1
|
Zhu M, Yan T, Zhu S, Weng F, Zhu K, Wang C, Guo C. Identification and verification of FN1, P4HA1 and CREBBP as potential biomarkers in human atrial fibrillation. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:6947-6965. [PMID: 37161136 DOI: 10.3934/mbe.2023300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is a common arrhythmia that can lead to cardiac complications. The mechanisms involved in AF remain elusive. We aimed to explore the potential biomarkers and mechanisms underpinning AF. METHODS An independent dataset, GSE2240, was obtained from the Gene Expression Omnibus database. The R package, "limma", was used to screen for differentially expressed genes (DEGs) in individuals with AF and normal sinus rhythm (SR). Weighted gene co-expression network analysis (WGCNA) was applied to cluster DEGs into different modules based on functional disparities. Enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery. A protein-protein interaction network was constructed, and hub genes were identified using cytoHubba. Quantitative reverse-transcription PCR was used to validate mRNA expression in individuals with AF and SR. RESULTS We identified 2, 589 DEGs clustered into 10 modules using WGCNA. Gene Ontology analysis showed specific clustered genes significantly enriched in pathways associated with the extracellular matrix and collagen organization. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the target genes were mainly enriched for proteoglycans in cancer, extracellular matrix-receptor interaction, focal adhesion, and the PI3K-Akt signaling pathway. Three hub genes, FN1, P4HA1 and CREBBP, were identified, which were highly correlated with AF endogenesis. mRNA expression of hub genes in patients with AF were higher than in individuals with normal SR, consistent with the results of bioinformatics analysis. CONCLUSIONS FN1, P4HA1, and CREBBP may play critical roles in AF. Using bioinformatics, we found that expression of these genes was significantly elevated in patients with AF than in individuals with normal SR. Furthermore, these genes were elevated at core positions in the mRNA interaction network. These genes should be further explored as novel biomarkers and target candidates for AF therapy.
Collapse
Affiliation(s)
- Miao Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Tao Yan
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Shijie Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Fan Weng
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Kai Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Chunsheng Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Changfa Guo
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
2
|
Zhong HY, Yuan C, Liu XL, Wang QQ, Li X, Zhao YC, Li X, Liu DD, Zheng TF, Zhang M. Mechanical stretch aggravates vascular smooth muscle cell apoptosis and vascular remodeling by downregulating EZH2. Int J Biochem Cell Biol 2022; 151:106278. [PMID: 35985452 DOI: 10.1016/j.biocel.2022.106278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Enhancer of zeste homolog 2 (EZH2) was recently found to play an important role in cardiovascular disease. However, the role of EZH2 in vascular remodeling induced by mechanical stretch is poorly understood. The aim of the present work was to investigate the role of EZH2 in regulating smooth muscle cell function through mechanical stretch assays and to explore the underlying mechanisms. METHODS WT C57BL/6 J mice underwent sham surgery or abdominal aortic constriction. The level of EZH2 expression was determined by Western blotting and immunohistochemical staining. We demonstrated the thickness of vascular remodeling by HE staining. JASPAR was used to predict transcription factors that could affect EZH2. Chromatin immunoprecipitation was used to substantiate the DNAprotein interactions. Promoter luciferase assays were performed to demonstrate the activity of the transcription factors. RESULTS We found that in vivo, AAC significantly reduced EZH2 protein levels in the thoracic aorta. Smooth muscle-specific overexpression of EZH2 was sufficient to attenuate the AAC-induced reduction in trimethylation of Lys-27 in histone 3 and thickening of the arterial media. Administration of GSK-J4 (an inhibitor of H3K27me3 demethylase) induced the same effects. In addition, we found that mechanical stretch regulated the expression of EZH2 through the Yes-associated protein (YAP)- transcriptional factor TEA domain 1 (TEAD) pathway. TEAD1 bound directly to the promoter of EZH2, and blocking the YAP-TEAD1 interaction inhibited EZH2 downregulation due to mechanical stretch. CONCLUSION This study reveals that mechanical stretch downregulates EZH2 through the YAP-TEAD1 pathway, thereby aggravating smooth muscle cell apoptosis and vascular remodeling.
Collapse
Affiliation(s)
- Hong-Yu Zhong
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Chong Yuan
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Xiao-Lin Liu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Qian-Qian Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Xiao Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Ya-Chao Zhao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Xuan Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Dong-Dong Liu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Teng-Fei Zheng
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| | - Mei Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
3
|
Karakaya C, van Turnhout MC, Visser VL, Ristori T, Bouten CVC, Sahlgren CM, Loerakker S. Notch signaling regulates strain-mediated phenotypic switching of vascular smooth muscle cells. Front Cell Dev Biol 2022; 10:910503. [PMID: 36036000 PMCID: PMC9412035 DOI: 10.3389/fcell.2022.910503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/11/2022] [Indexed: 11/27/2022] Open
Abstract
Mechanical stimuli experienced by vascular smooth muscle cells (VSMCs) and mechanosensitive Notch signaling are important regulators of vascular growth and remodeling. However, the interplay between mechanical cues and Notch signaling, and its contribution to regulate the VSMC phenotype are still unclear. Here, we investigated the role of Notch signaling in regulating strain-mediated changes in VSMC phenotype. Synthetic and contractile VSMCs were cyclically stretched for 48 h to determine the temporal changes in phenotypic features. Different magnitudes of strain were applied to investigate its effect on Notch mechanosensitivity and the phenotypic regulation of VSMCs. In addition, Notch signaling was inhibited via DAPT treatment and activated with immobilized Jagged1 ligands to understand the role of Notch on strain-mediated phenotypic changes of VSMCs. Our data demonstrate that cyclic strain induces a decrease in Notch signaling along with a loss of VSMC contractile features. Accordingly, the activation of Notch signaling during cyclic stretching partially rescued the contractile features of VSMCs. These findings demonstrate that Notch signaling has an important role in regulating strain-mediated phenotypic switching of VSMCs.
Collapse
Affiliation(s)
- Cansu Karakaya
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Mark C. van Turnhout
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Valery L. Visser
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Carlijn V. C. Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Cecilia M. Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- *Correspondence: Sandra Loerakker,
| |
Collapse
|
4
|
Fukui W, Ujihara Y, Nakamura M, Sugita S. Direct visualization of interstitial flow distribution in aortic walls. Sci Rep 2022; 12:5381. [PMID: 35354879 PMCID: PMC8969162 DOI: 10.1038/s41598-022-09304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/21/2022] [Indexed: 12/05/2022] Open
Abstract
Vascular smooth muscle cells are exposed to interstitial flow across aortic walls. Fluid shear stress changes the phenotype of smooth muscle cells to the synthetic type; hence, the fast interstitial flow might be related to aortic diseases. In this study, we propose a novel method to directly measure the interstitial flow velocity from the spatiotemporal changes in the concentration of a fluorescent dye. The lumen of a mouse thoracic aorta was filled with a fluorescent dye and pressurized in ex vivo. The flow of the fluorescent dye from the intimal to the adventitial sides was successfully visualized under a two-photon microscope. The flow velocity was determined by applying a one-dimensional advection–diffusion equation to the kymograph obtained from a series of fluorescent images. The results confirmed a higher interstitial flow velocity in the aortic walls under higher intraluminal pressure. A comparison of the interstitial flow velocity in the radial direction showed faster flow on the more intimal side, where hyperplasia is often found in hypertension. These results indicate that the proposed method can be used to visualize the interstitial flow directly and thus, determine the local interstitial flow velocity.
