSCs and malignant hematologic cells which results the final feedback either the progression or suppression of blood cell malignancy. Video abstract.
Collapse
Affiliation(s)
- Alireza Goodarzi
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd., The Opposite Side of Mardom Park, Hamadan, 6517838741, Iran
| | - Mohsen Valikhani
- Hematology Department, School of Allied Medical Science, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amiri
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd., The Opposite Side of Mardom Park, Hamadan, 6517838741, Iran.
| | - Armita Safari
- Student Research Committee, Hamadan University of Medical Science, Hamadan, Iran
| |
Collapse
|
4
|
Yu L, Shi Q, Zhang B, Xu J. Genetically modified mesenchymal stem cells promote spinal fusion through polarized macrophages. J Transl Med 2022; 102:312-319. [PMID: 34764437 PMCID: PMC8860744 DOI: 10.1038/s41374-021-00693-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/05/2023] Open
Abstract
Spinal fusion is an effective treatment for low back pain and typically applied with prosthetic fixation devices. Spinal fusion can be improved by transplantation of mesenchymal stem cells (MSCs) into the paraspinal muscle. However, in contrast to the direct contribution of MSCs to spinal fusion, the indirect effects of MSCs on spinal infusion have not been studied and were thus addressed here. The correlation between the outcome of spinal fusion and the local macrophage number, polarization and the levels of placental growth factor (PlGF) in patients was analyzed. MSCs were genetically modified to overexpress PlGF, and its effects on macrophage proliferation and polarization were analyzed in vitro in a transwell co-culture system, as well as in vivo in a mouse model for spinal fusion, for which the cells were bilaterally injected into paravertebral muscles of the mouse lumbar spine. The effects on spinal fusion were assessed by microcomputed tomography and a custom four-point bending apparatus for structural bending stiffness. Local macrophages were analyzed by flow cytometry. We found that posterior spinal fusion could be improved by PlGF-expressing MSCs, compared to the control MSCs, evident by significant improvement of bone bridging of the targeted vertebrae. Mechanistically, PlGF-expressing MSCs appeared to attract macrophages and induce their M2 polarization, which in turn promotes the bone formation. Together, our data suggest that PlGF-expressing MSCs may improve spinal fusion through macrophage recruitment and polarization.
Collapse
Affiliation(s)
- Luchao Yu
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Department of Orthopedic Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Qiang Shi
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Baokun Zhang
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jianguang Xu
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
5
|
Wang Z, Huang Y, He Y, Khor S, Zhong X, Xiao J, Ye Q, Li X. Myocardial protection by heparin-based coacervate of FGF10. Bioact Mater 2021; 6:1867-1877. [PMID: 33336117 PMCID: PMC7732874 DOI: 10.1016/j.bioactmat.2020.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/18/2020] [Accepted: 12/01/2020] [Indexed: 01/07/2023] Open
Abstract
Heart disease is still the leading killer all around the world, and its incidence is expected to increase over the next decade. Previous reports have already shown the role of fibroblast growth factor10 (FGF10) in alleviating heart diseases. However, FGF10 has not been used to treat heart diseases because the free protein has short half-life and low bioactivity. Here, an injectable coacervate was designed to protect growth factor from degradation during delivery and the effects of the FGF10 coacervate were studied using a mice acute myocardial infarction (MI) model. As shown in our echocardiographic results, a single injection of FGF10 coacervate effectively inhibited preserved cardiac contractibility and ventricular dilation when compared with free FGF10 and the saline treatment 6 weeks after MI. It is revealed in histological results that the MI induced myocardial inflammation and fibrosis was reduced after FGF10 coacervate treatment. Furthermore, FGF10 coacervate treatment could improve arterioles and capillaries stabilization through increasing the proliferation of endothelial and mural cells. However, with the same dosage, no statistically significant difference was shown between free FGF10, heparin+FGF10 and saline treatment, especially in long term. On another hand, FGF10 coacervate also increased the expression of cardiac-associated the mRNA (cTnT, Cx43 and α-SMA), angiogenic factors (Ang-1 and VEGFA) and decreased the level of inflammatory factor (tumor necrosis factor-α). The downstream signaling of the FGF10 was also investigated, with the western blot results showing that FGF10 coacervate activated the p-FGFR, PI3K/Akt and ERK1/2 pathways to a more proper level than free FGF10 or heparin+FGF10. In general, it is revealed in this research that one-time injection of FGF10 coacervate sufficiently attenuated MI induced injury when compared with an equal dose of free FGF10 or heparin+FGF10 injection.
