1
|
Perumal N, Gopalakrishnan P, Burkovetskaya M, Doss D, Dukkipati SS, Kanchan RK, Mahapatra S. Nuclear factor I/B: Duality in action in cancer pathophysiology. Cancer Lett 2025; 609:217349. [PMID: 39581218 DOI: 10.1016/j.canlet.2024.217349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
The nuclear factor I (NFI) family of transcription factors plays a decisive role in organ development and maturation. Their deregulation has been linked with various diseases, most notably cancer. NFIB stands apart from the other NFI family members given its unique ability to drive both tumor suppressive and oncogenic programs. Thus, the ultimate impact of deregulated NFIB signaling is cancer-specific and strongly influenced by an intricate network of upstream regulators and downstream effectors. Deciphering the events that drive NFIB's paradoxical roles within these networks will enable us to not only understand how this critical transcription factor enacts its dual roles but also drive innovations to help us effectively target NFIB in different cancers. Here, we provide an in-depth review of NFIB. Starting with its defining role in the development of various organs, most notably the central nervous system, we highlight critical signaling pathways and the impact of deregulation on neoplastic transformation, contrasting it with the effect of silencing alone. We then provide examples of its dual roles in various cancers, identifying specific signaling networks associated with oncogenesis versus tumor suppression. We incorporate an example of a cancer type, osteosarcoma, wherein NFIB enacts its dual functions and explore which pathways influence each function. In this manner, we suggest plausible mechanisms for its role-switching from cancers sharing common triggering events in the setting of NFIB deregulation. We also review how NFIB enhances aggressiveness by driving metastasis, stemness, and chemoresistance. We conclude with a discussion on efficacious ways to target NFIB and pose some unanswered questions that may further help solidify our understanding of NFIB and facilitate clinical translation of NFIB targeting.
Collapse
Affiliation(s)
- Naveenkumar Perumal
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Center for Translational Vision Research, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - Maria Burkovetskaya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Doss
- School of Medicine, Creighton University, Omaha, NE, USA
| | - S Shekar Dukkipati
- Department of Pediatrics, Columbia University Irving Medical Center, New York City, NY, USA
| | - Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
2
|
Yu H, Liu P, Chen T. CircIFFO1 suppresses tumor growth and metastasis of cutaneous squamous cell carcinoma by targeting the miR-424-5p/NFIB axis. Arch Dermatol Res 2023; 315:2585-2596. [PMID: 37405427 DOI: 10.1007/s00403-023-02659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 06/18/2023] [Indexed: 07/06/2023]
Abstract
Cutaneous squamous cell carcinoma (CSCC) is a severe malignancy derived from the skin. Circular RNAs (circRNAs) play an important role in the pathological process of many malignant tumors. Moreover, circIFFO1 is reported to be down-regulated in CSCC tissues compared with non-lesional skin tissues. This study aimed to explore the specific role and potential mechanism of circIFFO1 in CSCC progression. Cell proliferation ability was analyzed by 3-(4, 5-dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU) incorporation, and colony-formation assays. Cell cycle progression and apoptosis were detected by flow cytometry. Cell migration and invasion were examined by transwell assays. The interaction between microRNA-424-5p (miR-424-5p) and circIFFO1 or nuclear factor I/B (NFIB) was validated by dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation (RIP) assays. Xenograft tumor assay and immunohistochemistry (IHC) assay were employed to analyze the tumorigenesis in vivo. CircIFFO1 level was down-regulated in CSCC tissues and cell lines. CircIFFO1 overexpression suppressed the proliferation, migration, invasion, and promoted apoptosis of CSCC cells. CircIFFO1 acted as a molecular sponge for miR-424-5p. The anti-tumor effects mediated by circIFFO1 overexpression in CSCC cells could be reversed by miR-424-5p overexpression. miR-424-5p interacted with the 3' untranslated region (3'UTR) of Nuclear Factor I/B (NFIB). miR-424-5p knockdown suppressed the malignant behaviors of CSCC cells, and NFIB knockdown counteracted the anti-tumor effects of miR-424-5p absence in CSCC cells. Additionally, circIFFO1 overexpression restrained xenograft tumor growth in vivo. CircIFFO1 suppressed the malignant behaviors of CSCC by mediating the miR-424-5p/NFIB axis, which provided new insights into the pathogenesis of CSCC.
Collapse
Affiliation(s)
- Hui Yu
- Department of Pathology, Huangdao District Central Hospital, Qingdao, China
| | - Penglin Liu
- Department of Anorectal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianli Chen
- Department of Dermatology, Huangdao District Central Hospital, No. 9 Huangpujiang Road, Huangdao District, Qingdao City, 266555, Shandong Province, China.
| |
Collapse
|
3
|
Asberger J, Berner K, Bicker A, Metz M, Jäger M, Weiß D, Kreutz C, Juhasz-Böss I, Mayer S, Ge I, Erbes T. In Vitro microRNA Expression Profile Alterations under CDK4/6 Therapy in Breast Cancer. Biomedicines 2023; 11:2705. [PMID: 37893081 PMCID: PMC10604872 DOI: 10.3390/biomedicines11102705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Breast cancer is the most common type of cancer worldwide. Cyclin-dependent kinase inhibition is one of the backbones of metastatic breast cancer therapy. However, there are a significant number of therapy failures. This study evaluates the biomarker potential of microRNAs for the prediction of a therapy response under cyclin-dependent kinase inhibition. METHODS This study comprises the analysis of intracellular and extracellular microRNA-expression-level alterations of 56 microRNAs under palbociclib mono as well as combination therapy with letrozole. Breast cancer cell lines BT-474, MCF-7 and HS-578T were analyzed using qPCR. RESULTS A palbociclib-induced microRNA signature could be detected intracellularly as well as extracellularly. Intracellular miR-10a, miR-15b, miR-21, miR-23a and miR-23c were constantly regulated in all three cell lines, whereas let-7b, let-7d, miR-15a, miR-17, miR-18a, miR-20a, miR-191 and miR301a_3p were regulated only in hormone-receptor-positive cells. Extracellular miR-100, miR-10b and miR-182 were constantly regulated across all cell lines, whereas miR-17 was regulated only in hormone-receptor-positive cells. CONCLUSIONS Because they are secreted and significantly upregulated in the microenvironment of tumor cells, miRs-100, -10b and -182 are promising circulating biomarkers that can be used to predict or detect therapy responses under CDK inhibition. MiR-10a, miR-15b, miR-21, miR-23a and miR-23c are potential tissue-based biomarkers.
