1
|
Fonseca Teixeira A, Pires BRB, Panis C, Monte-Alto-Costa A, da Fonseca ADS, Mencalha AL. Low-Power Blue LED Modulates NF-κB and Proinflammatory Cytokines in Doxorubicin-Treated MDA-MB-231 Cells. J Biochem Mol Toxicol 2025; 39:e70192. [PMID: 39987519 DOI: 10.1002/jbt.70192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/08/2025] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Doxorubicin is a crucial chemotherapy used in the treatment of triple-negative breast cancer (TNBC) patients, but elevated doxorubicin doses may induce therapeutic resistance. To overcome this limitation, we have previously established a photodynamic therapeutic (PDT)-like strategy that irradiates doxorubicin-treated cells with a low-power nonionizing blue LED device. This combined treatment increases the production of reactive oxygen species to promote cell death, consequently enabling reduced doxorubicin dosages. Yet, precisely determining the molecular mechanisms that drive this outcome is still required for advancing such PDT-like approach. Here, we aimed to correlate the expression of the inflammatory markers NF-κB, IL-8, IL-6, and IL-1β with the survival of TNBC cells submitted to our PDT-like protocol. Our results show that NF-κB/p65 nuclear levels were enhanced in MDA-MB-231 cells treated with doxorubicin and blue LED. Moreover, this PDT-like strategy increased IL-6 mRNA levels in MDA-MB-231 cells. IL-1β and IL-8 mRNA were upregulated in samples incubated with doxorubicin regardless of concomitant irradiation with blue LED. These results show that our PDT-like protocol is effective in elevating inflammatory signals, shedding light on the molecular mechanisms that underlie the efficacy of this innovative anticancer therapeutic approach.
Collapse
Affiliation(s)
- Adilson Fonseca Teixeira
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Ricardo Barreto Pires
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Panis
- Centro de Ciências da Saúde, Universidade Estadual do Oeste do Paraná, Paraná, Brazil
| | - Andréa Monte-Alto-Costa
- Departamento de Histologia e Embriologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Catalano T, Selvaggi F, Cotellese R, Aceto GM. The Role of Reactive Oxygen Species in Colorectal Cancer Initiation and Progression: Perspectives on Theranostic Approaches. Cancers (Basel) 2025; 17:752. [PMID: 40075600 PMCID: PMC11899472 DOI: 10.3390/cancers17050752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Altered levels of reactive oxygen species (ROS) are recognized as one of the key factors in mediating tumor cell survival in the tissue microenvironment, where they play a role in the initiation, progression and recurrence/relapse of colorectal cancer (CRC). Tumor cells can adapt to oxidative stress (OS) using genetic or metabolic reprogramming in the long or short term. In addition, tumor cells defend themselves through positive regulation of antioxidant molecules, enhancing ROS-driven proliferation. Balanced oxidative eustress levels can influence chemotherapy resistance, allowing tumor cells to survive treatment. Secondary effects of chemotherapy include increased ROS production and redox stress, which can kill cancer cells and eliminate drug resistance. Anticancer treatments based on manipulating ROS levels could represent the gold standard in CRC therapy. Therefore, exploring the modulation of the response to OS in deregulated signaling pathways may lead to the development of new personalized CRC treatments to overcome therapy resistance. In this review, we explore the role of ROS in the initiation and progression of CRC and their diagnostic implications as biomarkers of disease. Furthermore, we focused on the involvement of ROS in different CRC therapeutic options, such as surgery, radiotherapy, theranostic imaging, chemotherapy and immunotherapy and other precision medicine approaches.
Collapse
Affiliation(s)
- Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Federico Selvaggi
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (F.S.); (R.C.)
| | - Roberto Cotellese
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (F.S.); (R.C.)
| | - Gitana Maria Aceto
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (F.S.); (R.C.)
- Department of Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
3
|
Zeng M, Wang Y, Tao X, Fan T, Yin X, Shen C, Wang X. Novel Perspectives in the Management of Colorectal Cancer: Mechanistic Investigations Into the Reversal of Drug Resistance via Active Constituents Derived From Herbal Medicine. Phytother Res 2024; 38:5962-5984. [PMID: 39462152 DOI: 10.1002/ptr.8363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/03/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
The high incidence and mortality rate of colorectal cancer have become a significant global health burden. Chemotherapy has been the traditional treatment for colorectal cancer and has demonstrated promising antitumor effects, leading to significant improvements in patient survival. However, the development of chemoresistance poses a major challenge during chemotherapy in colorectal cancer, significantly impeding treatment efficacy and affecting patient prognosis. Despite the development of a variety of novel anticolorectal cancer chemotherapy agents, their effectiveness and side effects vary, possibly due to the complex mechanisms of resistance in colorectal cancer. Abnormal drug metabolism or protein targets are the most direct causes of resistance. Further studies have revealed that these resistance mechanisms involve biochemical processes such as altered protein expression, autophagy, and epithelial-mesenchymal transitions. Herbal active ingredients offer an alternative treatment option and have shown promise in reversing colorectal cancer drug resistance. This paper aims to summarize the role of various biochemical processes and key protein targets in the occurrence and maintenance of resistance mechanisms in colorectal cancer. Additionally, it elaborates on the mechanisms of action of herbal active ingredients in reversing colorectal cancer drug resistance. The article also discusses the limitations and opportunities in developing novel anticolorectal cancer drugs based on herbal medicine.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelin Tao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Tianfei Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Shen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xueyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Zhang Y, Hao M, Yang X, Zhang S, Han J, Wang Z, Chen HN. Reactive oxygen species in colorectal cancer adjuvant therapies. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166922. [PMID: 37898425 DOI: 10.1016/j.bbadis.2023.166922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Colorectal cancer (CRC), a prevalent global malignancy, often necessitates adjuvant therapies such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy to mitigate tumor burden in advanced stages. The efficacy of these therapies is significantly influenced by reactive oxygen species (ROS). Previous research underscores the pivotal role of ROS in gut pathology, targeted therapy, and drug resistance. ROS-mediated CRC adjuvant therapies encompass a myriad of mechanisms, including cell death and proliferation, survival and cell cycle, DNA damage, metabolic reprogramming, and angiogenesis. Preliminary clinical trials have begun to unveil the potential of ROS-manipulating therapy in enhancing CRC adjuvant therapies. This review aims to provide a comprehensive synthesis of studies exploring the role of ROS in CRC adjuvant therapies.