Collapse
Affiliation(s)
- Zhouguang Wang
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang, 325035, China
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yan Huang
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang, 325035, China
| | - Yan He
- Laboratory of Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430064, China
| | - Sinan Khor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Xingxing Zhong
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jian Xiao
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang, 325035, China
| | - Qingsong Ye
- Centre of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaokun Li
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang, 325035, China
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, China
| |
Collapse
|
6
|
Guo Y, Zhu H, Li X, Ma C, Li Y, Sun T, Wang Y, Wang C, Guan W, Liu C. RepSox effectively promotes the induced differentiation of sheep fibroblasts into adipocytes via the inhibition of the TGF‑β1/Smad pathway. Int J Mol Med 2021; 48:148. [PMID: 34132357 PMCID: PMC8208630 DOI: 10.3892/ijmm.2021.4981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/10/2021] [Indexed: 01/22/2023] Open
Abstract
Previous reports have demonstrated that RepSox can function as a replacement for cMyc and Sox2 in the reprogramming of cells into induced pluripotent stem cells (iPSCs), as well as increasing the levels of bone morphogenetic protein (BMP)-3 and inducing the phosphorylation of Smad1 in mouse embryonic stem cells. In the present study, it was demonstrated that RepSox caused the visible morphological transformation of sheep fibroblasts; however, no significant alterations in cell proliferation, apoptosis or chromosome aberrations were observed. Moreover, RepSox increased the plasticity of long-term cryopreserved sheep fibroblasts, and further promoted differentiation into adipocytes. RepSox treatment led to a notable decrease in the expression of components of the transforming growth factor (TGF)-β signaling pathway, particularly Smad2/3 phosphorylation. RepSox also activated the BMP pathway, promoted the reprogramming of cells from fibroblasts into adipocytes and induced mesenchymal-epithelial transition. It is worth noting that RepSox notably increased the expression of octamer-binding transcription factor 4 and L-Myc, whereas Sox2 and Nanog expression were not detected. The results of high-throughput RNA sequencing revealed that the levels of differentially expressed genes (DEGs) involved in various metabolic processes were markedly upregulated in the RepSox-treated fibroblasts, while the DEGs in the majority of signaling pathways were markedly downregulated. On the whole, the present study demonstrates that RepSox can promote the plasticity of sheep fibroblasts and facilitates the differentiation of adipocytes via increasing BMP expression and inhibiting the activation of the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Yu Guo
- Department of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Huan Zhu
- Department of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Xiangchen Li
- Institute of Beijing Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Caiyun Ma
- Department of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Yanan Li
- Institute of Beijing Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Tingting Sun
- Department of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Yuanyuan Wang
- Department of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Chunjing Wang
- Department of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Weijun Guan
- Institute of Beijing Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Changqing Liu
- Department of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| |
Collapse
|
7
|
Wu X, Wu D, Mu Y, Zhao Y, Ma Z. Serum-Free Medium Enhances the Therapeutic Effects of Umbilical Cord Mesenchymal Stromal Cells on a Murine Model for Acute Colitis. Front Bioeng Biotechnol 2020; 8:586. [PMID: 32671030 PMCID: PMC7332562 DOI: 10.3389/fbioe.2020.00586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
The usage of animal serum may ultimately prevent the application of ex vivo cultured mesenchymal stromal cells (MSCs) in a clinical setting due to safety concerns and batch-to-batch variability. Increasing regulatory pressure to limit use of animal serum has been issued and serum-free, xeno-free, and chemically defined media (S&XFM-CD) is encouraged to replace serum-containing media (SCM) in the stem cell preparation process. We previously developed a S&XFM-CD for the expansion of umbilical cord-derived MSCs (UCMSCs). Different culture conditions affect the function of MSCs, which may further affect the therapeutic efficiency and mechanisms of action. In this study, we compared the therapeutic effect and mechanism of UCMSCs in S&XFM-CD (UCMSCS&XFM−CD) in experimental colitis with those in SCM (UCMSCSCM). UCMSCS&XFM−CD exhibited better therapeutic effects than UCMSCSCM by body weight, disease activity index, and histological colitis score. UCMSCS&XFM−CD or UCMSCSCM migrated to the inflammation site of injured colon, but exhibited low levels of recruitment and persistence. Systemic depletion of endogenous macrophages impaired the therapeutic effects of UCMSCSCM and UCMSCS&XFM−CD. Furthermore, UCMSCS&XFM−CD more markedly promoted intestinal macrophage polarisation from M1 to M2 phenotype to produce higher levels of IL-10 and lower levels of TNF-α in colon tissue than UCMSCSCM, while a higher level of IL-4 was produced in UCMSCSCM-treated group. UCMSCS&XFM−CD cocultured with RAW264.7 cells in a transwell system promoted the release of TSG-6 and IL-6, whereas UCMSCSCM increased PGE2 levels. Taken together, we demonstrated that UCMSCs in S&XFM-CD exhibited improved therapeutic effects with altered cytokine secretion in an experimental acute colitis model.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Interventional Department, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China.,Department of Technology, Stem Cell Medicine Engineering & Technology Research Center of Inner Mongolia, Huhhot, China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yongxu Mu
- Interventional Department, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yuxia Zhao
- Department of Blood, The People's Hospital of Xing'an League, Ulanhot, China
| | - Zhijie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Liu Y, Xu J, Wu M, Kang L, Xu B. The effector cells and cellular mediators of immune system involved in cardiac inflammation and fibrosis after myocardial infarction. J Cell Physiol 2020; 235:8996-9004. [PMID: 32352172 DOI: 10.1002/jcp.29732] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 01/05/2023]
Abstract
The cardiac repair after myocardial infarction (MI) involves two phases, namely, inflammatory response and proliferative response. The former is an inflammatory reaction, evoked by different kinds of pro-inflammatory leukocytes and molecules stimulated by myocardial necrosis, while the latter is a repair process, predominated by a magnitude of anti-inflammatory cells and cytokines, as well as fibroblasts. Cardiac remodeling post-MI is dependent on the balance of individualized intensity of the post-MI inflammation and subsequent cardiac fibrosis. During the past 30 years, enormous studies have focused on investigating immune cells and mediators involved in cardiac inflammation and fibrosis, which are two interacting processes of post-MI cardiac repair. These results contribute to revealing the mechanism of adverse cardiac remodeling after MI and alleviating the impairment of cardiac function. In this study, we will broadly discuss the role of immune cell subpopulation and the involved cytokines and chemokines during cardiac repair post-MI, particular in cardiac inflammation and fibrosis.