Collapse
Affiliation(s)
- Jasmin Asberger
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Anna Bicker
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Obstetrics and Gynecology, St. Josefs-Hospital Wiesbaden, 65189 Wiesbaden, Germany
| | - Marius Metz
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daniela Weiß
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Clemens Kreutz
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Institute of Medical Biometry and Statistics, Medical Center – University of Freiburg, 79104 Freiburg, Germany
| | - Ingolf Juhasz-Böss
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sebastian Mayer
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Gynaecology and Obstetrics, Hospital Krumbach, 86381 Krumbach, Germany
| | - Isabell Ge
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Obstetrics and Gynaecology, University Hospital of Basel, 4056 Basel, Switzerland
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Gynaecology and Obstetrics, Diako Mannheim, 68135 Mannheim, Germany
| |
Collapse
|
4
|
Zhou L, Liu H, Chen Z, Chen S, Lu J, Liu C, Liao S, He S, Chen S, Zhou Z. Downregulation of miR-182-5p by NFIB promotes NAD+ salvage synthesis in colorectal cancer by targeting NAMPT. Commun Biol 2023; 6:775. [PMID: 37491379 PMCID: PMC10368701 DOI: 10.1038/s42003-023-05143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023] Open
Abstract
Nuclear factor I B (NFIB) plays an important role in tumors. Our previous study found that NFIB can promote colorectal cancer (CRC) cell proliferation in acidic environments. However, its biological functions and the underlying mechanism in CRC are incompletely understood. Nicotinamide adenine dinucleotide (NAD+) effectively affects cancer cell proliferation. Nevertheless, the regulatory mechanism of NAD+ synthesis in cancer remains to be elucidated. Here we show NFIB promotes CRC proliferation in vitro and growth in vivo, and down-regulation of NFIB can reduce the level of NAD+. In addition, supplementation of NAD+ precursor NMN can recapture cell proliferation in CRC cells with NFIB knockdown. Mechanistically, we identified that NFIB promotes CRC cell proliferation by inhibiting miRNA-182-5p targeting and binding to NAMPT, the NAD+ salvage synthetic rate-limiting enzyme. Our results delineate a combination of high expression of NFIB and NAMPT predicted a clinical poorest prognosis. This work provides potential therapeutic targets for CRC treatment.
Collapse
Affiliation(s)
- Li Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hongtao Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhiji Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Siyuan Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Junyu Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Cao Liu
- Department of Emergency, The General Hospital of Xinjiang Military Command, Urumqi, 830000, China
| | - Siqi Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Shu Chen
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Zhihang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
5
|
Zhou L, Mao LH, Li X, Wang QL, Chen SY, Chen ZJ, Lei J, Liu HT, Liao SQ, Ran T, Li XQ, Zhou ZH, He S. Transcriptional regulation of NDUFA4L2 by NFIB induces sorafenib resistance by decreasing reactive oxygen species in hepatocellular carcinoma. Cancer Sci 2023; 114:793-805. [PMID: 36369883 PMCID: PMC9986074 DOI: 10.1111/cas.15648] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/15/2022] Open
Abstract
Sorafenib is one a first-line therapeutic drugs for advanced hepatocellular carcinoma (HCC). However, only 30% of patients benefit from sorafenib due to drug resistance. We and other groups have revealed that nuclear factor I B (NFIB) regulates liver regeneration and carcinogenesis, but its role in drug resistance is poorly known. We found that NFIB was more upregulated in sorafenib-resistant SMMC-7721 cells compared to parental cells. NFIB knockdown not only sensitized drug-resistant cells to sorafenib but also inhibited the proliferation and invasion of these cells. Meanwhile, NFIB promoted the proliferation and invasion of HCC cells in vitro and facilitated tumor growth and metastasis in vivo. Knocking down NFIB synergetically inhibited tumor growth with sorafenib. Mechanically, gene expression profiling and subsequent verification experiments proved that NFIB could bind with the promoter region of a complex I inhibitor NDUFA4L2 and promote its transcription. Transcriptional upregulation of NDUFA4L2 by NFIB could thus inhibit the sorafenib-induced reactive oxygen species accumulation. Finally, we found that NFIB was highly expressed in HCC tissues, and high NFIB expression level was associated with macrovascular invasion, advanced tumor stage, and poor prognosis of HCC patients (n = 156). In summary, we demonstrated that NFIB could transcriptionally upregulate NDUFA4L2 to enhance both intrinsic and acquired sorafenib resistance of HCC cells by reducing reactive oxygen species induction.
Collapse
Affiliation(s)
- Li Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin-Hong Mao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Gastroenterology, Chengdu Second People's Hospital, Sichuan, China
| | - Xia Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing-Liang Wang
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Si-Yuan Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Ji Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Lei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong-Tao Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Si-Qi Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Ran
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Qin Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Hang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Galambus J, Tsai KY. Molecular and immune targets in cutaneous squamous cell carcinoma. Mol Carcinog 2023; 62:38-51. [PMID: 36000298 DOI: 10.1002/mc.23451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 02/03/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer and often confers a good prognosis. Though surgery is the gold standard of treatment, unresectable or metastatic disease can necessitate systemic therapy. Of systemic agents, there is increasing interest in the use of immunotherapies and targeted therapy. Further study into the driver mutations in cSCC has identified opportunities for targeted therapy. In this review, we discuss both current and investigational immune and molecular targets of therapy for cSCC.
Collapse
Affiliation(s)
- Justine Galambus
- Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kenneth Y Tsai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Donald A. Adam Melanoma and Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
7
|
Liu F, Li S. Non-coding RNAs in skin cancers:Biological roles and molecular mechanisms. Front Pharmacol 2022; 13:934396. [PMID: 36034860 PMCID: PMC9399465 DOI: 10.3389/fphar.2022.934396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cutaneous malignancies, including basal cell carcinoma, cutaneous squamous cell carcinoma, and cutaneous melanoma, are common human tumors. The incidence of cutaneous malignancies is increasing worldwide, and the leading cause of death is malignant invasion and metastasis. The molecular biology of oncogenes has drawn researchers’ attention because of the potential for targeted therapies. Noncoding RNAs, including microRNAs, long noncoding RNAs, and circular RNAs, have been studied extensively in recent years. This review summarizes the aspects of noncoding RNAs related to the metastasis mechanism of skin malignancies. Continuous research may facilitate the identification of new therapeutic targets and help elucidate the mechanism of tumor metastasis, thus providing new opportunities to improve the survival rate of patients with skin malignancies.