Collapse
|
5
|
Karakaya C, van Asten JGM, Ristori T, Sahlgren CM, Loerakker S. Mechano-regulated cell-cell signaling in the context of cardiovascular tissue engineering. Biomech Model Mechanobiol 2022; 21:5-54. [PMID: 34613528 PMCID: PMC8807458 DOI: 10.1007/s10237-021-01521-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
Cardiovascular tissue engineering (CVTE) aims to create living tissues, with the ability to grow and remodel, as replacements for diseased blood vessels and heart valves. Despite promising results, the (long-term) functionality of these engineered tissues still needs improvement to reach broad clinical application. The functionality of native tissues is ensured by their specific mechanical properties directly arising from tissue organization. We therefore hypothesize that establishing a native-like tissue organization is vital to overcome the limitations of current CVTE approaches. To achieve this aim, a better understanding of the growth and remodeling (G&R) mechanisms of cardiovascular tissues is necessary. Cells are the main mediators of tissue G&R, and their behavior is strongly influenced by both mechanical stimuli and cell-cell signaling. An increasing number of signaling pathways has also been identified as mechanosensitive. As such, they may have a key underlying role in regulating the G&R of tissues in response to mechanical stimuli. A more detailed understanding of mechano-regulated cell-cell signaling may thus be crucial to advance CVTE, as it could inspire new methods to control tissue G&R and improve the organization and functionality of engineered tissues, thereby accelerating clinical translation. In this review, we discuss the organization and biomechanics of native cardiovascular tissues; recent CVTE studies emphasizing the obtained engineered tissue organization; and the interplay between mechanical stimuli, cell behavior, and cell-cell signaling. In addition, we review past contributions of computational models in understanding and predicting mechano-regulated tissue G&R and cell-cell signaling to highlight their potential role in future CVTE strategies.
Collapse
Affiliation(s)
- Cansu Karakaya
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
6
|
Vessel structural stress mediates aortic media degeneration in bicuspid aortopathy: New insights based on patient-specific fluid-structure interaction analysis. J Biomech 2021; 129:110805. [PMID: 34678623 DOI: 10.1016/j.jbiomech.2021.110805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022]
Abstract
This study aimed to assess the relationship between local mechanical stimuli and regional aortic tissue degeneration using fluid-structure interaction (FSI) analysis in patients with bicuspid aortic valve (BAV) disease. Nine patients underwent ascending aortic replacement were recruited. Tissues were collected to evaluate the pathology features in four regions, greater curvature (GC-region), posterior (P-region), anterior (A-region), and lesser curvature (LC-region). FSI analysis was performed to quantify vessel structural stress (VSS) and flow-induced parameters, including wall shear stress (WSS), oscillatory shear index (OSI), and particle relative residence time (RRT). The correlation between these biomechanical metrics and tissue degeneration was analyzed. Elastin in the medial layer and media thickness were thinnest and the gap between fibers was biggest in the GC-region, followed by the P-region and A-region, while the elastin and media thickness were thickest and the gap smallest in the LC-region. The collagen deposition followed a pattern with the biggest in the GC-region and least in the LC-region. There is a strong negative correlation between mean or peak VSS and elastin thickness in the arterial wall in the GC-region (r = -0.917; p = 0.001 and r = -0.899; p = 0.001), A-region (r = -0.748; p = 0.020 and r = -0.700; p = 0.036) and P-region (r = -0.773; p = 0.014 and r = -0.769; p = 0.015), and between mean VSS and fiber distance in the A-region (r = -0.702, p = 0.035). Moreover, strong negative correlation between mean or peak VSS and media thickness was also observed. No correlation was found between WSS, OSI, and RRT and aortic tissue degeneration in these four regions. These findings indicate that increased VSS correlated with local elastin degradation and aortic media degeneration, implying that it could be a potential biomechanical parameter for a refined risk stratification for patients with BAV.
Collapse
|
7
|
Huang W, Liu H, Pan Y, Yang H, Lin J, Zhang H. Mechanical stretching of the pulmonary vein mediates pulmonary hypertension due to left heart disease by regulating SAC/MAPK pathway and the expression of IL-6 and TNF-α. J Cardiothorac Surg 2021; 16:127. [PMID: 33971931 PMCID: PMC8107413 DOI: 10.1186/s13019-021-01471-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/05/2021] [Indexed: 01/09/2023] Open
Abstract
Background This study aimed to explore whether the mechanical stretching-induced expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in pulmonary veins occurred through the stretch-activated channel (SAC)/ mitogen-activated protein kinases (MAPKs) pathway. Methods Sixty male Sprague-Dawley rats were divided into three sham groups and seven model groups. A metal clip was placed on the ascending aorta in the model group to establish PH-LHD rat model. The sham group received a similar operation without ascending aorta clamped. On day 25, pulmonary vein was given mechanical stretching with 0 g, 2.0 g tension in two model groups and two sham groups. Another four model groups were given 2.0 g tension after MAPKs pathway inhibitors soaked. The last sham group and model group rats’ pulmonary veins, pulmonary artery and lung tissues were obtained on day 35. Pulmonary vein, pulmonary artery and lung tissue were evaluated by echocardiography, HE staining, immunohistochemistry and western blotting respectively. Results On day 25, left heart weight, right ventricular pressure (35.339 cmH2O) and left atrial pressure (13.657 cmH2O) were increased in model group than those in sham group. Echocardiography showed left heart failure in the PH-LHD group (Interventrieular septum dimension 1.716 mm, left ventricular internal end diastolic dimension 4.888 mm, left ventricular posterior wall thickness in diastole 1.749 mm, ejection fraction 76.917%). But there was no difference in lung tissue between the sham group and PH-LHD group as showed by HE staining. Our results showed that the expression of IL-6 and TNF-α was highly expressed in PH-LHD rats’ serum and pulmonary vein, which were further increased after 2.0 g tension was given and were decreased after SAC/MAPKs inhibitors treatment. Meanwhile, on day 25, immunohistochemistry analysis showed the expression of IL-6 and TNF-α was higher in the PH-LHD rats’ pulmonary vein than that in pulmonary artery and lung tissue, and these expressions in pulmonary vein of PH-LHD group were also higher than that in sham group. However, on day 35, IL-6 and TNF-α were all increased in the pulmonary veins, arteries and lung tissues. Besides, our results uncovered that SAC/MAPKs pathway were upregulating in PH-LHD rats’ pulmonary vein. Conclusion In conclusion, pulmonary vein mechanical stretching exacerbated PH-LHD possibly through the SAC/MAPKs pathway and upregulating expression of IL-6 and TNF-α.