Collapse
Affiliation(s)
- Yang Zhang
- Colorectal Cancer Center and Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengqiu Hao
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuyang Yang
- Colorectal Cancer Center and Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Zhang
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziqiang Wang
- Colorectal Cancer Center and Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hai-Ning Chen
- Colorectal Cancer Center and Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Aebisher D, Woźnicki P, Dynarowicz K, Kawczyk-Krupka A, Cieślar G, Bartusik-Aebisher D. Photodynamic Therapy and Immunological View in Gastrointestinal Tumors. Cancers (Basel) 2023; 16:66. [PMID: 38201494 PMCID: PMC10777986 DOI: 10.3390/cancers16010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Gastrointestinal cancers are a specific group of oncological diseases in which the location and nature of growth are of key importance for clinical symptoms and prognosis. At the same time, as research shows, they pose a serious threat to a patient's life, especially at an advanced stage of development. The type of therapy used depends on the anatomical location of the cancer, its type, and the degree of progression. One of the modern forms of therapy used to treat gastrointestinal cancers is PDT, which has been approved for the treatment of esophageal cancer in the United States. Despite the increasingly rapid clinical use of this treatment method, the exact immunological mechanisms it induces in cancer cells has not yet been fully elucidated. This article presents a review of the current understanding of the mode of action of photodynamic therapy on cells of various gastrointestinal cancers with an emphasis on colorectal cancer. The types of cell death induced by PDT include apoptosis, necrosis, and pyroptosis. Anticancer effects are also a result of the destruction of tumor vasculature and activation of the immune system. Many reports exist that concern the mechanism of apoptosis induction, of which the mitochondrial pathway is most often emphasized. Photodynamic therapy may also have a beneficial effect on such aspects of cancer as the ability to develop metastases or contribute to reducing resistance to known pharmacological agents.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Paweł Woźnicki
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland; (A.K.-K.); (G.C.)
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland; (A.K.-K.); (G.C.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| |
Collapse
|
6
|
Peng Z, Lu J, Liu K, Xie L, Wang Y, Cai C, Yang D, Xi J, Yan C, Li X, Shi M. Hypericin as a promising natural bioactive naphthodianthrone: A review of its pharmacology, pharmacokinetics, toxicity, and safety. Phytother Res 2023; 37:5639-5656. [PMID: 37690821 DOI: 10.1002/ptr.8011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Hypericin can be derived from St. John's wort, which is widely spread around the world. As a natural product, it has been put into clinical practice such as wound healing and depression for a long time. In this article, we review the pharmacology, pharmacokinetics, and safety of hypericin, aiming to introduce the research advances and provide a full evaluation of it. Turns out hypericin, as a natural photosensitizer, exhibits an excellent capacity for anticancer, neuroprotection, and elimination of microorganisms, especially when activated by light, potent anticancer and antimicrobial effects are obtained after photodynamic therapy. The mechanisms of its therapeutic effects involve the induction of cell death, inhibition of cell cycle progression, inhibition of the reuptake of amines, and inhibition of virus replication. The pharmacokinetics properties indicate that hypericin has poor water solubility and bioavailability. The distribution and excretion are fast, and it is metabolized in bile. The toxicity of hypericin is rarely reported and the conventional use of it rarely causes adverse effects except for photosensitization. Therefore, we may conclude that hypericin can be used safely and effectively against a variety of diseases. We hope to provide researchers with detailed guidance and enlighten the development of it.
Collapse
Affiliation(s)
- Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Frerker B, Bock F, Cappel ML, Kriesen S, Klautke G, Hildebrandt G, Manda K. Radiosensitizing Effects of Irinotecan versus Oxaliplatin Alone and in Combination with 5-Fluorouracil on Human Colorectal Cancer Cells. Int J Mol Sci 2023; 24:10385. [PMID: 37373535 DOI: 10.3390/ijms241210385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
To date, oxaliplatin and irinotecan are used in combination with 5-flourouracil (5-FU) for metastatic colorectal cancer. In this study it was tested whether oxaliplatin and irinotecan and their combinations with 5-FU have an enhanced effect when treated simultaneously with ionizing radiation. In addition, it should be compared whether one combination therapy is more effective than the other. Colorectal cancer cells (HT-29) were treated with irinotecan or oxaliplatin, both alone and in combination with 5-FU, and subsequently irradiated. The cell growth, metabolic activity and proliferation of cells were investigated, and the clonogenic survival was determined. Furthermore, the assessment of radiation-induced DNA damage and the influence of the drugs and their combinations on DNA damage repair was investigated. Treatment with irinotecan or oxaliplatin in combination with 5-FU inhibited proliferation and metabolic activity as well as clonogenic survival and the DNA damage repair capacity of the tumor cells. The comparison of oxaliplatin and irinotecan with simultaneous irradiation showed the same effect of both drugs. When oxaliplatin or irinotecan was combined with 5-FU, tumor cell survival was significantly lower than with monotherapy; however, there was no superiority of either combination regimen. Our results have shown that the combination of 5-FU and irinotecan is as effective as the combination of 5-FU with oxaliplatin. Therefore, our data support the use of FOLFIRI as a radiosensitizer.
Collapse
Affiliation(s)
- Bernd Frerker
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| | - Felix Bock
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| | - Marie-Louise Cappel
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| | - Stephan Kriesen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| | - Gunther Klautke
- Department of Radiation Oncology, Hospital Chemnitz, Bürgerstrasse 2, 09113 Chemnitz, Germany
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| | - Katrin Manda
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| |
Collapse
|
8
|
Wu JJ, Zhang J, Xia CY, Ding K, Li XX, Pan XG, Xu JK, He J, Zhang WK. Hypericin: A natural anthraquinone as promising therapeutic agent. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154654. [PMID: 36689857 DOI: 10.1016/j.phymed.2023.154654] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Hypericin is a prominent secondary metabolite mainly existing in genus Hypericum. It has become a research focus for a quiet long time owing to its extensively pharmacological activities especially the anti-cancer, anti-bacterial, anti-viral and neuroprotective effects. This review concentrated on summarizing and analyzing the existing studies of hypericin in a comprehensive perspective. METHODS The literature with desired information about hypericin published after 2010 was gained from electronic databases including PubMed, SciFinder, Science Direct, Web of Science, China National Knowledge Infrastructure databases and Wan Fang DATA. RESULTS According to extensive preclinical and clinical studies conducted on the hypericin, an organized and comprehensive summary of the natural and artificial sources, strategies for improving the bioactivities, pharmacological activities, drug combination of hypericin was presented to explore the future therapeutic potential of this active compound. CONCLUSIONS Overall, this review offered a theoretical guidance for the follow-up research of hypericin. However, the pharmacological mechanisms, pharmacokinetics and structure activity relationship of hypericin should be further studied in future research.