Collapse
|
8
|
Zhou L, Wang QL, Mao LH, Chen SY, Yang ZH, Liu X, Gao YH, Li XQ, Zhou ZH, He S. Hepatocyte-Specific Knock-Out of Nfib Aggravates Hepatocellular Tumorigenesis via Enhancing Urea Cycle. Front Mol Biosci 2022; 9:875324. [PMID: 35655758 PMCID: PMC9152321 DOI: 10.3389/fmolb.2022.875324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Nuclear Factor I B (NFIB) has been reported to promote tumor growth, metastasis, and liver regeneration, but its mechanism in liver cancer is not fully elucidated. The present study aims to reveal the role of NFIB in hepatocellular carcinogenesis. In our study, we constructed hepatocyte-specific NFIB gene knockout mice with CRISPR/Cas9 technology (Nfib-/-; Alb-cre), and induced liver cancer mouse model by intraperitoneal injection of DEN/CCl4. First, we found that Nfib-/- mice developed more tumor nodules and had heavier livers than wild-type mice. H&E staining indicated that the liver histological severity of Nfib-/- group was more serious than that of WT group. Then we found that the differentially expressed genes in the tumor tissue between Nfib-/- mice and wild type mice were enriched in urea cycle. Furthermore, ASS1 and CPS1, the core enzymes of the urea cycle, were significantly upregulated in Nfib-/- tumors. Subsequently, we validated that the expression of ASS1 and CPS1 increased after knockdown of NFIB by lentivirus in normal hepatocytes and also promoted cell proliferation in vitro. In addition, ChIP assay confirmed that NFIB can bind with promoter region of both ASS1 and CPS1 gene. Our study reveals for the first time that hepatocyte-specific knock-out of Nfib aggravates hepatocellular tumor development by enhancing the urea cycle.
Collapse
Affiliation(s)
- Li Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing-Liang Wang
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin-Hong Mao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Gastroenterology, Chengdu Second People's Hospital, Sichuan, China
| | - Si-Yuan Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zi-Han Yang
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| | - Xue Liu
- Department of Pathology, College of Basic Medicine, Jining Medical University, Jining, China
| | - Yu-Hua Gao
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Xiao-Qin Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Hang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Lee JS, Kim GH, Lee JH, Ryu JY, Oh EJ, Kim HM, Kwak S, Hur K, Chung HY. MicroRNA-365a/b-3p as a Potential Biomarker for Hypertrophic Scars. Int J Mol Sci 2022; 23:ijms23116117. [PMID: 35682793 PMCID: PMC9181131 DOI: 10.3390/ijms23116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022] Open
Abstract
The clinical aspects of hypertrophic scarring vary according to personal constitution and body part. However, the mechanism of hypertrophic scar (HS) formation remains unclear. MicroRNAs (miRNAs) are known to contribute to HS formation, however, their detailed role remains unknown. In this study, candidate miRNAs were identified and analyzed as biomarkers of hypertrophic scarring for future clinical applications. HSfibroblasts and normal skin fibroblasts from patients were used for profiling and validation of miRNAs. An HS mouse model with xenografted human skin on nude mice was established. The miRNA expression between normal human, normal mouse, and mouse HS skin tissues was compared. Circulating miRNA expression levels in the serum of normal mice and mice with HSs were also analyzed. Ten upregulated and twenty-one downregulated miRNAs were detected. Among these, miR-365a/b-3p and miR-16-5p were identified as candidate miRNAs with statistically significant differences; miR-365a/b-3p was significantly upregulated (p = 0.0244). In mouse studies, miR-365a/b-3p expression levels in skin tissue and serum were higher in mice with HSs than in the control group. These results indicate that miRNAs contribute to hypertrophic scarring and that miR-365a/b-3p may be considered a potential biomarker for HS formation.
Collapse
Affiliation(s)
- Joon Seok Lee
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (J.H.L.); (J.Y.R.); (E.J.O.); (H.M.K.)
| | - Gyeong Hwa Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41199, Korea;
- CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jong Ho Lee
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (J.H.L.); (J.Y.R.); (E.J.O.); (H.M.K.)
| | - Jeong Yeop Ryu
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (J.H.L.); (J.Y.R.); (E.J.O.); (H.M.K.)
| | - Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (J.H.L.); (J.Y.R.); (E.J.O.); (H.M.K.)
- CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Hyun Mi Kim
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (J.H.L.); (J.Y.R.); (E.J.O.); (H.M.K.)
- CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Suin Kwak
- BK21 FOUR KNU Convergence Educational Program of Biomedical Science for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41199, Korea;
| | - Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41199, Korea;
- CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Science for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41199, Korea;
- Correspondence: (K.H.); (H.Y.C.); Tel.: +82-53-420-4821 (K.H.); +82-53-420-5692 (H.Y.C.); Fax: +82-53-422-1466 (K.H.); +82-53-425-3879 (H.Y.C.)
| | - Ho Yun Chung
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (J.H.L.); (J.Y.R.); (E.J.O.); (H.M.K.)
- CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Science for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41199, Korea;
- Kyungpook National University Bio-Medical Research Institute, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (K.H.); (H.Y.C.); Tel.: +82-53-420-4821 (K.H.); +82-53-420-5692 (H.Y.C.); Fax: +82-53-422-1466 (K.H.); +82-53-425-3879 (H.Y.C.)
| |
Collapse
|
10
|
CD44 Expression Intensity Marks Colorectal Cancer Cell Subpopulations with Different Extracellular Vesicle Release Capacity. Int J Mol Sci 2022; 23:ijms23042180. [PMID: 35216292 PMCID: PMC8879498 DOI: 10.3390/ijms23042180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Extracellular vesicles (EV) are released by virtually all cells and they transport biologically important molecules from the release site to target cells. Colorectal cancer (CRC) is a leading cause of cancer-related death cases, thus, it represents a major health issue. Although the EV cargo may reflect the molecular composition of the releasing cells and thus, EVs may hold a great promise for tumor diagnostics, the impact of intratumoral heterogeneity on the intensity of EV release is still largely unknown. By using CRC patient-derived organoids that maintain the cellular and molecular heterogeneity of the original epithelial tumor tissue, we proved that CD44high cells produce more organoids with a higher proliferation intensity, as compared to CD44low cells. Interestingly, we detected an increased EV release by CD44high CRC cells. In addition, we found that the miRNA cargos of CD44high and CD44low cell derived EVs largely overlapped and only four miRNAs were specific for one of the above subpopulations. We observed that EVs released by CD44high cells induced the proliferation and activation of colon fibroblasts more strongly than CD44low cells. However, this effect was due to the higher EV number rather than to the miRNA cargo of EVs. Collectively, we identified CRC subpopulations with different EV releasing capabilities and we proved that CRC cell-released EVs have a miRNA-independent effect on fibroblast proliferation and activation.
Collapse
|
11
|
Droll S, Bao X. Oh, the Mutations You'll Acquire! A Systematic Overview of Cutaneous Squamous Cell Carcinoma. Cell Physiol Biochem 2021; 55:89-119. [PMID: 34553848 PMCID: PMC8579759 DOI: 10.33594/000000433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Nearly two million cases of cutaneous squamous cell carcinoma (cSCC) are diagnosed every year in the United States alone. cSCC is notable for both its prevalence and its propensity for invasion and metastasis. For many patients, surgery is curative. However, patients experiencing immunosuppression or recurrent, advanced, and metastatic disease still face limited therapeutic options and significant mortality. cSCC forms after decades of sun exposure and possesses the highest known mutation rate of all cancers. This mutational burden complicates efforts to identify the primary factors driving cSCC initiation and progression, which in turn hinders the development of targeted therapeutics. In this review, we summarize the mutations and alterations that have been observed in patients’ cSCC tumors, affecting signaling pathways, transcriptional regulators, and the microenvironment. We also highlight novel therapeutic opportunities in development and clinical trials.