Collapse
Affiliation(s)
- Wenhui Huang
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China.,Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, Fujian Province, People's Republic of China
| | - Hongjin Liu
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Yichao Pan
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Hongwei Yang
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Jing Lin
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Hui Zhang
- Department of Intensive Care Unit, Union Hospital, Fujian Medical University, Fuzhou, 350004, Fujian Province, People's Republic of China.
| |
Collapse
|
8
|
Bruijn LE, van den Akker BEWM, van Rhijn CM, Hamming JF, Lindeman JHN. Extreme Diversity of the Human Vascular Mesenchymal Cell Landscape. J Am Heart Assoc 2020; 9:e017094. [PMID: 33190596 PMCID: PMC7763765 DOI: 10.1161/jaha.120.017094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Background Human mesenchymal cells are culprit factors in vascular (patho)physiology and are hallmarked by phenotypic and functional heterogeneity. At present, they are subdivided by classic umbrella terms, such as "fibroblasts," "myofibroblasts," "smooth muscle cells," "fibrocytes," "mesangial cells," and "pericytes." However, a discriminative marker-based subclassification has to date not been established. Methods and Results As a first effort toward a classification scheme, a systematic literature search was performed to identify the most commonly used phenotypical and functional protein markers for characterizing and classifying vascular mesenchymal cell subpopulation(s). We next applied immunohistochemistry and immunofluorescence to inventory the expression pattern of identified markers on human aorta specimens representing early, intermediate, and end stages of human atherosclerotic disease. Included markers comprise markers for mesenchymal lineage (vimentin, FSP-1 [fibroblast-specific protein-1]/S100A4, cluster of differentiation (CD) 90/thymocyte differentiation antigen 1, and FAP [fibroblast activation protein]), contractile/non-contractile phenotype (α-smooth muscle actin, smooth muscle myosin heavy chain, and nonmuscle myosin heavy chain), and auxiliary contractile markers (h1-Calponin, h-Caldesmon, Desmin, SM22α [smooth muscle protein 22α], non-muscle myosin heavy chain, smooth muscle myosin heavy chain, Smoothelin-B, α-Tropomyosin, and Telokin) or adhesion proteins (Paxillin and Vinculin). Vimentin classified as the most inclusive lineage marker. Subset markers did not separate along classic lines of smooth muscle cell, myofibroblast, or fibroblast, but showed clear temporal and spatial diversity. Strong indications were found for presence of stem cells/Endothelial-to-Mesenchymal cell Transition and fibrocytes in specific aspects of the human atherosclerotic process. Conclusions This systematic evaluation shows a highly diverse and dynamic landscape for the human vascular mesenchymal cell population that is not captured by the classic nomenclature. Our observations stress the need for a consensus multiparameter subclass designation along the lines of the cluster of differentiation classification for leucocytes.
Collapse
Affiliation(s)
- Laura E. Bruijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | | | - Connie M. van Rhijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jaap F. Hamming
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jan H. N. Lindeman
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
9
|
Zhang H, Huang W, Liu H, Zheng Y, Liao L. Mechanical stretching of pulmonary vein stimulates matrix metalloproteinase-9 and transforming growth factor-β1 through stretch-activated channel/MAPK pathways in pulmonary hypertension due to left heart disease model rats. PLoS One 2020; 15:e0235824. [PMID: 32881898 PMCID: PMC7470280 DOI: 10.1371/journal.pone.0235824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/23/2020] [Indexed: 12/23/2022] Open
Abstract
Pulmonary hypertension due to left heart disease (PH-LHD) is a momentous pulmonary hypertension disease, and left heart disease is the most familiar cause. Mechanical stretching may be a crucial cause of vascular remodeling. While, the underlining mechanism of mechanical stretching-induced in remodeling of pulmonary vein in the early stage of PH-LHD has not been completely elucidated. In our study, the PH-LHD model rats were successfully constructed. After 25 days, doppler echocardiography and hemodynamic examination were performed. In addition, after treatment, the levels of matrix metalloproteinase-9 (MMP-9) and transforming growth factor-β1 (TGF-β1) were determined by ELISA, immunohistochemistry and western blot assays in the pulmonary veins. Moreover, the pathological change of pulmonary tissues was evaluated by H&E staining. Our results uncovered that left ventricular insufficiency and interventricular septal shift could be observed in PH-LHD model rats, and the right ventricular systolic pressure (RVSP) and mean left atrial pressure (mLAP) were also elevated in PH-LHD model rats. Meanwhile, we found that MMP-9 and TGF-β1 could be highly expressed in PH-LHD model rats. Besides, we revealed that stretch-activated channel (SAC)/mitogen-activated protein kinases (MAPKs) signaling pathway could be involved in the upregulations of MMP-9 and TGF-β1 mediated by mechanical stretching in pulmonary vein. Therefore, current research revealed that mechanical stretching induced the increasing expressions of MMP-9 and TGF-β1 in pulmonary vein, which could be mediated by activation of SAC/MAPKs signaling pathway in the early stage of PH-LHD.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Cardiac Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| | - Wenhui Huang
- Department of Cardiac Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| | - Hongjin Liu
- Department of Cardiac Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| | - Yihan Zheng
- Department of Cardiac Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| | - Lianming Liao
- Department of Medical Laboratory, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| |
Collapse
|
10
|
Cell signaling model for arterial mechanobiology. PLoS Comput Biol 2020; 16:e1008161. [PMID: 32834001 PMCID: PMC7470387 DOI: 10.1371/journal.pcbi.1008161] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/03/2020] [Accepted: 07/17/2020] [Indexed: 11/20/2022] Open
Abstract
Arterial growth and remodeling at the tissue level is driven by mechanobiological processes at cellular and sub-cellular levels. Although it is widely accepted that cells seek to promote tissue homeostasis in response to biochemical and biomechanical cues—such as increased wall stress in hypertension—the ways by which these cues translate into tissue maintenance, adaptation, or maladaptation are far from understood. In this paper, we present a logic-based computational model for cell signaling within the arterial wall, aiming to predict changes in extracellular matrix turnover and cell phenotype in response to pressure-induced wall stress, flow-induced wall shear stress, and exogenous sources of angiotensin II, with particular interest in mouse models of hypertension. We simulate a number of experiments from the literature at both the cell and tissue level, involving single or combined inputs, and achieve high qualitative agreement in most cases. Additionally, we demonstrate the utility of this modeling approach for simulating alterations (in this case knockdowns) of individual nodes within the signaling network. Continued modeling of cellular signaling will enable improved mechanistic understanding of arterial growth and remodeling in health and disease, and will be crucial when considering potential pharmacological interventions. Biological soft tissues are characterized by continuous production and removal of material, which endows them with a remarkable ability to adapt to changes in their biochemical and biomechanical environments. For arteries, mechanical stimuli result primarily from changes in blood pressure or flow, and biochemical changes are induced by multiple factors, including pharmacological intervention. In order to understand how arterial properties are maintained in health, or how they adapt or fail to adapt in disease, we must understand better how these diverse stimuli affect material turnover. Extracellular matrix is tightly regulated by mechano-sensing and mechano-regulation, and therefore cell signaling, thus we present a computational model of relevant signaling pathways within the vascular wall, with the aim of predicting changes in wall composition and function in response to three main inputs: pressure-induced wall stress, flow-induced wall shear stress, and exogenous angiotensin II. We obtain qualitative agreement with a range of experimental studies from the literature, and provide illustrative examples demonstrating how such models can be used to further our understanding of arterial remodeling.