Collapse
Affiliation(s)
- Yihai Liu
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical college of Nanjing Medical University, Nanjing, China
| | - Jiamin Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical college of Nanjing Medical University, Nanjing, China
| | - Mingyue Wu
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical college of Nanjing Medical University, Nanjing, China
| | - Lina Kang
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical college of Nanjing Medical University, Nanjing, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical college of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Yuan Y, Li L, Zhu L, Liu F, Tang X, Liao G, Liu J, Cheng J, Chen Y, Lu Y. Mesenchymal stem cells elicit macrophages into M2 phenotype via improving transcription factor EB-mediated autophagy to alleviate diabetic nephropathy. Stem Cells 2020; 38:639-652. [PMID: 31904160 DOI: 10.1002/stem.3144] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/15/2019] [Indexed: 02/05/2023]
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal disease. Chronic inflammation is recognized as a key causal factor in the development and progression of DN, and the imbalance of M1/M2 macrophages (Mφ) contributes to this process. Mesenchymal stem cells (MSCs) have been reported to prevent renal injuries via immune regulation in diabetic models, but whether these benefits are owing to the regulation of Mφ, and the underlying signaling pathways are unknown. Here, we showed that MSCs elicited Mφ into M2 phenotype and prevented renal injuries in DN mice, but these effects were abolished when the Mφ were depleted by clodronate liposomes (Lipo-Clod), suggesting that Mφ were necessary for renal protection of MSCs in DN mice. Moreover, the MSCs promoted M2 polarization was attributable to the activation of transcription factor EB (TFEB) and subsequent restore of lysosomal function and autophagy activity in Mφ. Furthermore, in vivo adoptive transfer of Mφin vivo (Mφ from DN + MSCs mice) or MφMSCs (Mφ cocultured with MSCs in vitro) to DN mice improved renal function. While, TFEB knockdown in Mφ significantly abolished the protective role of MφMSCs . Altogether, these findings revealed that MSCs suppress inflammatory response and alleviate renal injuries in DN mice via TFEB-dependent Mφ switch.
Collapse
Affiliation(s)
- Yujia Yuan
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Lan Li
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Lingling Zhu
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Fei Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xi Tang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Guangneng Liao
- Animal Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jingping Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jingqiu Cheng
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Younan Chen
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yanrong Lu
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
10
|
Theret M, Mounier R, Rossi F. The origins and non-canonical functions of macrophages in development and regeneration. Development 2019; 146:146/9/dev156000. [PMID: 31048317 DOI: 10.1242/dev.156000] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of new non-canonical (i.e. non-innate immune) functions of macrophages has been a recurring theme over the past 20 years. Indeed, it has emerged that macrophages can influence the development, homeostasis, maintenance and regeneration of many tissues and organs, including skeletal muscle, cardiac muscle, the brain and the liver, in part by acting directly on tissue-resident stem cells. In addition, macrophages play crucial roles in diseases such as obesity-associated diabetes or cancers. Increased knowledge of their regulatory roles within each tissue will therefore help us to better understand the full extent of their functions and could highlight new mechanisms modulating disease pathogenesis. In this Review, we discuss recent studies that have elucidated the developmental origins of various macrophage populations and summarize our knowledge of the non-canonical functions of macrophages in development, regeneration and tissue repair.
Collapse
Affiliation(s)
- Marine Theret
- Department of Medical Genetics, The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.,Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Remi Mounier
- Institut Neuromyogène, CNRS UMR 5310, INSERM U1217, Université de Lyon, 69008 Lyon, France
| | - Fabio Rossi
- Department of Medical Genetics, The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada .,Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
11
|
Ma C, Guo Y, Wen H, Zheng Y, Tan L, Li X, Wang C, Guan W, Liu C. Identification and Multilineage Potential Research of a Novel Type of Adipose-Derived Mesenchymal Stem Cells from Goose Inguinal Groove. DNA Cell Biol 2018; 37:731-741. [PMID: 30102556 DOI: 10.1089/dna.2017.4061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (ADSCs) play a crucial role in the field of regenerative medicine and tissue repair for its own unique features. However, up to date, the isolation and characterizations of multidifferentiation potentials of goose ADSCs are still uncertain. In this study, we successfully isolated ADSCs from goose inguinal groove in vitro for the first time and also attempted to unravel its fundamental differentiation potentials and genetic characteristics. The results showed that isolated ADSCs exhibited a typical fibroblast-like morphology and high proliferative potential, could be passaged for at least 40 passages and maintained high hereditary stability with more than 92.2% of cells were diploid (2n = 78) by G-banding analysis. Moreover, the ADSCs could express pluripotent marker gene (OCT4) and mesenchymal stem cells-related surface antigens, which are similar to previously reported human ADSCs. Additionally, the goose ADSCs could be induced to transdifferentiate into cells of three layers in vitro, such as osteoblasts, chondrocytes, and adipocytes derived from mesoderm, neurocytes from ectoderm, and hepatocytes of the endoderm. Most of all, we confirmed that the induced β-like cells and hepatocytes had metabolic functions similar to normal cells in vivo. Taken together, these results demonstrated the multidifferentiation potentials of ADSCs in vitro, which conferred an appealing candidate for cell regenerative therapy.