Collapse
Affiliation(s)
- Jing-Jing Wu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Kang Ding
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin-Xin Li
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue-Ge Pan
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Wei-Ku Zhang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
9
|
Ma SC, Zhang JQ, Yan TH, Miao MX, Cao YM, Cao YB, Zhang LC, Li L. Novel strategies to reverse chemoresistance in colorectal cancer. Cancer Med 2023. [PMID: 36645225 DOI: 10.1002/cam4.5594] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 01/17/2023] Open
Abstract
Colorectal cancer (CRC) is a common gastrointestinal malignancy with high morbidity and fatality. Chemotherapy, as traditional therapy for CRC, has exerted well antitumor effect and greatly improved the survival of CRC patients. Nevertheless, chemoresistance is one of the major problems during chemotherapy for CRC and significantly limits the efficacy of the treatment and influences the prognosis of patients. To overcome chemoresistance in CRC, many strategies are being investigated. Here, we review the common and novel measures to combat the resistance, including drug repurposing (nonsteroidal anti-inflammatory drugs, metformin, dichloroacetate, enalapril, ivermectin, bazedoxifene, melatonin, and S-adenosylmethionine), gene therapy (ribozymes, RNAi, CRISPR/Cas9, epigenetic therapy, antisense oligonucleotides, and noncoding RNAs), protein inhibitor (EFGR inhibitor, S1PR2 inhibitor, and DNA methyltransferase inhibitor), natural herbal compounds (polyphenols, terpenoids, quinones, alkaloids, and sterols), new drug delivery system (nanocarriers, liposomes, exosomes, and hydrogels), and combination therapy. These common or novel strategies for the reversal of chemoresistance promise to improve the treatment of CRC.
Collapse
Affiliation(s)
- Shu-Chang Ma
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Jia-Qi Zhang
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-Hua Yan
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Ming-Xing Miao
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Ye-Min Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Ling Li
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Wang D, Zhao T, Zhao S, Chen J, Dou T, Ge G, Wang C, Sun H, Liu K, Meng Q, Wu J. Substrate-dependent inhibition of hypericin on human carboxylesterase 2: implications for herb-drug combination. Curr Drug Metab 2022; 23:38-44. [PMID: 35114918 DOI: 10.2174/1389200223666220202093303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hypericin is the main active ingredient of St. John's wort, a Chinese herb commonly used in treating depression. Previous studies have shown that hypericin can strongly inhibit human cytochrome P450 (CYP) enzyme activities; however, its potential interactions that inhibit human carboxylesterases 2 (hCE2) were unclear. PURPOSE The study aimed to investigate the inhibition of hypericin on hCE2. METHODS The inhibition of hypericin on hCE2 was studied by using N-(2-butyl-1,3-dioxo-2,3-dihydro-1H-phenalen-6-yl)-2-chloroacetamide (NCEN). The type of inhibition of hypericin on hCE2 and the corresponding inhibition constant (Ki) value were determined. The inhibition of hypericin on hCE2 in living cells was discussed. The herb-drug interactions (HDI) risk of hypericin and hCE2 in vivo was predicted by estimating the drug concentration-time curve (AUC) ratio of hypericin and hypericin free. To understand the inhibition mechanism of hypericin on the activity of hCE2 in-depth, molecular docking was performed. RESULTS The half-maximal inhibitory concentration (IC50) values of hypericin against the hydrolysis of NCEN and irinotecan (CPT-11) were calculated to be 26.59 μM and 112.8 μM, respectively. Hypericin inhibited the hydrolysis of NCEN and CPT-11. Their Ki values were 10.53 μM and 81.77 μM, respectively. Moreover, hypericin distinctly suppressed hCE2 activity in living cells. In addition, the AUC of hCE2 metabolic drugs with metabolic sites similar to NCEN was estimated to increase by up to 5%, in the presence of hypericin. More importantly, the exposure of CPT-11 in the intestinal epithelium was predicted to increase by 2%-69% following the oral co-administration of hypericin. Further, molecular simulations indicated that hypericin could strongly interact with ASP98, PHE307, and ARG355 to form four hydrogen bonds within hCE2. CONCLUSION These findings are of considerable clinical significance to the combination of hypericin-containing herbs and drugs metabolized by hCE2.
Collapse
Affiliation(s)
- Dalong Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Tingting Zhao
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Shan Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jing Chen
- School of Life Science and Medicine, Dalian University of Technology, Panjin, 124221, China
| | - Tongyi Dou
- School of Life Science and Medicine, Dalian University of Technology, Panjin, 124221, China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
11
|
Sun L, Li Z, Shang H, Xin X. Hypericin Enhances Paclitaxel-Induced B16-F10 Cell Apoptosis by Activating a Cytochrome c Release-Dependent Pathway. Front Pharmacol 2021; 12:652452. [PMID: 34421585 PMCID: PMC8371448 DOI: 10.3389/fphar.2021.652452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
The enhanced inhibitory effect of paclitaxel (PTX) combined with hypericin (HY) on B16-F10 cells may be realized through the ROS-related cytochrome c release pathway. The apoptotic characteristics of the B16-F10 cells, such as DNA fragmentation, chromatin condensation, and apoptotic body formation, were all enhanced in the combined treatment group. Further investigation showed that the combination of paclitaxel and HY could increase the level of mitochondrial damage and the concentration of cytochrome c, causing the expression of caspase-3 and the cleavage of PARP.1. Compared with paclitaxel or HY alone, the level of reactive oxygen species (ROS) increased significantly, while glutathione reductase (GR) activity and intracellular glutathione (GSH) levels decreased significantly in the combination group.
Collapse
Affiliation(s)
- Liyun Sun
- East China University of Science and Technology, Shanghai, China
| | - Zixuan Li
- East China University of Science and Technology, Shanghai, China
| | - Huoli Shang
- East China University of Science and Technology, Shanghai, China
| | - Xiujuan Xin
- East China University of Science and Technology, Shanghai, China
| |
Collapse
|
12
|
Intracellular delivery of oxaliplatin conjugate via cell penetrating peptide for the treatment of colorectal carcinoma in vitro and in vivo. Int J Pharm 2021; 606:120904. [PMID: 34293467 DOI: 10.1016/j.ijpharm.2021.120904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022]
Abstract
Pt-based drugs are one of the main active agents in colorectal cancer treatment. However, drug resistance and dose-dependent side effects are the main barriers that restrict their clinical applications. As an alternative approach to these issues, we designed and synthesized a cell penetrating peptide (CPP) octaarginine-oxaliplatin conjugate that quickly and successfully delivered oxaliplatin into colon cancer cells. The CPP octaarginine is a well-studied cationic peptide that can play a role as a drug delivery vector. In this work, an octaarginine CPP (RRRRRRRR) was conjugated with oxaliplatin via a specific heterobifunctional linker. The in vitro studies showed the conjugate had affinity toward mitochondria inside cells and the MTT assay confirmed that conjugate is active in low micromolar range against colon cancer cells, requiring much lower concentrations than the oxaliplatin alone to reach IC50. More importantly, in the in vivo mouse study, the conjugate effectively inhibited tumor growth and showed considerably high antitumor activity, demonstrating the conjugate can perform well in vivo. This strategy may offer a new approach for designing oxaliplatin derivatives or prodrugs with remarkable therapeutic capabilities.