Collapse
|
11
|
Wang L, Deng L, Lin N, Shi Y, Chen J, Zhou Y, Chen D, Liu S, Li C. Berberine inhibits proliferation and apoptosis of vascular smooth muscle cells induced by mechanical stretch via the PDI/ERS and MAPK pathways. Life Sci 2020; 259:118253. [PMID: 32795536 DOI: 10.1016/j.lfs.2020.118253] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
AIMS We recently demonstrated that mechanical stretch increases the proliferation and apoptosis of vascular smooth muscle cells (VSMCs) by activating the protein disulfide isomerase (PDI) redox system, thus accelerating atherosclerotic lesion formation in the transplanted vein. At present, there are no efficient intervention measures to prevent this phenomenon. Berberine inhibits pathological vascular remodeling caused by hypertension, but the underlying mechanism is controversial. Herein, we investigate the role of berberine and the underlying mechanism of its effects on mechanical stretch-induced VSMC proliferation and apoptosis. MAIN METHODS Mouse VSMCs cultivated on flexible membranes were pretreated for 1 h with one of the following substances: berberine, PDI inhibitor bacitracin, MAPK inhibitors, or ERS inhibitor 4-PBA. VSMCs were then subjected to mechanical stretch. Immunofluorescence and western blot were used to detect proliferation and apoptosis, as well as to analyze signaling pathways in VSMCs. KEY FINDINGS Our results showed that berberine inhibits the PDI-endoplasmic reticulum stress system, thereby attenuating the simultaneous increase of VSMC proliferation and apoptosis in response to mechanical stretch. Interestingly, MAPK inhibitors PD98059, SP600125, and SB202190 significantly reduced the activation of ERS signaling cascades, and their combination with berberine had additive effects. The ERS inhibitor 4-PBA reduced PDI activation and ERS signaling, but not MAPK phosphorylation. Moreover, caspase-3 and caspase-12 were downregulated by berberine. SIGNIFICANCE These results illustrate a novel mechanism of action of berberine that has practical implications. Our data provide important insights for the prevention and treatment of vascular remodeling and diseases caused by mechanical stretching during hypertension.
Collapse
Affiliation(s)
- Linli Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Lie Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Ning Lin
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Yi Shi
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, China
| | - Jingbo Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Yan Zhou
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Dadi Chen
- Experimental Center for Basic Medical Teaching, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Shuying Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China.
| | - Chaohong Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China.
| |
Collapse
|
12
|
Plotnikov MB, Aliev OI, Shamanaev AY, Sidekhmenova AV, Anishchenko AM, Fomina TI, Rydchenko VS, Khlebnikov AI, Anfinogenova YJ, Schepetkin IA, Atochin DN. Antihypertensive activity of a new c-Jun N-terminal kinase inhibitor in spontaneously hypertensive rats. Hypertens Res 2020; 43:1068-1078. [PMID: 32382155 DOI: 10.1038/s41440-020-0446-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 11/09/2022]
Abstract
c-Jun N-terminal kinases (JNKs) are involved in the myocardial and aortic remodeling, increased arterial tone, and arterial blood pressure elevation associated with hypertension. The aim of the present study was to investigate the antihypertensive effect of a new JNK inhibitor, 1H-indeno[1,2-b]quinoxalin-11-one oxime sodium salt (IQ-1S), on spontaneously hypertensive rats (SHRs). Experiments were performed using normotensive Wistar-Kyoto (WKY) rats and SHRs. Experimental groups of SHRs received IQ-1S intragastrically for 6 weeks in daily doses of 5 and 50 mg/kg; experimental groups of WKY rats received 50 mg/kg IQ-1S according to the same regimen. The IQ-1S administration regimen induced decreases in systolic blood pressure, mean arterial blood pressure, total peripheral resistance, blood viscosity, hematocrit, myocardial cell cross-sectional area, and aortic wall thickness in SHRs vs untreated SHRs. There were no significant differences in systolic blood pressure values between the control and experimental groups of WKY rats during the treatment period. A concentration-dependent decrease in the tone of carotid arterial rings isolated from SHRs was observed after JNK inhibitor application in vitro. Application of the JNK inhibitor diminished endothelin-1 secretion by human umbilical vein endothelial cells in vitro. The main mechanisms of the antihypertensive effect of IQ-1S included the attenuation of blood viscosity due to decreased hematocrit, a vasodilatory effect on arterial smooth muscle cells, and a decrease in endothelin-1 production by endothelial cells.
Collapse
Affiliation(s)
- Mark B Plotnikov
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk, 634028, Russia. .,National Research Tomsk State University, Tomsk, Russia.
| | - Oleg I Aliev
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk, 634028, Russia
| | - Aleksandr Y Shamanaev
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk, 634028, Russia
| | - Anastasia V Sidekhmenova
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk, 634028, Russia
| | - Anna M Anishchenko
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk, 634028, Russia.,Department of Pharmacology, Siberian State Medical University, 2 Moskovsky Trakt, Tomsk, 634050, Russia
| | - Tatiana I Fomina
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk, 634028, Russia
| | - Victoria S Rydchenko
- Department of Biophysics, Siberian State Medical University, 2 Moskovsky Trakt, Tomsk, 634050, Russia
| | - Andrei I Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia.,Research Institute of Biological Medicine, Altai State University, Barnaul, 656049, Russia
| | - Yana J Anfinogenova
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia.,Cardiology Research Institute, Tomsk National Research Medical Center, 111a Kievskaya St., Tomsk, 634012, Russia
| | - Igor A Schepetkin
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Dmitriy N Atochin
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia.,Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
13
|
Zhao T, Chen H, Cheng C, Zhang J, Yan Z, Kuang J, Kong F, Li C, Lu Q. Liraglutide protects high-glucose-stimulated fibroblasts by activating the CD36-JNK-AP1 pathway to downregulate P4HA1. Biomed Pharmacother 2019; 118:109224. [PMID: 31349139 DOI: 10.1016/j.biopha.2019.109224] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a serious complication of diabetes mellitus. It's known that glucagon-like peptide-1 (GLP-1) and prolyl 4-hydroxylase subunit alpha-1 (P4HA1) have significant effect on cardiovascular function, but their interaction in cardiac fibroblasts (CFs) is still being unraveled. METHODS AND RESULTS The present study demonstrated that glucose promotes CFs proliferation and cardiac fibrosis. Using qRT-PCR, Western blot, CCK-8, EdU, flow cytometry, wound healing and Transwell assays to explore the functions of liraglutide and P4HA1 in high-glucose (HG)-induced CFs, we proved that liraglutide as well as silencing of P4HA1 inhibited cell proliferation, migration and invasion, and promoted cell cycle arrest and apoptosis in HG-induced CFs. In addition, liraglutide downregulated P4HA1 expression, upregulated CD36 and P-JNK expression levels, and enhanced the DNA binding activity of AP-1 on P4HA1. Inhibition of CD36 or p--JNK promoted P4HA1 expression. CONCLUSIONS Liraglutide may down-regulate P4HA1 expression at least partly though CD36-JNK-AP1 pathway, thereby reducing myocardial fibrosis. Therefore, our study provides novel insight into the molecular mechanism and function of liraglutide in HG-mediated CFs.