Collapse
Affiliation(s)
- Caiyun Ma
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Guo
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,3 Department of Laboratory Medicine, Bengbu Medical College , Bengbu, China
| | - Hebao Wen
- 2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanjie Zheng
- 2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Leiqi Tan
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,3 Department of Laboratory Medicine, Bengbu Medical College , Bengbu, China
| | - Xiangchen Li
- 2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunjing Wang
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,3 Department of Laboratory Medicine, Bengbu Medical College , Bengbu, China
| | - Weijun Guan
- 2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changqing Liu
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,4 Department of Neuroscience, University of Connecticut Health Center , Farmington, Connecticut
| |
Collapse
|
12
|
Li T, Liu ZL, Xiao M, Yang ZZ, Peng MZ, Li CD, Zhou XJ, Wang JW. Impact of bone marrow mesenchymal stem cell immunomodulation on the osteogenic effects of laponite. Stem Cell Res Ther 2018; 9:100. [PMID: 29642953 PMCID: PMC5896058 DOI: 10.1186/s13287-018-0818-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/30/2018] [Accepted: 02/26/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND With the development of osteoimmunology and bone tissue engineering (BTE), it has been recognized that the immunomodulatory properties of bone biomaterials have considerable impact in determining their fate after implantation. In this regard, the polarization of macrophages secondary to biomaterials is postulated to play a crucial role in modulating their osteogenesis; thus, strategies that may facilitate this process engender increasing levels of attention. Whereas a variety of reports highlight the immunomodulation of bone marrow mesenchymal stem cells (BMSCs) in cell therapy or their osteogenesis in BTE, few have focused on the effect of BMSCs in promoting osteogenesis in BTE through regulating the phenotype of macrophages. Accordingly, there is an urgent need to clarify the immunomodulatory properties of agents such as laponite (Lap), which is comprised of bioactive silicate nanoplatelets with excellent osteogenesis-inducing potential, to enhance their use in BTE. METHODS In the present study, we analyzed the osteoimmunomodulatory properties of Lap alone, as well as following the introduction of BMSCs into Lap, to determine whether BMSCs could modulate its immunomodulatory properties and promote osteogenesis. RESULTS It was found that the BMSCs reversed the polarization of murine-derived macrophage RAW 264.7 cells from M1 as induced by pure Lap to M2 and promoted osteogenesis. In vivo study confirmed that BMSCs combined with Lap initiated a less severe immune response and had an improved effect on bone regeneration compared with Lap alone, which corresponded with the in vitro evaluation. CONCLUSION These results suggest that BMSCs could ameliorate the inflammation induced by Lap and enhance its bone formation. The immunomodulatory characteristics of BMSCs suggest that these might be tailored as a new strategy to promote the osteogenic capacity of biomaterials.
Collapse
Affiliation(s)
- Tao Li
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Room 701, No. 3 Building, 639 Zhizaoju Road, Shanghai, 200011 People’s Republic of China
| | - Zhong Long Liu
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Ming Xiao
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Room 701, No. 3 Building, 639 Zhizaoju Road, Shanghai, 200011 People’s Republic of China
| | - Ze Zheng Yang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Room 701, No. 3 Building, 639 Zhizaoju Road, Shanghai, 200011 People’s Republic of China
| | - Ming Zheng Peng
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Room 701, No. 3 Building, 639 Zhizaoju Road, Shanghai, 200011 People’s Republic of China
| | - Cui Di Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Xiao Jun Zhou
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Room 701, No. 3 Building, 639 Zhizaoju Road, Shanghai, 200011 People’s Republic of China
| | - Jin Wu Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Room 701, No. 3 Building, 639 Zhizaoju Road, Shanghai, 200011 People’s Republic of China
| |
Collapse
|
13
|
Chi Ting Au-Yeung G, Sarig U, Sarig H, Bogireddi H, Bronshtein T, Baruch L, Spizzichino A, Bortman J, Freddy BYC, Machluf M, Venkatraman SS. Restoring the biophysical properties of decellularized patches through recellularization. Biomater Sci 2018; 5:1183-1194. [PMID: 28513656 DOI: 10.1039/c7bm00208d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various extracellular matrix (ECM) scaffolds, isolated through decellularization, were suggested as ideal biomimetic materials for 'Functional tissue engineering' (FTE). The decellularization process comprises a compromise between damaging and preserving the ultrastructure and composition of ECM-previously shown to affect cell survival, proliferation, migration, organization, differentiation and maturation. Inversely, the effects of cells on the ECM constructs' biophysical properties, under physiological-like conditions, remain still largely unknown. We hypothesized that by re-cellularizing porcine cardiac ECM (pcECM, as a model scaffold) some of the original biophysical properties of the myocardial tissue can be restored, which are related to the scaffold's surface and the bulk modifications consequent to cellularization. We performed a systematic biophysical assessment of pcECM scaffolds seeded with human mesenchymal stem cells (MSCs), a common multipotent cell source in cardiac regenerative medicine. We report a new type of FTE study in which cell interactions with a composite-scaffold were evaluated from the perspective of their contribution to the biophysical properties of the construct surface (FTIR, WETSEM™) and bulk (DSC, TGA, and mechanical testing). The results obtained were compared with acellular pcECM and native ventricular tissue serving as negative and positive controls, respectively. MSC recellularization resulted in an inter-fiber plasticization effect, increased protein density, masking of acylated glycosaminoglycans (GAGs) and active pcECM remodelling which further stabilized the reseeded construct and increased its denaturation resistance. The systematic approach presented herein, therefore, identifies cells as "biological plasticizers" and yields important methodologies, understanding, and data serving both as a reference as well as possible 'design criteria' for future studies in FTE.