Collapse
|
13
|
Chen KJ, Plaunt AJ, Leifer FG, Kang JY, Cipolla D. Recent advances in prodrug-based nanoparticle therapeutics. Eur J Pharm Biopharm 2021; 165:219-243. [PMID: 33979661 DOI: 10.1016/j.ejpb.2021.04.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
Extensive research into prodrug modification of active pharmaceutical ingredients and nanoparticle drug delivery systems has led to unprecedented levels of control over the pharmacological properties of drugs and resulted in the approval of many prodrug or nanoparticle-based therapies. In recent years, the combination of these two strategies into prodrug-based nanoparticle drug delivery systems (PNDDS) has been explored as a way to further advance nanomedicine and identify novel therapies for difficult-to-treat indications. Many of the PNDDS currently in the clinical development pipeline are expected to enter the market in the coming years, making the rapidly evolving field of PNDDS highly relevant to pharmaceutical scientists. This review paper is intended to introduce PNDDS to the novice reader while also updating those working in the field with a comprehensive summary of recent efforts. To that end, first, an overview of FDA-approved prodrugs is provided to familiarize the reader with their advantages over traditional small molecule drugs and to describe the chemistries that can be used to create them. Because this article is part of a themed issue on nanoparticles, only a brief introduction to nanoparticle-based drug delivery systems is provided summarizing their successful application and unfulfilled opportunities. Finally, the review's centerpiece is a detailed discussion of rationally designed PNDDS formulations in development that successfully leverage the strengths of prodrug and nanoparticle approaches to yield highly effective therapeutic options for the treatment of many diseases.
Collapse
|
14
|
Fang J, Huang X, Yang Y, Wang X, Liang X, Liu J. Berberine-photodynamic induced apoptosis by activating endoplasmic reticulum stress-autophagy pathway involving CHOP in human malignant melanoma cells. Biochem Biophys Res Commun 2021; 552:183-190. [PMID: 33751936 DOI: 10.1016/j.bbrc.2021.02.147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/28/2021] [Indexed: 12/24/2022]
Abstract
Malignant melanoma is a critical and aggressive skin tumor with a steeply rising incidence and a less favorable prognosis due to the lack of efficient treatment. Photodynamic therapy (PDT) is a new promising treatment for this tumor through photosensitizers-mediated oxidative cytotoxicity. In this study, we explored the role of berberine-mediated PDT (BBR-PDT) in the anti-proliferative effect on human malignant melanoma cells (MMCs). We found that there were significant differences between MMCs with BBR-PDT and MMCs with BBR or PDT only. Further research showed that BBR-PDT induced apoptosis via up-regulating the expression of cleaved caspase-3 protein. We also observed that LC3-related autophagy level was upregulated in MMCs with BBR-PDT. Besides, it was also found that BBR-PDT activated endoplasmic reticulum (ER) stress, involving a dramatic increase in reactive oxygen species (ROS). Interestingly, the knockdown of CHOP protein expression inhibited apoptosis, autophagy and ER stress levels caused by BBR-PDT, suggesting that CHOP protein may be related to apoptosis, autophagy and ER stress in MMCs with BBR-PDT. Collectively, our results indicated that BBR-PDT had an essential impact on MMCs' growth inhibition, and therefore may reveal the possibility of developing BBR-PDT into human malignant melanoma.
Collapse
Affiliation(s)
- Jiaping Fang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xuan Huang
- Department of Pharmacy, School of Medicine, Jiaxing University, Jiaxing, Zhejiang, 314001, PR China; Natural Medicine and Health Food Research & Technology Innovation Team of Jiaxing, Jiaxing, Zhejiang, 314001, PR China; Jiaxing Key Laboratory of Oncological Photodynamic Therapy and Targeted Drug Research, PR China
| | - Yun Yang
- Department of Pharmacy, School of Medicine, Jiaxing University, Jiaxing, Zhejiang, 314001, PR China
| | - Xiaotong Wang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
15
|
Amanda Pedroso de Morais F, Sonchini Gonçalves R, Souza Campanholi K, Martins de França B, Augusto Capeloto O, Lazarin-Bidoia D, Bento Balbinot R, Vataru Nakamura C, Carlos Malacarne L, Caetano W, Hioka N. Photophysical characterization of Hypericin-loaded in micellar, liposomal and copolymer-lipid nanostructures based F127 and DPPC liposomes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119173. [PMID: 33316657 DOI: 10.1016/j.saa.2020.119173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/25/2020] [Accepted: 10/31/2020] [Indexed: 05/22/2023]
Abstract
Hypericin (Hy) compound presents a high photoactivity in photodynamic therapy (PDT), photodiagnosis and theranostics applications. The maintenance of this compound in monomeric form could undermine the potential benefits of its photophysical and photodynamic activity. In this study, we demonstrated that the Hy formulated in a system based on the use of the F127 copolymer and the 1,2-dipalmitoyl-sn-3-glycerol-phosphatidylcholine (DPPC) as micelles, liposomal vesicles and Copolymer-Lipid coated systems, have improved its photophysical properties for many clinical modalities. Based on the results of the triplet state lifetime values (τt), the singlet oxygen quantum yield (ΦΔ1O2), the fluorescence lifetime (τF) and the fluorescence quantum yield (ΦF), all Hy formulations had its photophysical properties described in different models of drug delivery systems (DDS). In addition, the transient spectra profile of those formulations was unaffected by the Hy incorporation process, except for the liposomal system, which demonstrated to be the less stable one by flash photolysis technique. The cytotoxic effects of those formulations were also investigated for CaCo-2 and HaCat cells line. The cytotoxic concentrations for 50% (CC50) were 0.56, 1.05, 1.33 and 4.80 µmol L-1 for Copolymer-Lipid/Hy, DPPC/Hy, F127/Hy and ethanol/Hy for CaCo-2 cells, respectively, and 0.69, 2.02, 1.45 and 1.16 µmol L-1 for Copolymer-Lipid/Hy, DPPC/Hy, F127/Hy and ethanol/Hy for HaCat cells, respectively. The F127 copolymer had a significant role in many photophysical parameters determined for Copolymer-Lipid/Hy coated system. Although all those formulations had shown satisfactory results, Copolymer-Lipid/Hy proved to be superior in many aspects, being the most promising formulation for PDT, photodiagnosis and theranostics applications.