Collapse
Affiliation(s)
- Tong Zhao
- Department of Cardiology, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Huiqiang Chen
- Department of Cardiology, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Chao Cheng
- Department of Cardiology, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Juan Zhang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Zhi Yan
- Department of Cardiology, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Jiangying Kuang
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Feng Kong
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Chunyan Li
- Department of Gynaecology, Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China.
| | - Qinghua Lu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan 250033, Shandong, China.
| |
Collapse
|
14
|
Plotnikov MB, Chernysheva GA, Aliev OI, Smol'iakova VI, Fomina TI, Osipenko AN, Rydchenko VS, Anfinogenova YJ, Khlebnikov AI, Schepetkin IA, Atochin DN. Protective Effects of a New C-Jun N-terminal Kinase Inhibitor in the Model of Global Cerebral Ischemia in Rats. Molecules 2019; 24:E1722. [PMID: 31058815 PMCID: PMC6539151 DOI: 10.3390/molecules24091722] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 12/23/2022] Open
Abstract
c-Jun N-terminal kinase (JNK) is activated by various brain insults and is implicated in neuronal injury triggered by reperfusion-induced oxidative stress. Some JNK inhibitors demonstrated neuroprotective potential in various models, including cerebral ischemia/reperfusion injury. The objective of the present work was to study the neuroprotective activity of a new specific JNK inhibitor, IQ-1S (11H-indeno[1,2-b]quinoxalin-11-one oxime sodium salt), in the model of global cerebral ischemia (GCI) in rats compared with citicoline (cytidine-5'-diphosphocholine), a drug approved for the treatment of acute ischemic stroke and to search for pleiotropic mechanisms of neuroprotective effects of IQ-1S. The experiments were performed in a rat model of ischemic stroke with three-vessel occlusion (model of 3VO) affecting the brachiocephalic artery, the left subclavian artery, and the left common carotid artery. After 7-min episode of GCI in rats, 25% of animals died, whereas survived animals had severe neurological deficit at days 1, 3, and 5 after GCI. At day 5 after GCI, we observing massive loss of pyramidal neurons in the hippocampal CA1 area, increase in lipid peroxidation products in the brain tissue, and decrease in local cerebral blood flow (LCBF) in the parietal cortex. Moreover, blood hyperviscosity syndrome and endothelial dysfunction were found after GCI. Administration of IQ-1S (intragastrically at a dose 50 mg/kg daily for 5 days) was associated with neuroprotective effect comparable with the effect of citicoline (intraperitoneal at a dose of 500 mg/kg, daily for 5 days).The neuroprotective effect was accompanied by a decrease in the number of animals with severe neurological deficit, an increase in the number of animals with moderate degree of neurological deficit compared with control GCI group, and an increase in the number of unaltered neurons in the hippocampal CA1 area along with a significant decrease in the number of neurons with irreversible morphological damage. In rats with IQ-1S administration, the LCBF was significantly higher (by 60%) compared with that in the GCI control. Treatment with IQ-1S also decreases blood viscosity and endothelial dysfunction. A concentration-dependent decrease (IC50 = 0.8 ± 0.3 μM) of tone in isolated carotid arterial rings constricted with phenylephrine was observed after IQ-1S application in vitro. We also found that IQ-1S decreased the intensity of the lipid peroxidation in the brain tissue in rats with GCI. 2.2-Diphenyl-1-picrylhydrazyl scavenging for IQ-1S in acetonitrile and acetone exceeded the corresponding values for ionol, a known antioxidant. Overall, these results suggest that the neuroprotective properties of IQ-1S may be mediated by improvement of cerebral microcirculation due to the enhanced vasorelaxation, beneficial effects on blood viscosity, attenuation of the endothelial dysfunction, and antioxidant/antiradical IQ-1S activity.
Collapse
Affiliation(s)
- Mark B Plotnikov
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, Tomsk 634028, Russia.
- National Research Tomsk State University, Tomsk 634050, Russia.
| | - Galina A Chernysheva
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, Tomsk 634028, Russia.
| | - Oleg I Aliev
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, Tomsk 634028, Russia.
| | - Vera I Smol'iakova
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, Tomsk 634028, Russia.
| | - Tatiana I Fomina
- Department of Medicine Toxicology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, Tomsk 634028, Russia.
| | - Anton N Osipenko
- Department of Pharmacology, Siberian State Medical University, Tomsk 634050, Russia.
| | - Victoria S Rydchenko
- Department of Biophysics, Siberian State Medical University, Tomsk 634050, Russia.
| | - Yana J Anfinogenova
- Cardiology Research Institute, Tomsk NRMC, Tomsk 634012, Russia.
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia.
| | - Andrei I Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia.
- Research Institute of Biological Medicine, Altai State University, Barnaul 656049, Russia.
| | - Igor A Schepetkin
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia.
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| | - Dmitriy N Atochin
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia.
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
15
|
Fu S, Yin L, Lin X, Lu J, Wang X. Effects of Cyclic Mechanical Stretch on the Proliferation of L6 Myoblasts and Its Mechanisms: PI3K/Akt and MAPK Signal Pathways Regulated by IGF-1 Receptor. Int J Mol Sci 2018; 19:ijms19061649. [PMID: 29865254 PMCID: PMC6032393 DOI: 10.3390/ijms19061649] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 12/17/2022] Open
Abstract
Myoblast proliferation is crucial to skeletal muscle hypertrophy and regeneration. Our previous study indicated that mechanical stretch altered the proliferation of C2C12 myoblasts, associated with insulin growth factor 1 (IGF-1)-mediated phosphoinositide 3-kinase (PI3K)/Akt (also known as protein kinase B) and mitogen-activated protein kinase (MAPK) pathways through IGF-1 receptor (IGF-1R). The purpose of this study was to explore the same stretches on the proliferation of L6 myoblasts and its association with IGF-1-regulated PI3K/Akt and MAPK activations. L6 myoblasts were divided into three groups: control, 15% stretch, and 20% stretch. Stretches were achieved using FlexCell Strain Unit. Cell proliferation and IGF-1 concentration were detected by CCK8 and ELISA, respectively. IGF-1R expression, and expressions and activities of PI3K, Akt, and MAPKs (including extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38) were determined by Western blot. We found that 15% stretch promoted, while 20% stretch inhibited L6 myoblast proliferation. A 15% stretch increased IGF-1R level, although had no effect on IGF-1 secretion of L6 myoblasts, and PI3K/Akt and ERK1/2 (not p38) inhibitors attenuated 15% stretch-induced pro-proliferation. Exogenous IGF-1 reversed 20% stretch-induced anti-proliferation, accompanied with increases in IGF-1R level as well as PI3K/Akt and MAPK (ERK1/2 and p38) activations. In conclusion, stretch regulated L6 myoblasts proliferation, which may be mediated by the changes in PI3K/Akt and MAPK activations regulated by IGF-1R, despite no detectable IGF-1 from stretched L6 myoblasts.