Collapse
Affiliation(s)
- Gigi Chi Ting Au-Yeung
- NTU-Technion Biomedical labs, School of Materials and Science Engineering, Nanyang Technological University, Singapore.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Luz-Crawford P, Jorgensen C, Djouad F. Mesenchymal Stem Cells Direct the Immunological Fate of Macrophages. Results Probl Cell Differ 2017; 62:61-72. [PMID: 28455706 DOI: 10.1007/978-3-319-54090-0_4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSC) are multipotent stem cells with a broad well-described immunosuppressive potential. They are able to modulate both the innate and the adaptive immune response. Particularly, MSC are able to regulate the phenotype and function of macrophages that are critical for different biological processes including wound healing, inflammation, pathogenesis of several autoimmune diseases, and tumor growth. These multifunctional roles of macrophages are due to their high plasticity, which enable them to adopt different phenotypes such as a pro-inflammatory M1 and anti-inflammatory M2 phenotype. MSC promote macrophage differentiation toward an M2-like phenotype with a high tissue remodeling potential and anti-inflammatory activity but also a pro-tumorigenic function. MSC regulatory effect on macrophages is mediated through the secretion of different immunomodulatory molecules such as PGE2, IL1RA, and IL-6. Moreover, the presence of macrophages in damaged tissue and inflammation is essential for MSC to exert their therapeutic function. In this chapter, we discuss how the interplay between macrophages and MSC mutually modulates their phenotypes and functions, orchestrates tissue repair, and controls inflammation during autoimmunity and tumor growth.
Collapse
Affiliation(s)
- Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
| | - Christian Jorgensen
- Inserm U1183, IRMB, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier Cedex 5, France.,Université de Montpellier, Montpellier, 34000, France.,Service d'Immuno-Rhumatologie, Hôpital Lapeyronie, Montpellier, 34295, France
| | - Farida Djouad
- Inserm U1183, IRMB, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier Cedex 5, France. .,Université de Montpellier, Montpellier, 34000, France.
| |
Collapse
|
15
|
Carmona MD, Cañadillas S, Romero M, Blanco A, Nogueras S, Herrera C. Intramyocardial bone marrow mononuclear cells versus bone marrow-derived and adipose mesenchymal cells in a rat model of dilated cardiomyopathy. Cytotherapy 2017; 19:947-961. [PMID: 28673775 DOI: 10.1016/j.jcyt.2017.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Effects of cell therapy on dilated cardiomyopathy (DCM) have been investigated in pre-clinical models using distinct cellular types in each study. A single study that compares the effectiveness of different cells is lacking. METHODS We have compared the effects of intramyocardial injection (IMI) of bone marrow (BM)-derived mononuclear cells (MNCs), BM and adipose tissue (AT) mesenchymal stromal cells (BM-MSCs and AT-MSCs) on heart function, histological changes and myocardial ultrastructure in a rat model of DCM. Isogenic Wistar rats were used to isolate the different cell types and to induce DCM by autoimmune myocarditis. Animals were randomly assigned to receive BM-MNCs, BM-MSCs, AT-MSCs or placebo at day 42 by IMI. Serial echocardiography was used to assess cardiac function and hearts obtained after sacrifice at day 70, were used for histological and ultrastructural analysis. Serum levels of type B-natriuretic peptide (BNP) and vascular endothelial growth-factor (VEGF) were determined at different time points. RESULTS BM-MSC treatment induced significant improvement in ejection fraction (EF), fractional shortening (FS), left ventricular systolic diameter (LVESD) and systolic volume (LVESV). In contrast, changes in echocardiographic parameters with respect to pre-treatment values in animals receiving placebo, AT-MSCs or BM-MNCs were not statistically significant. EF and FS in animals receiving AT-MSCs were superior to those receiving placebo. BM-MSC transplantation induced also improvement in cardiac fibers organization and capillary density, fibrotic tissue reduction, increase in final VEGF concentration and BNP decrease. DISCUSSION IMI of BM or AT-MSCs improves LV function and induces more angiogenesis processes than BM-MNCs. In addition, BM-MSCs showed more anti-fibrotic effects and more ability to reorganize myocardial tissue compared with the other cell types.