Collapse
Affiliation(s)
- Stephenie Droll
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA, .,Department of Dermatology, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
12
|
Jiang S, Liu H, Zhang J, Zhang F, Fan J, Liu Y. MMP1 regulated by NEAT1/miR-361-5p axis facilitates the proliferation and migration of cutaneous squamous cell carcinoma via the activation of Wnt pathway. Cancer Biol Ther 2021; 22:381-391. [PMID: 34369270 DOI: 10.1080/15384047.2021.1941583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is one of the most malignant tumors worldwide. It has been validated that matrix metallopeptidase 1 (MMP1) expression was obviously up-regulated in CSCC tissues. However, its specific role in CSCC is still unclear. RT-qPCR analysis and western blot assays were used to measure the mRNA and protein expressions, respectively. MTT and colony formation assays were conducted to assess proliferative ability. Transwell assays were adopted to evaluate migratory and invasive abilities. Flow cytometry and caspase-3/8/9 activity assays were carried out to evaluate cell apoptosis. Relevant mechanism experiments were finally performed to delineate molecular relationship among genes. We found that the expression of MMP1 was up-regulated in CSCC cells, and knockdown of MMP1 suppressed cell proliferation and invasion in CSCC. Subsequently, miR-361-5p was validated to target MMP1. Moreover, miR-361-5p was proved to be sponged by nuclear paraspeckle assembly transcript 1 (NEAT1) in CSCC. We further demonstrated that NEAT1 could activate Wnt pathway to affect cell proliferation and invasion. Finally, miR-361-5p inhibition rescued the suppressing effects of NEAT1 depletion on cell proliferation, invasion as well as Wnt pathway in CSCC. In summary, MMP1 regulated by NEAT1/miR-361-5p axis facilitated CSCC malignant behaviors via Wnt pathway activation.
Collapse
Affiliation(s)
- Shiqiu Jiang
- Department of Cosmetic Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hairong Liu
- Department of Research Center, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jie Zhang
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Fang Zhang
- Department of Cosmetic Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jiawei Fan
- Department of Basic Medical College, Chengdu Medical College, Chengdu, China
| | - Yueming Liu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, No. 187 Guanlan Avenue, Longhua District, Shenzhen, 518110, Guangdong, China
| |
Collapse
|
13
|
Gerloff D, Sunderkötter C, Wohlrab J. Importance of microRNAs in Skin Oncogenesis and Their Suitability as Agents and Targets for Topical Therapy. Skin Pharmacol Physiol 2020; 33:270-279. [PMID: 33080592 DOI: 10.1159/000509879] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Skin cancer is the most common cancer worldwide, with rapidly increasing incidence and consistent mortality. Skin cancer encompasses melanoma and non-melanoma skin cancer, which in turn is mainly divided into cutaneous squamous cell carcinoma and basal cell carcinoma. Small noncoding micro-RNAs (miRNAs) regulate protein expression after transcription and play a role in the development and progression of skin cancer. Deregulated expression of miRNAs in skin cancer is associated with cell proliferation, angiogenesis, metastasis, apoptosis, immune response, and drug resistance. Specific patterns of miRNAs in specific skin cancer types can be used as diagnostic markers. For therapeutic purposes, both miRNA and chemically modified variants thereof as well as miRNA antagonists (antagomiRs) or RNA inhibitors may be applied topically. Due to their specific physicochemical properties, physical or chemical diffusion promoters are used with varying degrees of success. There is no question by now that such preparations have a high potential for the treatment of epithelial skin tumors in particular.
Collapse
Affiliation(s)
- Dennis Gerloff
- Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany,
| | - Cord Sunderkötter
- Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Johannes Wohlrab
- Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
14
|
Zhang C, Xie X, Yuan Y, Wang Y, Zhou M, Li X, Zhen P. MiR-664 Protects Against UVB Radiation-Induced HaCaT Cell Damage via Downregulating ARMC8. Dose Response 2020; 18:1559325820929234. [PMID: 32547335 PMCID: PMC7270940 DOI: 10.1177/1559325820929234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/03/2020] [Accepted: 04/17/2020] [Indexed: 11/17/2022] Open
Abstract
Background: MiR-664 has been demonstrated to play an important role in dermal diseases.
However, the functions of miR-664 in ultraviolet B (UVB) radiation-induced
keratinocytes damage remain to be elucidated. Objective: The present study aimed to investigate the molecular mechanisms under the
UVB-induced keratinocytes damage and provide translational insights for
future therapeutics and UVB protection. Methods: HaCaT cells were transfected with miR-664, either alone or combined with UVB
irradiation. Levels of messenger RNA and protein were tested by quantitative
real-time polymerase chain reaction and Western blot analyses. Cell
proliferation, percentage of apoptotic cells, and expression levels of
apoptosis-related factors were measured by Cell Counting Kit-8 assay, flow
cytometry assay, and Western blot analysis, respectively. Results: We found that a significant increase in miR-664 was observed in UVB-induced
HaCaT cells. Overexpressed miR-664 promoted cell vitalities and suppressed
apoptosis of UVB-induced HaCaT cells. Additionally, the loss/gain of
armadillo-repeat-containing protein 8 (ARMC8) rescued/blocked the effects of
miR-664 on the proliferation of UVB-induced HaCaT cells. Conclusions: Our data demonstrate that miR-664 functions as a protective regulator in
UVB-induced HaCaT cells via regulating ARMC8.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiongxiong Xie
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yawen Yuan
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yimeng Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiangzhi Li
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Public Health, Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Peilin Zhen
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| |
Collapse
|
15
|
Liu P, Shi L, Ding Y, Luan J, Shan X, Li Q, Zhang S. MicroRNA-766 Promotes The Proliferation, Migration And Invasion, And Inhibits The Apoptosis Of Cutaneous Squamous Cell Carcinoma Cells By Targeting PDCD5. Onco Targets Ther 2020; 13:4099-4110. [PMID: 32494163 PMCID: PMC7231789 DOI: 10.2147/ott.s222821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/21/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose This study aimed to investigate the regulatory role and mechanism of microRNA-766 (miR-766) on cutaneous squamous cell carcinoma (CSCC) cells. Methods The expression of miR-766 and programmed cell death 5 (PDCD5) was detected in CSCC tissues and CSCC cell lines (A431, SCL-1 and DJM-1 cells) by qRT-RCR. The proliferation, colony-forming ability, apoptosis, migration and invasion of A431 and SCL-1 cells was measured by MTT, colony formation, flow cytometry, wound healing and transwell assay, respectively. The interaction between miR-766 and PDCD5 was detected by dual-luciferase reporter gene assay. The expression of matrix metalloproteinase 2 (MMP-2), MMP-9 and PDCD5 was measured by Western blot. In addition, A431 cells were subcutaneously injected into mice, and the tumor volume and weight were measured. Results MiR-766 was upregulated, and PDCD5 was downregulated in CSCC tissues and cells. MiR-766 significantly promoted the proliferation, migration and invasion, and inhibited the apoptosis of A431 and SCL-1 cells. MiR-766 also significantly increased the expression of MMP-2 and MMP-9 in A431 and SCL-1 cells. PDCD5 was a target gene of miR-766. PDCD5 significantly reversed the tumor-promoting effect of miR-766 on A431 and SCL-1 cells. In addition, miR-766 inhibitor inhibited the tumor growth in mice. Conclusion MiR-766 inhibitor inhibited the proliferation, migration and invasion, and promoted the apoptosis of CSCC cells via downregulating PDCD5.