Collapse
Affiliation(s)
- Shaoting Fu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Lijun Yin
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Xiaojing Lin
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Jianqiang Lu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Xiaohui Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
16
|
Ouyang N, Zhang P, Fu R, Shen G, Jiang L, Fang B. Mechanical strain promotes osteogenic differentiation of bone mesenchymal stem cells from ovariectomized rats via the phosphoinositide 3‑kinase/Akt signaling pathway. Mol Med Rep 2017; 17:1855-1862. [PMID: 29138823 DOI: 10.3892/mmr.2017.8030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/07/2017] [Indexed: 11/06/2022] Open
Abstract
Osteoporosis has become an overwhelming public health problem worldwide. As an elementary physiological factor to regulate bone formation and regeneration, mechanical strain may be used as a non‑invasive intervention in osteoporosis prevention and treatment. However, little is known regarding the underlying mechanism. The aim of the current study was to investigate the effect of continuous mechanical strain (CMS) on osteogenic differentiation of bone mesenchymal stem cells (BMSCs) from ovariectomized rats (OVX BMSCs). In addition, involvement of the phosphatidylinositol 3‑kinase (PI3K)/Akt signaling pathway in biomechanical signal transduction and its function were evaluated. The results demonstrated that OVX BMSCs subjected to CMS exhibited higher alkaline phosphatase (ALP) activity and deeper staining at 24 and 48 h. In addition, CMS upregulated the mRNA expression levels of ALP, collagen type I, runt related transcription factor 2 (Runx2), as well as the protein expression level of Runx2 in a time‑dependent manner. The PI3K/Akt signaling pathway was rapidly activated by CMS, with its phosphorylation level reaching its maximum in a short duration and a large quantity of phosphorylated‑Akt remaining in the nucleus. Pre‑treatment with a selective blocker significantly blocked the strain‑induced activation of PI3K/Akt and reduced the commitment of OVX BMSCs into osteoblasts, demonstrating a dominated regulative effect of PI3K/Akt signaling in strain‑induced osteogenesis. These results indicated that CMS induced the early differentiation of OVX BMSCs towards an osteogenic phenotype by activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Ningjuan Ouyang
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Peng Zhang
- The Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Runqing Fu
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Guofang Shen
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Bing Fang
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| |
Collapse
|
17
|
Grell AS, Frederiksen SD, Edvinsson L, Ansar S. Cerebrovascular gene expression in spontaneously hypertensive rats. PLoS One 2017; 12:e0184233. [PMID: 28880918 PMCID: PMC5589213 DOI: 10.1371/journal.pone.0184233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/21/2017] [Indexed: 11/22/2022] Open
Abstract
Hypertension is a hemodynamic disorder and one of the most important and well-established risk factors for vascular diseases such as stroke. Blood vessels exposed to chronic shear stress develop structural changes and remodeling of the vascular wall through many complex mechanisms. However, the molecular mechanisms involved are not fully understood. Hypertension-susceptible genes may provide a novel insight into potential molecular mechanisms of hypertension and secondary complications associated with hypertension. The aim of this exploratory study was to identify gene expression differences in the middle cerebral arteries between 12-week-old male spontaneously hypertensive rats and their normotensive Wistar-Kyoto rats using an Affymetrix whole-transcriptome expression profiling. Quantitative PCR and western blotting were used to verify genes of interest. 169 genes were differentially expressed in the middle cerebral arteries from hypertensive compared to normotensive rats. The gene expression of 72 genes was decreased and the gene expression of 97 genes was increased. The following genes with a fold difference ≥1.40 were verified by quantitative PCR; Postn, Olr1, Fas, Vldlr, Mmp2, Timp1, Serpine1, Mmp11, Cd34, Ptgs1 and Ptgs2. The gene expression of Postn, Olr1, Fas, Vldlr, Mmp2, Timp1 and Serpine1 and the protein expression of LOX1 (also known as OLR1) were significantly increased in the middle cerebral arteries from spontaneously hypertensive rats compared to Wistar-Kyoto rats. In conclusion, the identified genes in the middle cerebral arteries from spontaneously hypertensive rats could be possible mediators of the vascular changes and secondary complications associated with hypertension. This study supports the selection of key genes to investigate in the future research of hypertension-induced end-organ damage.
Collapse
Affiliation(s)
- Anne-Sofie Grell
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
- * E-mail:
| | - Simona Denise Frederiksen
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Saema Ansar
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
18
|
Ma Y, Fu S, Lu L, Wang X. Role of androgen receptor on cyclic mechanical stretch-regulated proliferation of C2C12 myoblasts and its upstream signals: IGF-1-mediated PI3K/Akt and MAPKs pathways. Mol Cell Endocrinol 2017; 450:83-93. [PMID: 28454723 DOI: 10.1016/j.mce.2017.04.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/17/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022]
Abstract
OBJECTS To detect the effects of androgen receptor (AR) on cyclic mechanical stretch-modulated proliferation of C2C12 myoblasts and its pathways: roles of IGF-1, PI3K and MAPK. METHODS C2C12 were randomly divided into five groups: un-stretched control, six or 8 h of fifteen percent stretch, and six or 8 h of twenty percent stretch. Cyclic mechanical stretch of C2C12 were completed using a computer-controlled FlexCell Strain Unit. Cell proliferation and IGF-1 concentration in medium were detected by CCK8 and ELISA, respectively. Expressions of AR and IGF-1R, and expressions and activities of PI3K, p38 and ERK1/2 in stretched C2C12 cells were determined by Western blot. RESULTS ①The proliferation of C2C12 cells, IGF-1 concentration in medium, expressions of AR and IGF-1R, and activities of PI3K, p38 and ERK1/2 were increased by 6 h of fifteen percent stretch, while decreased by twenty percent stretch for six or 8 h ②The fifteen percent stretch-increased proliferation of C2C12 cells was reversed by AR inhibitor, Flutamide. ③The increases of AR expression, activities of PI3K, p38 and ERK1/2 resulted from fifteen percent stretch were attenuated by IGF-1 neutralizing antibody, while twenty percent stretch-induced decreases of the above indicators were enhanced by recombinant IGF-1. ④Specific inhibitors of p38, ERK1/2 and PI3K all decreased the expression of AR in fifteen percent and twenty percent of stretched C2C12 cells. CONCLUSIONS Cyclic mechanical stretch modulated the proliferation of C2C12 cells, which may be attributed to the alterations of AR via IGF-1-PI3K/Akt and IGF-1-MAPK (p38, ERK1/2) pathways in C2C12 cells.