Collapse
Affiliation(s)
- M Dolores Carmona
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; Cellular Therapy Unit, Reina Sofia University Hospital, Cordoba, Spain; University of Cordoba, Spain.
| | - Sagrario Cañadillas
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; Cellular Therapy Unit, Reina Sofia University Hospital, Cordoba, Spain; University of Cordoba, Spain
| | - Miguel Romero
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; University of Cordoba, Spain; Cardiology Department, Reina Sofia University Hospital, Cordoba, Spain
| | - Alfonso Blanco
- Anatomy and Comparative Pathology Department, University of Cordoba, Spain
| | - Sonia Nogueras
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; Cellular Therapy Unit, Reina Sofia University Hospital, Cordoba, Spain; University of Cordoba, Spain
| | - Concha Herrera
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; Cellular Therapy Unit, Reina Sofia University Hospital, Cordoba, Spain; University of Cordoba, Spain; Hematology Department, Reina Sofia University Hospital, Cordoba, Spain
| |
Collapse
|
16
|
Wang Z, Long DW, Huang Y, Khor S, Li X, Jian X, Wang Y. Fibroblast Growth Factor-1 Released from a Heparin Coacervate Improves Cardiac Function in a Mouse Myocardial Infarction Model. ACS Biomater Sci Eng 2017; 3:1988-1999. [PMID: 33440554 DOI: 10.1021/acsbiomaterials.6b00509] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Emerging evidence supports the beneficial effect of fibroblast growth factor-1 (FGF1) on heart diseases, but its application has been hindered by the short half-life and limited bioactivity of the free protein. We designed an injectable coacervate to facilitate robust growth factor delivery, which would both protect and increase the bioactivity of growth factors. In this study, a model for acute myocardial infarction was established in mice, and the cardioprotective effect of the FGF1 coacervate was investigated. Echocardiographic results showed that the FGF1 coacervate inhibited ventricular dilation and preserved cardiac contractibility more than the free FGF1 and the saline control within the 6-week duration of the experiments. Histological examination revealed that the FGF1 coacervate reduced inflammation and fibrosis post-MI, significantly increased the proliferation of endothelial and mural cells, and resulted in stable arterioles and capillaries. Furthermore, the FGF1 coacervate improved the proliferation of cardiac stem cells 6 weeks post-MI. However, free FGF1, dosed identically, did not show significant difference from saline treatment. Thus, one injection of FGF1 coacervate was sufficient to attenuate the injury caused by MI, and the results were significantly better than those obtained from an equal dose of free FGF1.
Collapse
Affiliation(s)
- Zhouguang Wang
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Daniel W Long
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Yan Huang
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Sinan Khor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Xiaokun Li
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiao Jian
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Yadong Wang
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
17
|
Ma C, Liu C, Li X, Lu T, Bai C, Fan Y, Guan W, Guo Y. Cryopreservation and multipotential characteristics evaluation of a novel type of mesenchymal stem cells derived from Small Tailed Han Sheep fetal lung tissue. Cryobiology 2017; 75:7-14. [PMID: 28284665 DOI: 10.1016/j.cryobiol.2017.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
Abstract
Lung mesenchymal stem cells (L-MSCs) characterized by plasticity, reduced relative immune privilege and high anti-fibrosis characteristics play the crucial role in lung tissue regenerative processes. However, up to date, the multi-differentiation potentials and application values of L-MSCs are still uncertain. In the current study, the Small Tailed Han Sheep embryo L-MSCs line from 12 samples, stocking 124 cryogenically-preserved vials, was successfully established by using primary culture and cell cryopreservation techniques. Isolated L-MSCs were morphologically consistent with fibroblasts, could be passaged for at least 18 passages and more than 91.8% of cells were diploid (2n = 54) analyze by G-banding. The majority of cells were in the G0/G1 phase (70.5-91.2%), and the growth curves were all typically sigmoidal. Moreover, L-MSCs were found to express pluripotent genes Oct4, Nanog and MSCs-associated genes β-integrin, CD29, CD44, CD71, CD73 and CD90, while the expressions of hematopoietic cell markers CD34 and CD45 were negative. In addtion, the L-MSCs could be differentiated into cells of three layers with induction medium in vitro, which confirmed their multilineage differentiation potential. The secretion of urea and ALB showed the differentiated hepatocytes still possessed the detoxification function. These results indicated that the isolated L-MSCs displayed typical characteristics of mesenchymal stem cells and that the culture conditions were suitable for their maintenance of stemness and their proliferation in vitro.