Collapse
Affiliation(s)
| | - Renato Sonchini Gonçalves
- Department of Chemistry, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Katieli Souza Campanholi
- Department of Chemistry, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Bruna Martins de França
- Department of Chemistry, Federal University of Rio de Janeiro, 149 Athos da Silveira Ramos Ave., 21941-909 Rio de Janeiro, RJ, Brazil
| | - Otávio Augusto Capeloto
- Department of Physics, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Danielle Lazarin-Bidoia
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Rodolfo Bento Balbinot
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Celso Vataru Nakamura
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Luis Carlos Malacarne
- Department of Physics, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Noboru Hioka
- Department of Chemistry, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| |
Collapse
|
16
|
Dong X, Zeng Y, Zhang Z, Fu J, You L, He Y, Hao Y, Gu Z, Yu Z, Qu C, Yin X, Ni J, Cruz LJ. Hypericin-mediated photodynamic therapy for the treatment of cancer: a review. J Pharm Pharmacol 2020; 73:425-436. [PMID: 33793828 DOI: 10.1093/jpp/rgaa018] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Hypericin is a polycyclic aromatic naphthodianthrone that occurs naturally. It is also an active ingredient in some species of the genus Hypericum. Emerging evidence suggests that hypericin has attracted great attention as a potential anticancer drug and exhibits remarkable antiproliferative effect upon irradiation on various tumour cells. This paper aims to summarise the anticancer effect and molecular mechanisms modulated by hypericin-medicated photodynamic therapy and its potential role in the cancer treatment. KEY FINDINGS Hypericin-medicated photodynamic therapy could inhibit the proliferation of various tumour cells including bladder, colon, breast, cervical, glioma, leukaemia, hepatic, melanoma, lymphoma and lung cancers. The effect is primarily mediated by p38 mitogen-activated protein kinase (MAPK), JNK, PI3K, CCAAT-enhancer-binding protein homologous protein (CHOP)/TRIB3/Akt/mTOR, TRAIL/TRAIL-receptor, c-Met and Ephrin-Eph, the mitochondria and extrinsic signalling pathways. Furthermore, hypericin-medicated photodynamic therapy in conjunction with chemotherapeutic agents or targeted therapies is more effective in inhibiting the growth of tumour cells. SUMMARY During the past few decades, the anticancer properties of photoactivated hypericin have been extensively investigated. Hypericin-medicated photodynamic therapy can modulate a variety of proteins and genes and exhibit a great potential to be used as a therapeutic agent for various types of cancer.
Collapse
Affiliation(s)
- Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden, The Netherlands
| | - Yawen Zeng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Fu
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan He
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden, The Netherlands
| | - Yang Hao
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden, The Netherlands
| | - Zili Gu
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden, The Netherlands
| | - Zhenfeng Yu
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden, The Netherlands
| | - Changhai Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Luis J Cruz
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
17
|
Jiang X, Lin M, Huang J, Mo M, Liu H, Jiang Y, Cai X, Leung W, Xu C. Smart Responsive Nanoformulation for Targeted Delivery of Active Compounds From Traditional Chinese Medicine. Front Chem 2020; 8:559159. [PMID: 33363102 PMCID: PMC7758496 DOI: 10.3389/fchem.2020.559159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been used to treat disorders in China for ~1,000 years. Growing evidence has shown that the active ingredients from TCM have antibacterial, antiproliferative, antioxidant, and apoptosis-inducing features. However, poor solubility and low bioavailability limit clinical application of active compounds from TCM. “Nanoformulations” (NFs) are novel and advanced drug-delivery systems. They show promise for improving the solubility and bioavailability of drugs. In particular, “smart responsive NFs” can respond to the special external and internal stimuli in targeted sites to release loaded drugs, which enables them to control the release of drug within target tissues. Recent studies have demonstrated that smart responsive NFs can achieve targeted release of active compounds from TCM at disease sites to increase their concentrations in diseased tissues and reduce the number of adverse effects. Here, we review “internal stimulus–responsive NFs” (based on pH and redox status) and “external stimulus–responsive NFs” (based on light and magnetic fields) and focus on their application for active compounds from TCM against tumors and infectious diseases, to further boost the development of TCM in modern medicine.
Collapse
Affiliation(s)
- Xuejun Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mei Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianwen Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mulan Mo
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Houhe Liu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuan Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Cai
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wingnang Leung
- Asia-Pacific Institute of Aging Studies, Lingnan University, Hong Kong, China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Macejová M, Sačková V, Hradická P, Jendželovský R, Demečková V, Fedoročko P. Combination of photoactive hypericin and Manumycin A exerts multiple anticancer effects on oxaliplatin-resistant colorectal cells. Toxicol In Vitro 2020; 66:104860. [DOI: 10.1016/j.tiv.2020.104860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/04/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
|
19
|
Yan K, Zhang Y, Mu C, Xu Q, Jing X, Wang D, Dang D, Meng L, Ma J. Versatile Nanoplatforms with enhanced Photodynamic Therapy: Designs and Applications. Theranostics 2020; 10:7287-7318. [PMID: 32641993 PMCID: PMC7330854 DOI: 10.7150/thno.46288] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
As an emerging antitumor strategy, photodynamic therapy (PDT) has attracted intensive attention for the treatment of various malignant tumors owing to its noninvasive nature and high spatial selectivity in recent years. However, the therapeutic effect is unsatisfactory on some occasions due to the presence of some unfavorable factors including nonspecific accumulation of PS towards malignant tissues, the lack of endogenous oxygen in tumors, as well as the limited light penetration depth, further hampering practical application. To circumvent these limitations and improve real utilization efficiency, various enhanced strategies have been developed and explored during the past years. In this review, we give an overview of the state-of-the-art advances progress on versatile nanoplatforms for enhanced PDT considering the enhancement from targeting or responsive, chemical and physical effect. Specifically, these effects mainly include organelle-targeting function, tumor microenvironment responsive release photosensitizers (PS), self-sufficient O2 (affinity oxygen and generating oxygen), photocatalytic water splitting, X-rays light stimulate, surface plasmon resonance enhancement, and the improvement by resonance energy transfer. When utilizing these strategies to improve the therapeutic effect, the advantages and limitations are addressed. Finally, the challenges and prospective will be discussed and demonstrated for the future development of advanced PDT with enhanced efficacy.
Collapse
Affiliation(s)
- Kai Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yabin Zhang
- Key Laboratory of Testing Technology for Manufacturing Process of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chenglong Mu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qunna Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xunan Jing
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Daquan Wang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Dongfeng Dang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Lingjie Meng
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
20
|
Lim WQ, Yang G, Phua SZF, Chen H, Zhao Y. Self-Assembled Oxaliplatin(IV) Prodrug-Porphyrin Conjugate for Combinational Photodynamic Therapy and Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16391-16401. [PMID: 31002492 DOI: 10.1021/acsami.9b04557] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanomedicine has emerged as a promising strategy for effective cancer treatment. A useful approach is to develop carrier-free nanodrugs via a facile supramolecular self-assembly process. To achieve high therapeutic effect, integrating photodynamic therapy with chemotherapy has been sought after. In this work, we designed a nanocarrier (PEG-Por-CD: oxliPt(IV)-ada) assembled with oxaliplatin prodrug (oxliPt(IV)-ada) and porphyrin photosensitizer (PEG-Por-CD) through host-guest interaction to achieve stimulus-responsive combination therapy. Contributed by excellent spatial control of the binding ratio between host and guest molecules, porphyrin and oxaliplatin were separately modified with β-cyclodextrin and adamantane to prepare the amphiphilic host-guest complex for subsequent self-assembly into therapeutic nanoparticles. The obtained PEG-Por-CD: oxliPt(IV)-ada nanoparticles exhibited good colloidal stability with an average hydrodynamic size of 164 nm while undergoing the disassembly under reductive environment to release active therapeutic species. Confocal imaging demonstrated the ability of PEG-Por-CD: oxliPt(IV)-ada to effectively accumulate in the cells and produce reactive oxygen species in vitro upon 630 nm light irradiation. As compared with the monotherapy, the PEG-Por-CD: oxliPt(IV)-ada nanoparticles exhibited 3-fold enhanced cytotoxicity and 2-fold increase in the apoptosis. In vivo experiments using 4T1 tumor-bearing mice confirmed that the nanoparticles were efficient in suppressing the tumor growth without eliciting systemic toxicity. The present self-delivery nanosystem constructed from the self-assembly approach not only allows precise control over the drug and photosensitizer loading ratio but also eliminates systemic toxicity concern of the drug carriers, providing a solution for further development of combinational cancer treatment.