Collapse
Affiliation(s)
- Pengyu Liu
- Department of Hepatobiliary Surgery, Oilfields General Hospital in Daqing, Daqing City, Heilongjiang Province 163000, People's Republic of China
| | - Liang Shi
- Department of Plastic Hand Surgery, Oilfields General Hospital in Daqing, Daqing City, Heilongjiang Province 163000, People's Republic of China
| | - Yan Ding
- Department of Hepatobiliary Surgery, Oilfields General Hospital in Daqing, Daqing City, Heilongjiang Province 163000, People's Republic of China
| | - Jiaxi Luan
- Department of Hepatobiliary Surgery, Oilfields General Hospital in Daqing, Daqing City, Heilongjiang Province 163000, People's Republic of China
| | - Xiaojun Shan
- Department of Thyroid and Breast Surgery, Oilfields General Hospital in Daqing, Daqing City, Heilongjiang Province 163000, People's Republic of China
| | - Qinghua Li
- Department of Hepatobiliary Surgery, Oilfields General Hospital in Daqing, Daqing City, Heilongjiang Province 163000, People's Republic of China
| | - Shuhua Zhang
- Department of Hepatobiliary Surgery, Oilfields General Hospital in Daqing, Daqing City, Heilongjiang Province 163000, People's Republic of China
| |
Collapse
|
16
|
Gao F, Tian J. FOXK1, Regulated by miR-365-3p, Promotes Cell Growth and EMT Indicates Unfavorable Prognosis in Breast Cancer. Onco Targets Ther 2020; 13:623-634. [PMID: 32021304 PMCID: PMC6982530 DOI: 10.2147/ott.s212702] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/27/2019] [Indexed: 12/29/2022] Open
Abstract
Background Forkhead box K1 (FOXK1) is members of the FOX transcription factor family. Previous work has found out that FOXK1 promotes cell proliferation, migration and invasion in several cancers, such as gastric cancer, glioma cancer and lung cancer; however, the exact role of FOXK1 in breast cancer is still poorly known. Methods Here, the association between FOXK1 expression and the clinicopathological characteristics of patients with breast cancer was identified. To further decipher the functional roles of FOXK1, it was overexpressed or knocked down in MCF-7, MDA-MB-231 and MCF-10A cells. Cell Counting Kit-8, colony formation and cell cycle assays were performed to examine the proliferation of breast cancer cells. Moreover, wound-healing and Transwell invasion analyses were carried out to explore the effect of FOXK1 on breast cancer cell migration and invasion. Results Our findings discovered that FOXK1 promotes cell proliferation, migration and invasion in breast cancer. In addition, consistent with the previous report, FOXK1 also facilitates EMT in breast cancer. TargetScan was used to predict up-stream of FOXK1, indicating that miR-365-3p could regulate FOXK1 expression in breast cancer. Conclusion The findings of the present study demonstrated that miR-365-3p-FOXK1 axis plays a key role in breast cancer.
Collapse
Affiliation(s)
- Fucun Gao
- Breast Department, Linyi Central Hospital, Linyi, Shandong 276400, People's Republic of China
| | - Juan Tian
- Breast Department, Linyi Central Hospital, Linyi, Shandong 276400, People's Republic of China
| |
Collapse
|
17
|
He Y, Shi Y, Liu R, Wang Z, Wang B, Li S, Zhang H. PELI3 mediates pro-tumor actions of down-regulated miR-365a-5p in non-small cell lung cancer. Biol Res 2019; 52:24. [PMID: 30995936 PMCID: PMC6469140 DOI: 10.1186/s40659-019-0230-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/06/2019] [Indexed: 12/19/2022] Open
Abstract
Background To analyze the relative expression of PELI3 and its mechanistic involvement in the non-small cell lung cancer (NSCLC). Methods PELI3 expression in NSCLC tissue samples was determined by the immunohistochemistry. The transcripts abundance of PELI3 was measured with real-time PCR. The protein intensity was analyzed by western blot. The overall survival in respect to PELI3 or miR-365a-5p expression was plotted by the Kaplan–Meier’s analysis. Cell growth was determined by colony formation assay. Cell viability was measured by MTT assay. The migration and invasion were evaluated by wound healing and transwell assay respectively. The regulatory effect of miR-365a-5p on PELI3 was interrogated with luciferase reporter assay. The direct binding between miR-365a-5p and PELI3 was analyzed by pulldown assay. Results PELI3 was aberrantly up-regulated in NSCLC both in vivo and in vitro. High level of PELI3 associated with poor prognosis. PELI3-deficiency significantly inhibited cell viability, colony formation, migration and invasion. We further identified that miR-365a-5p negatively regulated PELI3 in this disease. Ectopic expression of miR-365a-5p in both A549 and H1299 phenocopied PELI3-deficiency. Meanwhile, PELI3-silencing significantly abolished the pro-tumoral effect elicited by miR-365a-5p inhibition. Conclusion Our results highlighted the importance of dysregulated miR-365a-5p-PELI3 signaling axis in NSCLC.
