1
|
Rashad S, Marahleh A. Metabolism Meets Translation: Dietary and Metabolic Influences on tRNA Modifications and Codon Biased Translation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70011. [PMID: 40119534 PMCID: PMC11928779 DOI: 10.1002/wrna.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/24/2025]
Abstract
Transfer RNA (tRNA) is not merely a passive carrier of amino acids, but an active regulator of mRNA translation controlling codon bias and optimality. The synthesis of various tRNA modifications is regulated by many "writer" enzymes, which utilize substrates from metabolic pathways or dietary sources. Metabolic and bioenergetic pathways, such as one-carbon (1C) metabolism and the tricarboxylic acid (TCA) cycle produce essential substrates for tRNA modifications synthesis, such as S-Adenosyl methionine (SAM), sulfur species, and α-ketoglutarate (α-KG). The activity of these metabolic pathways can directly impact codon decoding and translation via regulating tRNA modifications levels. In this review, we discuss the complex interactions between diet, metabolism, tRNA modifications, and mRNA translation. We discuss how nutrient availability, bioenergetics, and intermediates of metabolic pathways, modulate the tRNA modification landscape to fine-tune protein synthesis. Moreover, we highlight how dysregulation of these metabolic-tRNA interactions contributes to disease pathogenesis, including cancer, metabolic disorders, and neurodegenerative diseases. We also discuss the new emerging field of GlycoRNA biology drawing parallels from glycobiology and metabolic diseases to guide future directions in this area. Throughout our discussion, we highlight the links between specific modifications, their metabolic/dietary precursors, and various diseases, emphasizing the importance of a metabolism-centric tRNA view in understanding many pathologies. Future research should focus on uncovering the interplay between metabolism and tRNA in specific cellular and disease contexts. Addressing these gaps will guide new research into novel disease interventions.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | - Aseel Marahleh
- Frontier Research Institute for Interdisciplinary SciencesTohoku UniversitySendaiJapan
- Graduate School of DentistryTohoku UniversitySendaiJapan
| |
Collapse
|
2
|
Rashad S. Queuosine tRNA Modification: Connecting the Microbiome to the Translatome. Bioessays 2025; 47:e202400213. [PMID: 39600051 PMCID: PMC11755703 DOI: 10.1002/bies.202400213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Transfer RNA (tRNA) modifications play an important role in regulating mRNA translation at the codon level. tRNA modifications can influence codon selection and optimality, thus shifting translation toward specific sets of mRNAs in a dynamic manner. Queuosine (Q) is a tRNA modification occurring at the wobble position. In eukaryotes, queuosine is synthesized by the tRNA-guanine trans-glycosylase (TGT) complex, which incorporates the nucleobase queuine (or Qbase) into guanine of the GUN anticodons. Queuine is sourced from gut bacteria and dietary intake. Q was recently shown to be critical for cellular responses to oxidative and mitochondrial stresses, as well as its potential role in neurodegenerative diseases and brain health. These unique features of Q provide an interesting insight into the regulation of mRNA translation by gut bacteria, and the potential health implications. In this review, Q biology is examined in the light of recent literature and nearly 4 decades of research. Q's role in neuropsychiatric diseases and cancer is highlighted and discussed. Given the recent interest in Q, and the new findings, more research is needed to fully comprehend its biological function and disease relevance, especially in neurobiology.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Neurosurgical Engineering and Translational NeuroscienceGraduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| |
Collapse
|
3
|
Li B, Liu F, Chen X, Chen T, Zhang J, Liu Y, Yao Y, Hu W, Zhang M, Wang B, Liu L, Chen K, Wu Y. FARS2 Deficiency Causes Cardiomyopathy by Disrupting Mitochondrial Homeostasis and the Mitochondrial Quality Control System. Circulation 2024; 149:1268-1284. [PMID: 38362779 PMCID: PMC11017836 DOI: 10.1161/circulationaha.123.064489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/13/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a common heritable heart disease. Although HCM has been reported to be associated with many variants of genes involved in sarcomeric protein biomechanics, pathogenic genes have not been identified in patients with partial HCM. FARS2 (the mitochondrial phenylalanyl-tRNA synthetase), a type of mitochondrial aminoacyl-tRNA synthetase, plays a role in the mitochondrial translation machinery. Several variants of FARS2 have been suggested to cause neurological disorders; however, FARS2-associated diseases involving other organs have not been reported. We identified FARS2 as a potential novel pathogenic gene in cardiomyopathy and investigated its effects on mitochondrial homeostasis and the cardiomyopathy phenotype. METHODS FARS2 variants in patients with HCM were identified using whole-exome sequencing, Sanger sequencing, molecular docking analyses, and cell model investigation. Fars2 conditional mutant (p.R415L) or knockout mice, fars2-knockdown zebrafish, and Fars2-knockdown neonatal rat ventricular myocytes were engineered to construct