Collapse
Affiliation(s)
- Wei Qi Lim
- NTU-Northwestern Institute for Nanomedicine, Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Drive , Singapore 637553
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Guangbao Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Soo Zeng Fiona Phua
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Yanli Zhao
- NTU-Northwestern Institute for Nanomedicine, Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Drive , Singapore 637553
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| |
Collapse
|
21
|
Huang H, Aladelokun O, Ideta T, Giardina C, Ellis LM, Rosenberg DW. Inhibition of PGE 2/EP4 receptor signaling enhances oxaliplatin efficacy in resistant colon cancer cells through modulation of oxidative stress. Sci Rep 2019; 9:4954. [PMID: 30894570 PMCID: PMC6427013 DOI: 10.1038/s41598-019-40848-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 02/22/2019] [Indexed: 12/15/2022] Open
Abstract
The platinum-based chemotherapeutic agent, oxaliplatin, is used to treat advanced colorectal cancer (CRC). Unfortunately, nearly all patients acquire resistance to oxaliplatin after long-term use, limiting its therapeutic efficacy. Since COX-2 and PGE2 signaling can impact colon cancer cell proliferation and survival, we examined how this pathway was affected in an oxaliplatin resistant colon cancer cell line. PGE2 levels were significantly elevated in oxaliplatin-resistant HT29 cells (OXR) compared to naïve parental HT29 cells (PAR). This increase was associated with elevated COX-2 (17.9-fold; P = 0.008) and reduced 15-hydroxyprostaglandin dehydrogenase (2.9-fold; P < 0.0001) expression. RNAi knockdown of microsomal prostaglandin E synthase-1, the rate-limiting enzyme in PGE2 synthesis, sensitized OXR cells to oxaliplatin. Downstream effects of PGE2 in OXR cells were also examined. Selective inhibition of the EP4 PGE2 receptor by the small molecule inhibitor, L-161,982 enhanced oxaliplatin-induced apoptosis in OXR cells. L-161,982 also reduced expression of the colonic stem cell markers, CD133 and CD44, and inhibited tumor sphere formation. The accumulation of intracellular reactive oxygen species (ROS), a key component of oxaliplatin cytotoxicity, was significantly increased by EP4 inhibition (2.4 -fold; P < 0.0001). Overall, our findings uncover an important role for the COX-2/PGE2/EP4 signaling axis in oxaliplatin resistance via regulation of oxidative stress.
Collapse
Affiliation(s)
- Huakang Huang
- Center for Molecular Oncology, University of Connecticut Health, 263 Farmington Ave, Farmington, CT, USA
| | - Oladimeji Aladelokun
- Center for Molecular Oncology, University of Connecticut Health, 263 Farmington Ave, Farmington, CT, USA
| | - Takayasu Ideta
- Center for Molecular Oncology, University of Connecticut Health, 263 Farmington Ave, Farmington, CT, USA
| | - Charles Giardina
- Department of Cell and Molecular Biology, University of Connecticut, Storrs, CT, USA
| | - Lee M Ellis
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Holcombe Boulevard, Houston, Texas, USA
| | - Daniel W Rosenberg
- Center for Molecular Oncology, University of Connecticut Health, 263 Farmington Ave, Farmington, CT, USA.
| |
Collapse
|
22
|
Li Y, Chen Y, Qiu C, Ma X, Lei K, Cai G, Liang X, Liu J. 17-allylamino-17-demethoxygeldanamycin impeded chemotherapy through antioxidant activation via reducing reactive oxygen species-induced cell death. J Cell Biochem 2019; 120:1560-1576. [PMID: 30378153 DOI: 10.1002/jcb.27397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/11/2018] [Indexed: 01/24/2023]
Abstract
Hyperthermia enhances the anticancer effects of thymidylate synthase (TYMS) inhibitors (raltitrexed, RTX) and improves the precise biochemical mechanisms partially through enhancement of intracellular drug absorption. Recent research focuses on the potential anticancer drug target Heat Shock Protein 90 (HSP90), which could increase the sensitivity of cancer cells to TYMS inhibitors; however, with different HSP90 inhibitors, several research studies finally showed a poor efficacy in preclinical or clinical research. Here, we showed that 17-allylamino-17-demethoxygeldanamycin (17-AAG, HSP90 inhibitor) affects the efficacy of chemotherapy through antioxidant activation-induced resistance. In this study, we found that RTX, alone or in combination with hyperthermia, triggers reactive oxygen species (ROS) exposure and thus induces cell death. Also, the addition of hyperthermia showed more ROS exposure and function. The pharmacologic inhibition of HSP90 reversed the effects of chemotherapeutical treatments, while the overexpression of HSP90 showed no relation with these effects, which demonstrated that dysregulation of HSP90 might have a significant impact on chemotherapeutic treatments. The addition of 17-AAG increased the activation of antioxidant with increased antioxidant enzymes, thus affecting the RTX efficacy.
Collapse
Affiliation(s)
- Yueqi Li
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yiyang Chen
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Cen Qiu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Kecheng Lei
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
23
|
Freund E, Liedtke KR, van der Linde J, Metelmann HR, Heidecke CD, Partecke LI, Bekeschus S. Physical plasma-treated saline promotes an immunogenic phenotype in CT26 colon cancer cells in vitro and in vivo. Sci Rep 2019; 9:634. [PMID: 30679720 PMCID: PMC6345938 DOI: 10.1038/s41598-018-37169-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023] Open
Abstract
Metastatic colorectal cancer is the fourth most common cause of cancer death. Current options in palliation such as hyperthermic intraperitoneal chemotherapy (HIPEC) present severe side effects. Recent research efforts suggested the therapeutic use of oxidant-enriched liquid using cold physical plasma. To investigate a clinically accepted treatment regimen, we assessed the antitumor capacity of plasma-treated saline solution. In response to such liquid, CT26 murine colon cancer cells were readily oxidized and showed cell growth with subsequent apoptosis, cell cycle arrest, and upregulation of immunogenic cell death (ICD) markers in vitro. This was accompanied by marked morphological changes with re-arrangement of actin fibers and reduced motility. Induction of an epithelial-to-mesenchymal transition phenotype was not observed. Key results were confirmed in MC38 colon and PDA6606 pancreatic cancer cells. Compared to plasma-treated saline, hydrogen peroxide was inferiorly toxic in 3D tumor spheroids but of similar efficacy in 2D models. In vivo, plasma-treated saline decreased tumor burden in Balb/C mice. This was concomitant with elevated numbers of intratumoral macrophages and increased T cell activation following incubation with CT26 cells ex vivo. Being a potential adjuvant for HIPEC therapy, our results suggest oxidizing saline solutions to inactivate colon cancer cells while potentially stimulating antitumor immune responses.