Collapse
Affiliation(s)
- Caiyun Ma
- Institute of Beijing Animal Science and Veterinary, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Changqing Liu
- Institute of Beijing Animal Science and Veterinary, Chinese Academy of Agricultural Science, Beijing, 100193, China; Department of Life Science, Department of laboratory medicine, Bengbu Medical College, Bengbu, 233030, China
| | - Xiangchen Li
- Institute of Beijing Animal Science and Veterinary, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Taofeng Lu
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Chunyu Bai
- Institute of Beijing Animal Science and Veterinary, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Yanan Fan
- Institute of Beijing Animal Science and Veterinary, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Weijun Guan
- Institute of Beijing Animal Science and Veterinary, Chinese Academy of Agricultural Science, Beijing, 100193, China.
| | - Yu Guo
- Institute of Beijing Animal Science and Veterinary, Chinese Academy of Agricultural Science, Beijing, 100193, China; Department of Life Science, Department of laboratory medicine, Bengbu Medical College, Bengbu, 233030, China.
| |
Collapse
|
18
|
Yamazaki A, Yashiro M, Mii S, Aki R, Hamada Y, Arakawa N, Kawahara K, Hoffman RM, Amoh Y. Isoproterenol directs hair follicle-associated pluripotent (HAP) stem cells to differentiate in vitro to cardiac muscle cells which can be induced to form beating heart-muscle tissue sheets. Cell Cycle 2016; 15:760-5. [PMID: 27104748 DOI: 10.1080/15384101.2016.1146837] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Nestin-expressing hair-follicle-associated pluripotent (HAP) stem cells are located in the bulge area of the follicle. Previous studies have shown that HAP stem cells can differentiate to neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. HAP stem cells effected nerve and spinal cord regeneration in mouse models. Recently, we demonstrated that HAP stem cells differentiated to beating cardiac muscle cells. The differentiation potential to cardiac muscle cells was greatest in the upper part of the follicle. The beat rate of the cardiac muscle cells was stimulated by isoproterenol. In the present study, we observed that isoproterenol directs HAP stem cells to differentiate to cardiac muscle cells in large numbers in culture compared to HAP stem cells not supplemented with isoproterenol. The addition of activin A, bone morphogenetic protein 4, and basic fibroblast growth factor, along with isoproternal, induced the cardiac muscle cells to form tissue sheets of beating heart muscle cells. These results demonstrate that HAP stem cells have great potential to form beating cardiac muscle cells in tissue sheets.
Collapse
Affiliation(s)
- Aiko Yamazaki
- a Department of Dermatology , Kitasato University School of Medicine , Minami Ward , Sagamihara , Japan
| | - Masateru Yashiro
- a Department of Dermatology , Kitasato University School of Medicine , Minami Ward , Sagamihara , Japan
| | - Sumiyuki Mii
- a Department of Dermatology , Kitasato University School of Medicine , Minami Ward , Sagamihara , Japan
| | - Ryoichi Aki
- a Department of Dermatology , Kitasato University School of Medicine , Minami Ward , Sagamihara , Japan
| | - Yuko Hamada
- a Department of Dermatology , Kitasato University School of Medicine , Minami Ward , Sagamihara , Japan
| | - Nobuko Arakawa
- a Department of Dermatology , Kitasato University School of Medicine , Minami Ward , Sagamihara , Japan
| | - Katsumasa Kawahara
- b Department of Physiology , Kitasato University School of Medicine , Minami Ward , Sagamihara , Japan.,c Department of Cellular & Molecular Physiology , Kitasato Univ Grad Sch Med Sci , Minami Ward , Sagamihara , Japan
| | - Robert M Hoffman
- d AntiCancer, Inc. , San Diego , CA , USA.,e Department of Surgery , University of California San Diego , San Diego , CA USA
| | - Yasuyuki Amoh
- a Department of Dermatology , Kitasato University School of Medicine , Minami Ward , Sagamihara , Japan
| |
Collapse
|
19
|
Grotenhuis N, De Witte SF, van Osch GJ, Bayon Y, Lange JF, Bastiaansen-Jenniskens YM. Biomaterials Influence Macrophage–Mesenchymal Stem Cell Interaction In Vitro. Tissue Eng Part A 2016; 22:1098-107. [DOI: 10.1089/ten.tea.2016.0162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Nienke Grotenhuis
- Department of Otorhinolaryngology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
- Department of General Surgery, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Samantha F.H. De Witte
- Department of Internal Medicine, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Gerjo J.V.M. van Osch
- Department of Otorhinolaryngology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
- Department of Orthopaedics, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Yves Bayon
- Sofradim Production, A Medtronic Company, Trévoux, France
| | - Johan F. Lange
- Department of General Surgery, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | | |
Collapse
|
20
|
Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther 2016; 7:82. [PMID: 27259550 PMCID: PMC4893234 DOI: 10.1186/s13287-016-0341-0] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells have been used for cardiovascular regenerative therapy for decades. These cells have been established as one of the potential therapeutic agents, following several tests in animal models and clinical trials. In the process, various sources of mesenchymal stem cells have been identified which help in cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Although mesenchymal cell therapy has achieved considerable admiration, some challenges still remain that need to be overcome in order to establish it as a successful technique. This in-depth review is an attempt to summarize the major sources of mesenchymal stem cells involved in myocardial regeneration, the significant mechanisms involved in the process with a focus on studies (human and animal) conducted in the last 6 years and the challenges that remain to be addressed.