Collapse
Affiliation(s)
- Yuzheng He
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Yantao Shi
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Ruilin Liu
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Zhichao Wang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Baohua Wang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Shujun Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Helin Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
18
|
USF1-induced upregulation of LINC01048 promotes cell proliferation and apoptosis in cutaneous squamous cell carcinoma by binding to TAF15 to transcriptionally activate YAP1. Cell Death Dis 2019; 10:296. [PMID: 30931936 PMCID: PMC6443651 DOI: 10.1038/s41419-019-1516-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/18/2019] [Accepted: 03/06/2019] [Indexed: 02/07/2023]
Abstract
Previous studies have revealed that dysregulation of long non-coding RNAs (lncRNAs) can facilitate carcinogenesis. This study aims to investigate the biological role of a certain lncRNA in cutaneous squamous cell carcinoma (CSCC). According to the data of TCGA database, high expression of long intergenic non-protein coding RNA 1048 (LINC01048) is an unfavorable prognostic factor for patients with CSCC. Therefore, we further detected the expression pattern of LINC01048 in CSCC tissues. Obviously, LINC01048 was expressed higher in the CSCC tissues and recurrence tissues compared with that in adjacent normal tissues and non-recurrence tissues. Furthermore, Kaplan-Meier analysis revealed the negative correlation between LINC01048 expression and the overall survival and disease-free survival of CSCC patients. Subsequently, functional assays were conducted to prove the inhibitory effect of silenced LINC01048 on the proliferation and apoptosis of CSCC cells. Mechanistically, LINC01048 was proved to be transcriptionally activated by USF1. Pathway analysis and western blot assay showed that knockdown of LINC01048 led to the activation of Hippo pathway. Moreover, YAP1, a Hippo pathway factor, was positively regulated by LINC01048. Further mechanism investigation revealed that LINC01048 increased the binding of TAF15 to YAP1 promoter to transcriptionally activate YAP1 in CSCC cells. Finally, rescue assays demonstrated that YAP1 involved in LINC01048-mediated CSCC cell proliferation and apoptosis. In conclusion, USF1-induced upregulation of LINC01048 promoted CSCC by interacting with TAF15 to upregulate YAP1.
Collapse
|
19
|
Identification of a nine-miRNA signature for the prognosis of Uveal Melanoma. Exp Eye Res 2019; 180:242-249. [PMID: 30615885 DOI: 10.1016/j.exer.2019.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 02/05/2023]
Abstract
The present study aims to construct a miRNA-based predictive signature of Uveal melanoma (UM) based on the database of the cancer genome atlas (TCGA). We obtained miRNA expression profiles and clinical information of 80 UM patients from TCGA, and randomly divided them into a training and a testing set. After data processing and forward screening, a total of 204 miRNAs with prognostic value were then examined by the Cox proportional hazard regression model in the training set. Receiver operating curve (ROC) analysis was applied to validate the accuracy of the signature. The biological relevance of putative miRNA target genes was also analyzed using the bioinformatics method. As a result, a linear prognostic model consisting of 9 miRNAs (miR-195, miR-224, miR-365a, miR-365b, miR-452, miR-4709, miR-7702, miR-513c, miR-873) was developed to divide UM patients into a high- and a low-risk group. Patients assigned to the high-risk group had significantly shorter overall survival than those in the low-risk group, which was further confirmed by the Area under curve (AUC) value of 0.858 at 5 year obtained from ROC. Gene Ontology (GO) analysis indicated that predicted target genes of these miRNAs are primarily associated with the modulation of protein expression and function, such as the activity of ubiquitin protein ligase and protein kinase. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that these genes were involved in multiple signaling pathways linked to carcinogenesis. The tumor specific 9-miRNA signature was also verified in the testing and entire set. In summary, based on UM data of TCGA, we identified and validated a 9-miRNA-based prognostic signature.
Collapse
|
20
|
Wang C, Su K, Zhang Y, Zhang W, Chu D, Zhao Q, Guo R. MicroRNA-365 targets multiple oncogenes to inhibit proliferation, invasion, and self-renewal of aggressive endometrial cancer cells. Cancer Manag Res 2018; 10:5171-5185. [PMID: 30464615 PMCID: PMC6215916 DOI: 10.2147/cmar.s174889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background MicroRNA-365 (miR-365) has been reported to be a tumor suppressor miRNA. However, the role of miR-365 in progression of endometrial cancer (EC) has not been explored, in this study, we have found that re-expression of miRNA-365 inhibits cell proliferation, causes apoptosis and senescence. Materials and methods Overexpression of miR-365 attenuated cell migration and invasion, inhibited sphere-forming capacity, and enhanced the chemosensitivity to paclitaxel. In silico prediction tools identified the potential targets of miR-365. Results We identified EZH2 and FOS as targets of miR-365 and found that downregulating these genes imitated the tumor suppressive effect of miR-365. The outcomes of the study suggested that a reverse correlation existed between low miR-365 and overexpression of FOS and EZH2 in EC tissue specimens. Conclusion The study concludes that miR-365 acts as an important tumor suppressor and contributes by suppressing cell invasiveness, proliferation, and self-renewal in cancer cell lines by regulating multiple oncogenes. We establish that miR-365-EZH2/FOS pathway is an important target for treating EC.
Collapse
Affiliation(s)
- Chunfang Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Ke Su
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Yanyan Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Weiwei Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Danxia Chu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Qian Zhao
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Ruixia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| |
Collapse
|
21
|
Wang Y, Zhang S, Bao H, Mu S, Zhang B, Ma H, Ma S. MicroRNA-365 promotes lung carcinogenesis by downregulating the USP33/SLIT2/ROBO1 signalling pathway. Cancer Cell Int 2018; 18:64. [PMID: 29743814 PMCID: PMC5930950 DOI: 10.1186/s12935-018-0563-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/21/2018] [Indexed: 12/19/2022] Open
Abstract
Background Abnormal microRNA expression is closely related to cancer occurrence and development. miR-365a-3p plays an oncogenic role in skin cancer, but its role in lung cancer remains unclear. In this study, we aimed to investigate its role and underlying molecular mechanisms in lung cancer. Methods Western blot and real-time quantitative PCR (qPCR) were used to detect the expression of miR-365a-3p in lung adenocarcinoma and lung cancer cell lines. The effects of miR-365a-3p on lung cancer cell proliferation, migration, and invasion were also explored in vitro. The potential miR-365a-3p that targets USP33 was determined by dual luciferase reporter assay and verified by qPCR and western blot analysis. miR-365a-3p acts as an oncogene by promoting lung carcinogenesis via the downregulation of the miR-365a/USP33/SLIT2/ROBO1 axis based on western blot analysis. Subcutaneous tumourigenesis further demonstrated that miR-365a-3p promotes tumour formation in vivo. Results miR-365a-3p was upregulated in lung adenocarcinoma and lung cancer cell lines. Overexpression of miR-365a-3p promoted and inhibition of miR-365a-3p suppressed the proliferation, migration, and invasion of lung cancer cells. We identified USP33 as the downstream target of miR-365a-3p and observed a negative correlation between miR-365a-3p and USP33 expression in lung adenocarcinoma patients. The miR-365/USP33/SLIT2/ROBO1 axis, a new mechanism, was reported to inhibit the invasion and metastasis of lung cancer. A nude mouse model of lung cancer further verified these findings. Conclusions In summary, miR-365a-3p acts as an oncogene by promoting lung carcinogenesis via the downregulation of the USP33/SLIT2/ROBO1 signalling pathway, making the miR-365/USP33/SLIT2/ROBO1 axis a new mechanism of lung cancer promotion and a novel therapeutic target for predicting prognosis and response to gene therapy. Electronic supplementary material The online version of this article (10.1186/s12935-018-0563-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuhuan Wang
- 1Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Shuhua Zhang
- 1Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Hejing Bao
- Department of Oncology, Chongqing Three Gorges Center Hospital, Chongqing, China
| | - Shukun Mu
- 1Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Baishen Zhang
- 1Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Hao Ma
- 3Department of Clinical Medicine, Tianjin Medical University College, Tianjin, China
| | - Shudong Ma
- 1Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| |
Collapse
|
22
|
HOXA9 inhibits HIF-1α-mediated glycolysis through interacting with CRIP2 to repress cutaneous squamous cell carcinoma development. Nat Commun 2018; 9:1480. [PMID: 29662084 PMCID: PMC5902613 DOI: 10.1038/s41467-018-03914-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 03/22/2018] [Indexed: 01/18/2023] Open
Abstract
Glycolytic reprogramming is a typical feature of many cancers; however, key regulators of glucose metabolism reengineering are poorly understood, especially in cutaneous squamous cell carcinoma (cSCC). Here, Homeobox A9 (HOXA9), a direct target of onco-miR-365, is identified to be significantly downregulated in cSCC tumors and cell lines. HOXA9 acts as a tumor suppressor and inhibits glycolysis in cSCC in vitro and in vivo by negatively regulating HIF-1α and its downstream glycolytic regulators, HK2, GLUT1 and PDK1. Mechanistic studies show that HOXA9-CRIP2 interaction at glycolytic gene promoters impeds HIF-1α binding, repressing gene expression in trans. Our results reveal a miR-365-HOXA9-HIF-1α regulatory axis that contributes to the enhanced glycolysis in cSCC development and may represent an intervention target for cSCC therapy. Hypoxia-inducible transcription factor HIF-1α promotes glycolysis allowing cell survival under stress. Here the authors show, using both cell lines and animal models, that in cutaneous squamous cell carcinoma HOXA9 acts as a tumor suppressor and inhibits glycolysis by associating with CRIP2 to repress HIF-1α binding to target genes.