Collapse
Affiliation(s)
- Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Kim Rouven Liedtke
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Julia van der Linde
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Hans-Robert Metelmann
- Oral and Maxillofacial Surgery/Plastic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Claus-Dieter Heidecke
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Lars-Ivo Partecke
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| |
Collapse
|
24
|
Cui Q, Wang JQ, Assaraf YG, Ren L, Gupta P, Wei L, Ashby CR, Yang DH, Chen ZS. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat 2018; 41:1-25. [DOI: 10.1016/j.drup.2018.11.001] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
|
25
|
Evaluation for Synergistic Effects by Combinations of Photodynamic Therapy (PDT) with Temoporfin (mTHPC) and Pt(II) Complexes Carboplatin, Cisplatin or Oxaliplatin in a Set of Five Human Cancer Cell Lines. Int J Mol Sci 2018; 19:ijms19103183. [PMID: 30332729 PMCID: PMC6214074 DOI: 10.3390/ijms19103183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/27/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
The platinum(II) complexes carboplatin (CBDCA), cisplatin (CDDP) and oxaliplatin (1-OHP) are used as anticancer drugs in a large number of tumour chemotherapy regimens. Many attempts have been made to combine Pt(II)-based chemotherapy with alternative treatment strategies. One such alternative anticancer approach is known as photodynamic therapy (PDT), where a non-toxic photosensitizer (PS) produces oxidative stress via the formation of reactive oxygen species (ROS) after local illumination of the affected tissue. A very promising PS is 5,10,15,20-tetra(m-hydroxyphenyl)chlorin (mTHPC, Temoporfin), which is approved for the treatment of head and neck cancer in Europe. In the present study, a combination of mTHPC-mediated PDT and either CBDCA, CDDP, or 1-OHP was applied to five human cancer cell lines from different tumour origins. Cytotoxicity was determined by the MTT assay and synergistic effects on cytotoxicity were evaluated by calculation of Combination Indices (CI). Synergy was identified in some of the combinations, for example, with 1-OHP in three of the tested cell lines but antagonism was also observed for a number of combinations in certain cell lines. In cases of synergy, elevated ROS levels were observed after combination but apoptosis induction was not necessarily increased compared to a treatment with a single compound. Cell cycle analysis revealed a formation of apoptotic subG1 populations and S phase as well as G2/M phase arrests after combination. In conclusion, pre-treatment with mTHPC-PDT has the potential to sensitize some types of tumour cells towards Pt(II) complexes, in particular 1-OHP but synergy is highly dependent on the type of cancer.
Collapse
|
26
|
de Oliveira Júnior RG, Christiane Adrielly AF, da Silva Almeida JRG, Grougnet R, Thiéry V, Picot L. Sensitization of tumor cells to chemotherapy by natural products: A systematic review of preclinical data and molecular mechanisms. Fitoterapia 2018; 129:383-400. [DOI: 10.1016/j.fitote.2018.02.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
|
27
|
Broekgaarden M, Rizvi I, Bulin AL, Petrovic L, Goldschmidt R, Massodi I, Celli JP, Hasan T. Neoadjuvant photodynamic therapy augments immediate and prolonged oxaliplatin efficacy in metastatic pancreatic cancer organoids. Oncotarget 2018; 9:13009-13022. [PMID: 29560127 PMCID: PMC5849191 DOI: 10.18632/oncotarget.24425] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/23/2018] [Indexed: 12/18/2022] Open
Abstract
Effective treatment of advanced metastatic disease remains the primary challenge in the management of inoperable pancreatic cancer. Current therapies such as oxaliplatin (OxPt)-based chemotherapy regimens (FOLFIRINOX) provide modest short-term survival improvements, yet with significant toxicity. Photodynamic therapy (PDT), a light-activated cancer therapy, demonstrated clinical promise for pancreatic cancer treatment and enhances conventional chemotherapies with non-overlapping toxicities. This study investigates the capacity of neoadjuvant PDT using a clinically-approved photosensitizer, benzoporphyrin derivative (BPD, verteporfin), to enhance OxPt efficacy in metastatic pancreatic cancer. Treatment effects were evaluated in organotypic three-dimensional (3D) cultures, clinically representative models that bridge the gap between conventional cell cultures and in vivo models. The temporally-spaced, multiparametric analyses demonstrated a superior efficacy for combined PDT+OxPt compared to each monotherapy alone, which was recapitulated on different organotypic pancreatic cancer cultures. The therapeutic benefit of neoadjuvant PDT to OxPt chemotherapy materialized in a time-dependent manner, reducing residual viable tissue and tumor viability in a manner not achievable with OxPt or PDT alone. These findings emphasize the need for intelligent combination therapies and relevant models to evaluate the temporal kinetics of interactions between mechanistically-distinct treatments and highlight the promise of PDT as a neoadjuvant treatment for disseminated pancreatic cancer.
Collapse
Affiliation(s)
- Mans Broekgaarden
- Wellman Center for Photomedicine, Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Imran Rizvi
- Wellman Center for Photomedicine, Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anne-Laure Bulin
- Wellman Center for Photomedicine, Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ljubica Petrovic
- Department of Physics, University of Massachusetts, Boston, MA 02125, USA
| | - Ruth Goldschmidt
- Wellman Center for Photomedicine, Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Iqbal Massodi
- Wellman Center for Photomedicine, Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jonathan P. Celli
- Department of Physics, University of Massachusetts, Boston, MA 02125, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
28
|
Hodgkinson N, Kruger CA, Abrahamse H. Targeted photodynamic therapy as potential treatment modality for the eradication of colon cancer and colon cancer stem cells. Tumour Biol 2017; 39:1010428317734691. [PMID: 28990490 DOI: 10.1177/1010428317734691] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer is commonly treated by tumour resection, as chemotherapy and radiation have proven to be less effective, especially if the tumour has metastasized. Resistance to therapies occurs in almost all patients with colorectal cancer, especially in those with metastatic tumours. Cancer stem cells have the ability to self-renew, and their slow rate of cycling enhances resistance to treatment and increases the likelihood of tumour recurrence. Most metastatic tumours are unable to be surgically removed, thus creating a need for treatment modalities that target cancers directly and destroy cancer stem cells. Photodynamic therapy involves a photosensitizer that when exposed to a light source of a particular wavelength becomes excited and produces a form of oxygen that kills cancer cells. Photodynamic therapy is currently being investigated as a treatment modality for colorectal cancer, and new studies are exploring enhancing photodynamic therapy efficacy with the aid of drug carriers and immune conjugates. These modifications could prove effective in targeting cancer stem cells that are thought to be resistant to photodynamic therapy. In order for photodynamic therapy to be an effective treatment in colorectal cancer, it requires treatment of both primary tumours and the metastatic secondary disease that is caused by colon cancer stem cells. This review focuses on current photodynamic therapy treatments available for colorectal cancer and highlights proposed actively targeted photosynthetic drug uptake mechanisms specifically mediated towards colon cancer stem cells, as well as identify the gaps in research which need to be investigated in order to develop a combinative targeted photodynamic therapy regime that can effectively control colorectal cancer primary and metastatic tumour growth by eliminating colon cancer stem cells.