Collapse
Affiliation(s)
- Yiming Ma
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Shaoting Fu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Lin Lu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaohui Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
19
|
Zhao Q, Lu Y, Yu H, Gan X. Low magnitude high frequency vibration promotes adipogenic differentiation of bone marrow stem cells via P38 MAPK signal. PLoS One 2017; 12:e0172954. [PMID: 28253368 PMCID: PMC5333869 DOI: 10.1371/journal.pone.0172954] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/13/2017] [Indexed: 02/05/2023] Open
Abstract
Low magnitude high frequency vibration (LMHFV) has been mainly reported for its influence on the musculoskeletal system, particularly the bone tissue. In the bone structure, osteogenic activity is the main focus of study with regards to LMHFV. However, adipogenesis, another important mode of differentiation in the bone marrow cavity that might be affected by LMHFV, is much less researched. Furthermore, the molecular mechanism of how LMHFV influences adipogenesis still needs to be understood. Here, we tested the effect of LMHFV (0.3g, 40 Hz, amplitude: 50μm), 15min/d, on multipotent stem cells (MSCs), which are the common progenitors of osteogenic, chondrogenic, adipogenic and myogenic cells. It is previously shown that LMHFV promotes osteogenesis of MSCs. In this study, we further revealed its effect on adipo-differentiation of bone marrow stem cells (BMSCs) and studied the underlying signaling pathway. We found that when treated with LMHFV, the cells showed a higher expression of PPARγ, C/EBPα, adiponectin and showed more oil droplets. After vibration, the protein expression of PPARγ increased, and the phosphorylation of p38 MAPK was enhanced. After treating cells with SB203580, a specific p38 inhibitor, both the protein level of PPARγ illustrated by immunofluorescent staining and the oil droplets number, were decreased. Altogether, this indicates that p38 MAPK is activated during adipogenesis of BMSCs, and this is promoted by LMHFV. Our results demonstrating that specific parameters of LMHFV promotes adipogenesis of MSCs and enhances osteogenesis, highlights an unbeneficial side effect of vibration therapy used for preventing obesity and osteoporosis.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuezhi Lu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: (HY); (XG)
| | - Xueqi Gan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: (HY); (XG)
| |
Collapse
|
20
|
Renner DJ, Ewald ML, Kim T, Yamada S. Biochemical analysis of force-sensitive responses using a large-scale cell stretch device. Cell Adh Migr 2017; 11:504-513. [PMID: 28129019 DOI: 10.1080/19336918.2016.1276147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Physical force has emerged as a key regulator of tissue homeostasis, and plays an important role in embryogenesis, tissue regeneration, and disease progression. Currently, the details of protein interactions under elevated physical stress are largely missing, therefore, preventing the fundamental, molecular understanding of mechano-transduction. This is in part due to the difficulty isolating large quantities of cell lysates exposed to force-bearing conditions for biochemical analysis. We designed a simple, easy-to-fabricate, large-scale cell stretch device for the analysis of force-sensitive cell responses. Using proximal biotinylation (BioID) analysis or phospho-specific antibodies, we detected force-sensitive biochemical changes in cells exposed to prolonged cyclic substrate stretch. For example, using promiscuous biotin ligase BirA* tagged α-catenin, the biotinylation of myosin IIA increased with stretch, suggesting the close proximity of myosin IIA to α-catenin under a force bearing condition. Furthermore, using phospho-specific antibodies, Akt phosphorylation was reduced upon stretch while Src phosphorylation was unchanged. Interestingly, phosphorylation of GSK3β, a downstream effector of Akt pathway, was also reduced with stretch, while the phosphorylation of other Akt effectors was unchanged. These data suggest that the Akt-GSK3β pathway is force-sensitive. This simple cell stretch device enables biochemical analysis of force-sensitive responses and has potential to uncover molecules underlying mechano-transduction.
Collapse
Affiliation(s)
- Derrick J Renner
- a Biomedical Engineering Department , University of California , Davis, Davis , CA , USA
| | - Makena L Ewald
- a Biomedical Engineering Department , University of California , Davis, Davis , CA , USA
| | - Timothy Kim
- a Biomedical Engineering Department , University of California , Davis, Davis , CA , USA
| | - Soichiro Yamada
- a Biomedical Engineering Department , University of California , Davis, Davis , CA , USA
| |
Collapse
|
21
|
Yang Z, Wu B, Jia S, Zhao Y, Hou R, Liu X, Wang X, Chen L, Yang X, Lei D, Wang L. The mechanically activated p38/MMP-2 signaling pathway promotes bone marrow mesenchymal stem cell migration in rats. Arch Oral Biol 2017; 76:55-60. [PMID: 28126687 DOI: 10.1016/j.archoralbio.2017.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 11/01/2016] [Accepted: 01/18/2017] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The aim of the present study was to investigate the effect of static strain on bone marrow mesenchymal stem cell (BMMSC) migration and whether the p38/matrix metalloproteinase-2 (MMP-2) axis plays a role in induction of BMMSC migration under mechanical strain. DESIGN Both in vivo and in vitro investigations were performed. Twelve adult male Sprague-Dawley rats were randomly divided into 2 groups (n=6 per group). Rats in the experimental group underwent right mandibular distraction osteogenesis, whereas rats in the control group were subjected to osteotomy in the mandible without distraction. Immunohistochemistry and immunofluorescence were performed to evaluate phospho-p38 (p-p38) and Nestin expression. BMMSCs were isolated from rat mandibles. BMMSCs in the experimental group were subjected to static mechanical strain for 2h, whereas those in the control group underwent no strain. The biological roles of static strain and the p38/MMP-2 axis in BMMSC migration were evaluated by Transwell assays and western blotting by inhibiting p38 phosphorylation. RESULTS There were significantly more Nestin+ cells in the bone calluses of the experimental group than in those of the control group. In addition, Nestin+/p-p38+ cell numbers were significantly higher in the experimental group than in the control group, indicating that static strain activated p38 signaling in BMMSCs in vivo. In accordance with in vivo results, static strain in vitro stimulated phosphorylation of p38 in BMMSCs. Furthermore, expression of MMP-2 was elevated in BMMSCs under static strain compared with the control, and strain-induced MMP-2 expression was abolished by inhibition of p38 phosphorylation in BMMSCs. Moreover, Transwell assay results showed that static strain promoted BMMSC migration, which was abolished by inhibition of p38 phosphorylation. CONCLUSIONS The present study demonstrated that static strain can promote the migration ability of BMMSCs via p38/MMP-2 signaling. To the best of our knowledge, this study is the first report demonstrating that the p38/MMP-2 axis governs BMMSC migration under static mechanical strain.