Collapse
Affiliation(s)
- Aastha Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Abhishek Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Dwaipayan Sen
- School of Bio Sciences and Technology, VIT University, Vellore, India. .,Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
21
|
Loi F, Córdova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB. Inflammation, fracture and bone repair. Bone 2016; 86:119-30. [PMID: 26946132 PMCID: PMC4833637 DOI: 10.1016/j.bone.2016.02.020] [Citation(s) in RCA: 804] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/30/2015] [Accepted: 02/29/2016] [Indexed: 12/20/2022]
Abstract
The reconstitution of lost bone is a subject that is germane to many orthopedic conditions including fractures and non-unions, infection, inflammatory arthritis, osteoporosis, osteonecrosis, metabolic bone disease, tumors, and periprosthetic particle-associated osteolysis. In this regard, the processes of acute and chronic inflammation play an integral role. Acute inflammation is initiated by endogenous or exogenous adverse stimuli, and can become chronic in nature if not resolved by normal homeostatic mechanisms. Dysregulated inflammation leads to increased bone resorption and suppressed bone formation. Crosstalk among inflammatory cells (polymorphonuclear leukocytes and cells of the monocyte-macrophage-osteoclast lineage) and cells related to bone healing (cells of the mesenchymal stem cell-osteoblast lineage and vascular lineage) is essential to the formation, repair and remodeling of bone. In this review, the authors provide a comprehensive summary of the literature related to inflammation and bone repair. Special emphasis is placed on the underlying cellular and molecular mechanisms, and potential interventions that can favorably modulate the outcome of clinical conditions that involve bone repair.
Collapse
Affiliation(s)
- Florence Loi
- 300 Pasteur Drive, Edwards Building, Room R116, Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA.
| | - Luis A Córdova
- 300 Pasteur Drive, Edwards Building, Room R116, Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA; Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Chile, Sergio Livingstone Polhammer 943, Independencia, 8380000 Santiago, Chile.
| | - Jukka Pajarinen
- 300 Pasteur Drive, Edwards Building, Room R116, Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA.
| | - Tzu-hua Lin
- 300 Pasteur Drive, Edwards Building, Room R116, Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA.
| | - Zhenyu Yao
- 300 Pasteur Drive, Edwards Building, Room R116, Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA.
| | - Stuart B Goodman
- 300 Pasteur Drive, Edwards Building, Room R116, Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA; 300 Pasteur Drive, Edwards Building, Room R114, Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
22
|
|
23
|
Yashiro M, Mii S, Aki R, Hamada Y, Arakawa N, Kawahara K, Hoffman RM, Amoh Y. From hair to heart: nestin-expressing hair-follicle-associated pluripotent (HAP) stem cells differentiate to beating cardiac muscle cells. Cell Cycle 2015; 14:2362-6. [PMID: 25970547 DOI: 10.1080/15384101.2015.1042633] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We have previously demonstrated that the neural stem-cell marker nestin is expressed in hair follicle stem cells located in the bulge area which are termed hair-follicle-associated pluripotent (HAP) stem cells. HAP stem cells from mouse and human could form spheres in culture, termed hair spheres, which are keratin 15-negative and CD34-positive and could differentiate to neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. Subsequently, we demonstrated that nestin-expressing stem cells could effect nerve and spinal cord regeneration in mouse models. In the present study, we demonstrated that HAP stem cells differentiated to beating cardiac muscle cells. We separated the mouse vibrissa hair follicle into 3 parts (upper, middle, and lower), and suspended each part separately in DMEM containing 10% FBS. All three parts of hair follicle differentiated to beating cardiac muscle cells as well as neurons, glial cells, keratinocytes and smooth muscle cells. The differentiation potential to cardiac muscle is greatest in the upper part of the follicle. The beat rate of the cardiac muscle cells was stimulated by isoproterenol and inhibited by propanolol. HAP stem cells have potential for regenerative medicine for heart disease as well as nerve and spinal cord repair.
Collapse
Affiliation(s)
- Masateru Yashiro
- a Department of Dermatology ; Kitasato University School of Medicine ; Sagamihara , Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Oliveira-Sales EB, Varela VA, Bergamaschi CT, Campos RR, Boim MA. Effects of mesenchymal stem cells in renovascular hypertension. Exp Physiol 2015; 100:491-5. [DOI: 10.1113/expphysiol.2014.080531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/19/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Elizabeth B. Oliveira-Sales
- Department of Medicine; Renal Division; Federal University of Sao Paulo; Sao Paulo Brazil
- Department of Physiology; Cardiovascular Division; Federal University of Sao Paulo; Sao Paulo Brazil
| | - Vanessa A. Varela
- Department of Medicine; Renal Division; Federal University of Sao Paulo; Sao Paulo Brazil
| | - Cassia T. Bergamaschi
- Department of Physiology; Cardiovascular Division; Federal University of Sao Paulo; Sao Paulo Brazil
| | - Ruy R. Campos
- Department of Physiology; Cardiovascular Division; Federal University of Sao Paulo; Sao Paulo Brazil
| | - Mirian A. Boim
- Department of Medicine; Renal Division; Federal University of Sao Paulo; Sao Paulo Brazil
| |
Collapse
|