Collapse
|
23
|
Yang B, Zhou ZH, Chen L, Cui X, Hou JY, Fan KJ, Han SH, Li P, Yi SQ, Liu Y. Prognostic significance of NFIA and NFIB in esophageal squamous carcinoma and esophagogastric junction adenocarcinoma. Cancer Med 2018; 7:1756-1765. [PMID: 29577671 PMCID: PMC5943462 DOI: 10.1002/cam4.1434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/09/2018] [Accepted: 02/17/2018] [Indexed: 12/12/2022] Open
Abstract
The nuclear factor I (NFI) family members, especially NFIA and NFIB, play essential roles in cancers. The roles of NFIA and NFIB in esophageal squamous cell carcinoma (ESCC) and esophagogastric junction adenocarcinoma (EJA) remain poorly known. This study aimed to determine the expression of NFIA and NFIB in ESCC and EJA and elucidate their prognostic significance. The expression of NFIA and NFIB was examined in 163 ESCC samples and 26 EJA samples by immunohistochemistry. The results showed that high NFIA expression correlated significantly with poor differentiation, lymph node metastasis, and advanced TNM stage in patients with ESCC. High NFIB expression only correlated with poor differentiation in patients with ESCC. Survival analysis showed that NFIA but not NFIB associated with short overall survival (OS) and disease‐free survival (DFS) of patients with ESCC. On the other hand, high NFIB expression correlated with lymph node metastasis, advanced TNM stage, and short OS and DFS in patients with EJA. Finally, multivariate analysis demonstrated that high NFIA expression was an independent prognostic factor for ESCC. Taken together, these results demonstrated that NFIA and NFIB could serve as prognostic indicators for ESCC and EJA, respectively.
Collapse
Affiliation(s)
- Bo Yang
- Department of General Thoracic Surgery, The General Hospital of PLA, Beijing, China
| | - Zhi-Hang Zhou
- Department of Digestive Disease, the Second affiliated hospital of Chongqing Medical University, Chongqing, China
| | - Li Chen
- Department of Emergency, The General Hospital of PLA, Beijing, China
| | - Xiang Cui
- Department of Orthopedics, The General Hospital of PLA, Beijing, China
| | - Jun-Yan Hou
- The Medico-technical Division, The General Hospital of PLA, Beijing, China
| | - Kai-Jie Fan
- Department of General Thoracic Surgery, The General Hospital of PLA, Beijing, China
| | - Si-Hao Han
- Harvard T.H.Chan School of Public Health, Boston, Massachusetts
| | - Peng Li
- Department of General Surgery, The General Hospital of PLA, Beijing, China
| | - Shao-Qiong Yi
- Department of General Thoracic Surgery, The General Hospital of PLA, Beijing, China
| | - Yang Liu
- Department of General Thoracic Surgery, The General Hospital of PLA, Beijing, China
| |
Collapse
|
24
|
Li H, Lin L, Li L, Zhou L, Zhang Y, Hao S, Ding Z. Exosomal small RNA sequencing uncovers the microRNA dose markers for power frequency electromagnetic field exposure. Biomarkers 2018; 23:315-327. [PMID: 29297241 DOI: 10.1080/1354750x.2018.1423707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE The potential health risks caused by power frequency electromagnetic field (PFEMF) have led to increase public health concerns. However, the diagnosis and prognosis remain challenging in determination of exact dose of PFEMF exposure. MATERIALS AND METHODS Mice were exposed to different magnetic doses of PFEMF for the following isolation of serum exosomes, microRNAs (miRNAs) extraction and small RNA sequencing. After small RNA sequencing, bioinformatic analysis, quantitative real-time PCR (qRT-PCR) validation and serum exosomal miRNA biomarkers were determined. RESULTS Significantly changed serum exosomal miRNA as biomarkers of 0.1, 0.5, 2.5 mT and common PFEMF exposure were confirmed. Gene ontology (GO) and Kyoto encyclopaedia of genes and genomes (KEGG) pathway analysis of the downstream target genes of the above-identified exosomal miRNA markers indicated that, exosomal miRNA markers were predicted to be involved in critical pathophysiological processes of neural system and cancer- or other disease-related signalling pathways. CONCLUSIONS Aberrantly-expressed serum exosomal miRNAs, including miR-128-3p for 0.1 mT, miR-133a-3p for 0.5 mT, miR-142a-5p for 2.5 mT, miR-218-5p and miR-199a-3p for common PFEMF exposure, suggested a series of informative markers for not only identifying the exact dose of PFEMF exposure, also consolidating the base for future clinical intervention.