Collapse
Affiliation(s)
- Zihui Yang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Baolei Wu
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Sen Jia
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yinghua Zhao
- Department of Prosthodontics, Stomatology Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui Hou
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiaochang Liu
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xinge Wang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Litong Chen
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xinjie Yang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Delin Lei
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| | - Lei Wang
- Department of Oral & Maxillofacial-Head and Neck Oncology, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China; State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
22
|
Ruddy JM, Akerman AW, Kimbrough D, Nadeau EK, Stroud RE, Mukherjee R, Ikonomidis JS, Jones JA. Differential hypertensive protease expression in the thoracic versus abdominal aorta. J Vasc Surg 2016; 66:1543-1552. [PMID: 28034583 DOI: 10.1016/j.jvs.2016.07.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/24/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Hypertension (HTN), which is a major risk factor for cardiovascular morbidity and mortality, can drive pathologic remodeling of the macro- and microcirculation. Patterns of aortic pathology differ, however, suggesting regional heterogeneity of the pressure-sensitive protease systems triggering extracellular matrix remodeling in the thoracic (TA) and abdominal aortas (AA). This study tested the hypothesis that the expression of two major protease systems (matrix metalloproteinases [MMPs] and cathepsins) in the TA and AA would be differentially affected with HTN. METHODS Normotensive (BPN3) mice at 14-16 weeks of age underwent implantation of osmotic infusion pumps for 28-day angiotensin II (AngII) delivery (1.46 mg/kg/day; BPN3+AngII; n = 8) to induce HTN. The TA and AA were harvested to determine levels of MMP-2, MMP-9, and membrane type 1-MMP, and cathepsins S, K, and L were evaluated in age-matched BPN3 (n = 8) control and BPH2 spontaneously hypertensive mice (non-AngII pathway; n = 7). Blood pressure was monitored via CODA tail cuff plethysmography (Kent Scientific Corporation, Torrington, Conn). Quantitative real-time polymerase chain reaction and immunoblotting/zymography were used to measure MMP and cathepsin messenger RNA expression and protein abundance, respectively. Target protease values were compared within each aortic region via analysis of variance. RESULTS Following 28 days infusion, the BPN3+AngII mice had a 17% increase in systolic blood pressure, matching that of the BPH2 spontaneously hypertensive mice (both P < .05 vs BPN3). MMP-2 gene expression demonstrated an AngII-dependent increase in the TA (P < .05), but MMP-9 was not altered with HTN. Expression of tissue inhibitor of metalloproteinases-1 was markedly increased in TA of BPN3+AngII mice, but tissue inhibitor of metalloproteinases-2 demonstrated decreased expression in the AA of both hypertensive groups (P < .05). Only cathepsin K responded to AngII-induced HTN with significant elevation in the TA of those mice, but expression of cathepsin L and cystatin C was inhibited in AA of both hypertensive groups (P < .05). Apoptotic markers were not significantly elevated in any experimental group. CONCLUSIONS By using two different models of HTN, this study has identified pressure-dependent as well as AngII-dependent regional alterations in aortic gene expression of MMPs and cathepsins that may lead to differential remodeling responses in each of the aortic regions. Further studies will delineate mechanisms and may provide targeted therapies to attenuate down-stream aortic pathology based on demonstrated regional heterogeneity.
Collapse
Affiliation(s)
- Jean Marie Ruddy
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC; Division of Cardiothoracic Research, Medical University of South Carolina, Charleston, SC.
| | - Adam W Akerman
- Division of Cardiothoracic Research, Medical University of South Carolina, Charleston, SC
| | - Denise Kimbrough
- Division of Cardiothoracic Research, Medical University of South Carolina, Charleston, SC
| | - Elizabeth K Nadeau
- Division of Cardiothoracic Research, Medical University of South Carolina, Charleston, SC
| | - Robert E Stroud
- Division of Cardiothoracic Research, Medical University of South Carolina, Charleston, SC
| | - Rupak Mukherjee
- Division of Cardiothoracic Research, Medical University of South Carolina, Charleston, SC
| | - John S Ikonomidis
- Division of Cardiothoracic Research, Medical University of South Carolina, Charleston, SC; Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Jeffrey A Jones
- Division of Cardiothoracic Research, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
23
|
Guo L, Wang L, Li H, Yang X, Yang B, Li M, Huang J, Gu D. Down regulation of GALNT3 contributes to endothelial cell injury via activation of p38 MAPK signaling pathway. Atherosclerosis 2016; 245:94-100. [PMID: 26714046 DOI: 10.1016/j.atherosclerosis.2015.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The GALNT3 gene encodes polypeptide N-acetylgalactosaminyl transferase 3 (GalNAc-T3), a member of the GalNAc-Ts family that transfers the N-acetylgalactosamine to the hydroxyl group of serine and threonine residue in the first step of O-linked oligosaccharide biosynthesis. Emerging evidences have linked GalNAc-Ts family to coronary artery disease (CAD). However the effect of GALNT3 in CAD is unknown. The present study investigated the function and mechanisms of GALNT3 gene in endothelial injury. METHODS AND RESULTS The GALNT3 mRNA level was decreased by 48.2% in CAD patients (n = 58), compared with that of controls (n = 120). Expression of GALNT3 was also decreased in human umbilical vein endothelial cells (HUVECs) treated with CAD sera and subjected to hypoxia in vitro. Knockdown of GALNT3 promoted apoptosis and up-regulated the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-14 (MMP-14). Conversely, overexpression of GALNT3 significantly inhibited HUVECs apoptosis and down-regulated the expression of MMP-2 and MMP-14 genes, in addition, overexpression of GALNT3 attenuated hypoxia-induced apoptosis and expression of MMP-2 and MMP-14. Finally, the ratio of cytosolic p-p38 MAPK/p38 MAPK expression was significantly increased with GALNT3 knockdown and lower with GALNT3 overexpression, while the p38 MAPK inhibitor SB203580 blocked the effects of GALNT3 knockdown. CONCLUSIONS Expression of GALNT3 was reduced in CAD patients, and down regulation of GALNT3 contributed to endothelial injury by promoting apoptosis and up-regulating the expression of MMP-2 and MMP-14 genes via p38 MAPK activation. GALNT3 may be a potential target for future therapeutic intervention for CAD.
Collapse
Affiliation(s)
- Liwei Guo
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Laiyuan Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hongfan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueli Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengting Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianfeng Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongfeng Gu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
de Castro Brás LE. Osteopontin: A major player on hypertension-induced vascular remodeling. J Mol Cell Cardiol 2015; 85:151-2. [DOI: 10.1016/j.yjmcc.2015.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 01/13/2023]
|
25
|
Seo KW, Lee SJ, Ye BH, Kim YW, Bae SS, Kim CD. Mechanical stretch enhances the expression and activity of osteopontin and MMP-2 via the Akt1/AP-1 pathways in VSMC. J Mol Cell Cardiol 2015; 85:13-24. [DOI: 10.1016/j.yjmcc.2015.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/06/2015] [Accepted: 05/10/2015] [Indexed: 01/02/2023]
|