Collapse
Affiliation(s)
- Natasha Hodgkinson
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Cherie A Kruger
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
29
|
Su M, Zhang Q. Deficiency of gap junction composed of connexin43 contributes to oxaliplatin resistance in colon cancer cells. Oncol Lett 2017; 14:3669-3674. [PMID: 28927129 DOI: 10.3892/ol.2017.6598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 01/26/2017] [Indexed: 12/12/2022] Open
Abstract
Although comprehensive strategies in the treatment of colorectal cancer have been developed for a number of years, the five-year survival rate of metastatic colon cancer remains less than 10%. Oxaliplatin, a commonly used chemotherapeutic agent for metastatic colon cancer, improves the response rate of patients and prolongs patients' progression-free survival. However, the generation of resistance limits the clinical application of oxaliplatin, and the mechanisms of this remain unclear. The present study mainly investigated the effect of the gap junction (GJ) composed of connexin43 (Cx43) on oxaliplatin cytotoxicity in colon cancer cells. Three different methods with distinct mechanisms were used to change the function of Cx43 GJs, including cell culture at different densities, pretreatment with a specific inhibitor or enhancer, and special gene knockdown, to observe the cytotoxicity of oxaliplatin and the level of reactive oxygen species (ROS) mediated by Cx43 GJs. The results revealed that the cytotoxicity of oxaliplatin and the level of ROS were decreased with the downregulation of Cx43 GJ function, but exacerbated with the upregulation of Cx43 GJ function. Moreover, ROS scavenging with N-acetyl-L-cysteine and apocynin decreased the cytotoxicity of oxaliplatin. We concluded that the loss of GJ composed of Cx43 contributed to the resistance of oxaliplatin in colon cancer cells, and the mechanism was associated with intracellular ROS alternation.
Collapse
Affiliation(s)
- Min Su
- Department of Oncology, Hospital Affiliated to Hubei University of Arts and Science/Xiangyang Central Hospital, Xiangyang, Hubei 441021, P.R. China
| | - Qi Zhang
- Department of Oncology, Hospital Affiliated to Hubei University of Arts and Science/Xiangyang Central Hospital, Xiangyang, Hubei 441021, P.R. China
| |
Collapse
|
30
|
Lin S, Yang L, Shi H, Du W, Qi Y, Qiu C, Liang X, Shi W, Liu J. Endoplasmic reticulum-targeting photosensitizer Hypericin confers chemo-sensitization towards oxaliplatin through inducing pro-death autophagy. Int J Biochem Cell Biol 2017; 87:54-68. [DOI: 10.1016/j.biocel.2017.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 12/12/2022]
|
31
|
Liang X, Shi H, Yang L, Qiu C, Lin S, Qi Y, Li J, Zhao A, Liu J. Inhibition of polypyrimidine tract-binding protein 3 induces apoptosis and cell cycle arrest, and enhances the cytotoxicity of 5- fluorouracil in gastric cancer cells. Br J Cancer 2017; 116:903-911. [PMID: 28222070 PMCID: PMC5379144 DOI: 10.1038/bjc.2017.32] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 02/06/2023] Open
Abstract
Background: Human polypyrimidine tract binding protein 3 (PTBP3) was first discovered in 1999 and has been well characterised as a differentiation regulator. However, its role in human cancer has rarely been reported. Our previous study revealed increased PTBP3 protein level in gastric cancer tissues. Downregulation of PTBP3 suppressed the proliferation and differentiation of gastric cancer cells in vivo. Methods: PTBP3 mRNA levels in human gastric cancer and adjuvant non-tumour tissues were detected. Apoptosis and 5-FU effect were determined in PTBP3-silenced gastric cancer cells. Underlying molecular mechanisms were investigated. Results: MRNA expression of PTBP3 was upregulated in gastric cancer tissues, especially in those at an advanced stage. PTBP3 silencing led to apoptosis, under which modulation of PTB and thereby switch of Bcl-x pre-mRNA splicing pattern might be an important mechanism. Further research found that inhibition of PTBP3 expression enhanced the chemosensitivity of gastric cancer cells towards 5-FU treatment. This was mediated by reduced expression of histone deacetylase 6 (HDAC6), which further inhibited the phosphorylation of Akt and the expression of thymidylate synthase (TYMS), the critical determinant of 5-FU cytotoxicity. Conclusions: PTBP3 might serve as a biomarker of gastric cancer or potential target for anti-cancer therapy.
Collapse
Affiliation(s)
- Xin Liang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Haiyang Shi
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Liyan Yang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Cen Qiu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Shengchao Lin
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Yingxue Qi
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Jiyu Li
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai 200072, China
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
32
|
Niu W, Wu P, Chen F, Wang J, Shang X, Xu C. Discovery of selective cystathionine β-synthase inhibitors by high-throughput screening with a fluorescent thiol probe. MEDCHEMCOMM 2016; 8:198-201. [PMID: 30108705 DOI: 10.1039/c6md00493h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/14/2016] [Indexed: 01/27/2023]
Abstract
A high-throughput assay was developed to identify inhibitors of cystathionine β-synthase (CBS), which is one of three key enzymes involved in H2S biosynthesis. Screening of 6491 natural compounds identified several selective CBS inhibitors, which suppressed the proliferation of HT29 cancer cells, with IC50 values of less than 10 μM.
Collapse
Affiliation(s)
- Weining Niu
- Key Laboratory for Space Bioscience and Space Biotechnology , School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Ping Wu
- Key Laboratory for Space Bioscience and Space Biotechnology , School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Fei Chen
- Key Laboratory for Space Bioscience and Space Biotechnology , School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Jun Wang
- Key Laboratory for Space Bioscience and Space Biotechnology , School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Xiaoya Shang
- Key Laboratory for Space Bioscience and Space Biotechnology , School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Chunlan Xu
- Key Laboratory for Space Bioscience and Space Biotechnology , School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| |
Collapse
|