Collapse
Affiliation(s)
- Hualiang Li
- a Electric Power Research Institute of Guangdong Power Grid , Guangzhou , PR China
| | - Lin Lin
- b Department of Obstetrics , The Sixth Affiliated Hospital of Sun Yat-sen University , Guangzhou , PR China
| | - Li Li
- a Electric Power Research Institute of Guangdong Power Grid , Guangzhou , PR China
| | - Liang Zhou
- c Department of Radiation Medicine, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research , Southern Medical University , Guangzhou , PR China
| | - Ying Zhang
- c Department of Radiation Medicine, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research , Southern Medical University , Guangzhou , PR China
| | - Shuai Hao
- c Department of Radiation Medicine, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research , Southern Medical University , Guangzhou , PR China
| | - Zhenhua Ding
- c Department of Radiation Medicine, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research , Southern Medical University , Guangzhou , PR China
| |
Collapse
|
25
|
The convergent roles of the nuclear factor I transcription factors in development and cancer. Cancer Lett 2017; 410:124-138. [PMID: 28962832 DOI: 10.1016/j.canlet.2017.09.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/11/2017] [Accepted: 09/16/2017] [Indexed: 02/07/2023]
Abstract
The nuclear factor I (NFI) transcription factors play important roles during normal development and have been associated with developmental abnormalities in humans. All four family members, NFIA, NFIB, NFIC and NFIX, have a homologous DNA binding domain and function by regulating cell proliferation and differentiation via the transcriptional control of their target genes. More recently, NFI genes have also been implicated in cancer based on genomic analyses and studies of animal models in a variety of tumours across multiple organ systems. However, the association between their functions in development and in cancer is not well described. In this review, we summarise the evidence suggesting a converging role for the NFI genes in development and cancer. Our review includes all cancer types in which the NFI genes are implicated, focusing predominantly on studies demonstrating their oncogenic or tumour-suppressive potential. We conclude by presenting the challenges impeding our understanding of NFI function in cancer biology, and demonstrate how a developmental perspective may contribute towards overcoming such hurdles.
Collapse
|
26
|
Zhou L, Gao R, Wang Y, Zhou M, Ding Z. Loss of BAX by miR-365 Promotes Cutaneous Squamous Cell Carcinoma Progression by Suppressing Apoptosis. Int J Mol Sci 2017; 18:ijms18061157. [PMID: 28556798 PMCID: PMC5485981 DOI: 10.3390/ijms18061157] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/03/2017] [Accepted: 05/26/2017] [Indexed: 12/31/2022] Open
Abstract
Pro-apoptotic BCL2 associated X (BAX) is traditionally thought to be regulated by anti-apoptotic BCL-2 family members, like BCL2-like 1 (BCL-XL), at the protein level. However, the posttranscriptional regulation of BAX is under explored. In this study, we identified BAX as the novel downstream target of miR-365, which is supported by gain- and loss-of-function studies of onco-miR-365. Loss of BAX by either RNA interference or highly-expressed miR-365 in cells of cutaneous squamous cell carcinoma (CSCC) enhanced the tumor resistance against apoptosis, while repressing cell proliferation, migration, and invasiveness. In vivo experiment confirmed that BAX knockdown promotes the growth of CSCC xenografts. Collectively, our results find a miR-365-BAX axis for alleviating the pro-apoptotic effects of BAX, which promotes CSCC development and may facilitate the generation of novel therapeutic regimens to the clinical treatment of CSCC.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Ruirui Gao
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Yinghui Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Zhenhua Ding
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
27
|
Kehrer-Sawatzki H, Mautner VF, Cooper DN. Emerging genotype-phenotype relationships in patients with large NF1 deletions. Hum Genet 2017; 136:349-376. [PMID: 28213670 PMCID: PMC5370280 DOI: 10.1007/s00439-017-1766-y] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/08/2017] [Indexed: 02/07/2023]
Abstract
The most frequent recurring mutations in neurofibromatosis type 1 (NF1) are large deletions encompassing the NF1 gene and its flanking regions (NF1 microdeletions). The majority of these deletions encompass 1.4-Mb and are associated with the loss of 14 protein-coding genes and four microRNA genes. Patients with germline type-1 NF1 microdeletions frequently exhibit dysmorphic facial features, overgrowth/tall-for-age stature, significant delay in cognitive development, large hands and feet, hyperflexibility of joints and muscular hypotonia. Such patients also display significantly more cardiovascular anomalies as compared with patients without large deletions and often exhibit increased numbers of subcutaneous, plexiform and spinal neurofibromas as compared with the general NF1 population. Further, an extremely high burden of internal neurofibromas, characterised by >3000 ml tumour volume, is encountered significantly, more frequently, in non-mosaic NF1 microdeletion patients than in NF1 patients lacking such deletions. NF1 microdeletion patients also have an increased risk of malignant peripheral nerve sheath tumours (MPNSTs); their lifetime MPNST risk is 16-26%, rather higher than that of NF1 patients with intragenic NF1 mutations (8-13%). NF1 microdeletion patients, therefore, represent a high-risk group for the development of MPNSTs, tumours which are very aggressive and difficult to treat. Co-deletion of the SUZ12 gene in addition to NF1 further increases the MPNST risk in NF1 microdeletion patients. Here, we summarise current knowledge about genotype-phenotype relationships in NF1 microdeletion patients and discuss the potential role of the genes located within the NF1 microdeletion interval whose haploinsufficiency may contribute to the more severe clinical phenotype.
Collapse
Affiliation(s)
| | - Victor-Felix Mautner
- Department of Neurology, University Hospital Hamburg Eppendorf, 20246, Hamburg, Germany
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|
28
|
Association of Polymorphisms in three pri-miRNAs that Target Pepsinogen C with the Risk and Prognosis of Gastric Cancer. Sci Rep 2017; 7:39528. [PMID: 28067243 PMCID: PMC5220333 DOI: 10.1038/srep39528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022] Open
Abstract
We aimed to explore the associations of polymorphisms in three microRNAs (miRNAs) (let-7e rs8111742, miR-365b rs121224 and miR-4795 rs1002765) that target PGC with the risk and prognosis of gastric cancer/atrophic gastritis. Sequenom’s MassArray was used to genotype the miRNA polymorphisms in 724 gastric cancer cases, 862 atrophic gastritis cases and 862 controls in a Chinese population. We found that let-7e rs8111742 and miR-4795 rs1002765 were associated with the risk of gastric cancer in the H. pylori-positive subgroup. MiR-365b rs121224 was associated with the risk of intestinal-type gastric cancer in the alcohol consumption subgroup. Intestinal-type gastric cancer patients at Borrmann stages III-IV who carry the miR-365b rs121224 GG genotype had better prognosis compared with those who carry the CG or CC genotypes. MiR-365b rs121224 was associated with Lauren typing and TNM staging, in which the distribution of GG genotype carriers in intestinal-type gastric cancer and the TNM stage I-II subgroup was higher than that of CG or CC genotypes, which contrasted with the distribution in diffuse-type gastric cancer or TNM III-IV groups. These findings suggested that the polymorphisms in these miRNAs might be biomarkers for gastric cancer risk and prognosis, especially for populations infected with Helicobacter pylori or who consume alcohol.
Collapse
|