FARS2 deficiency models both in vivo and in vitro. The effects of FARS2 and its role in mitochondrial homeostasis were subsequently evaluated using RNA sequencing and mitochondrial functional analyses. Myocardial tissues from patients were used for further verification. RESULTS We identified 7 unreported FARS2 variants in patients with HCM. Heart-specific Fars2-deficient mice presented cardiac hypertrophy, left ventricular dilation, progressive heart failure accompanied by myocardial and mitochondrial dysfunction, and a short life span. Heterozygous cardiac-specific Fars2R415L mice displayed a tendency to cardiac hypertrophy at age 4 weeks, accompanied by myocardial dysfunction. In addition, fars2-knockdown zebrafish presented pericardial edema and heart failure. FARS2 deficiency impaired mitochondrial homeostasis by directly blocking the aminoacylation of mt-tRNAPhe and inhibiting the synthesis of mitochondrial proteins, ultimately contributing to an imbalanced mitochondrial quality control system by accelerating mitochondrial hyperfragmentation and disrupting mitochondrion-related autophagy. Interfering with the mitochondrial quality control system using adeno-associated virus 9 or specific inhibitors mitigated the cardiac and mitochondrial dysfunction triggered by FARS2 deficiency by restoring mitochondrial homeostasis. CONCLUSIONS Our findings unveil the previously unrecognized role of FARS2 in heart and mitochondrial homeostasis. This study may provide new insights into the molecular diagnosis and prevention of heritable cardiomyopathy as well as therapeutic options for FARS2-associated cardiomyopathy.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biochemistry and Molecular Biology, Shaanxi Provincial Key Laboratory of Clinical Genetics (B.L., X.C., T.C., J.Z., Y.L., Y.Y., W.H., M.Z., Y.W.), Air Force Medical University, Xi’an, China
| | - Fangfang Liu
- Department of Neurobiology (F.L.), Air Force Medical University, Xi’an, China
| | - Xihui Chen
- Department of Biochemistry and Molecular Biology, Shaanxi Provincial Key Laboratory of Clinical Genetics (B.L., X.C., T.C., J.Z., Y.L., Y.Y., W.H., M.Z., Y.W.), Air Force Medical University, Xi’an, China
| | - Tangdong Chen
- Department of Biochemistry and Molecular Biology, Shaanxi Provincial Key Laboratory of Clinical Genetics (B.L., X.C., T.C., J.Z., Y.L., Y.Y., W.H., M.Z., Y.W.), Air Force Medical University, Xi’an, China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, Shaanxi Provincial Key Laboratory of Clinical Genetics (B.L., X.C., T.C., J.Z., Y.L., Y.Y., W.H., M.Z., Y.W.), Air Force Medical University, Xi’an, China
| | - Yifeng Liu
- Department of Biochemistry and Molecular Biology, Shaanxi Provincial Key Laboratory of Clinical Genetics (B.L., X.C., T.C., J.Z., Y.L., Y.Y., W.H., M.Z., Y.W.), Air Force Medical University, Xi’an, China
| | - Yan Yao
- Department of Biochemistry and Molecular Biology, Shaanxi Provincial Key Laboratory of Clinical Genetics (B.L., X.C., T.C., J.Z., Y.L., Y.Y., W.H., M.Z., Y.W.), Air Force Medical University, Xi’an, China
| | - Weihong Hu
- Department of Biochemistry and Molecular Biology, Shaanxi Provincial Key Laboratory of Clinical Genetics (B.L., X.C., T.C., J.Z., Y.L., Y.Y., W.H., M.Z., Y.W.), Air Force Medical University, Xi’an, China
| | - Mengjie Zhang
- Department of Biochemistry and Molecular Biology, Shaanxi Provincial Key Laboratory of Clinical Genetics (B.L., X.C., T.C., J.Z., Y.L., Y.Y., W.H., M.Z., Y.W.), Air Force Medical University, Xi’an, China
| | - Bo Wang
- School of Basic Medicine, Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital (B.W., L.L.), Air Force Medical University, Xi’an, China
| | - Liwen Liu
- School of Basic Medicine, Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital (B.W., L.L.), Air Force Medical University, Xi’an, China
| | - Kun Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Center (K.C.), Air Force Medical University, Xi’an, China
| | - Yuanming Wu
- Department of Biochemistry and Molecular Biology, Shaanxi Provincial Key Laboratory of Clinical Genetics (B.L., X.C., T.C., J.Z., Y.L., Y.Y., W.H., M.Z., Y.W.), Air Force Medical University, Xi’an, China
- Department of Clinical Laboratory, Tangdu Hospital (Y.W.), Air Force Medical University, Xi’an, China
| |
Collapse
|
4
|
Rashad S, Al-Mesitef S, Mousa A, Zhou Y, Ando D, Sun G, Fukuuchi T, Iwasaki Y, Xiang J, Byrne SR, Sun J, Maekawa M, Saigusa D, Begley TJ, Dedon PC, Niizuma K. Translational response to mitochondrial stresses is orchestrated by tRNA modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580389. [PMID: 38405984 PMCID: PMC10888749 DOI: 10.1101/2024.02.14.580389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Mitochondrial stress and dysfunction play important roles in many pathologies. However, how cells respond to mitochondrial stress is not fully understood. Here, we examined the translational response to electron transport chain (ETC) inhibition and arsenite induced mitochondrial stresses. Our analysis revealed that during mitochondrial stress, tRNA modifications (namely f5C, hm5C, queuosine and its derivatives, and mcm5U) dynamically change to fine tune codon decoding, usage, and optimality. These changes in codon optimality drive the translation of many pathways and gene sets, such as the ATF4 pathway and selenoproteins, involved in the cellular response to mitochondrial stress. We further examined several of these modifications using targeted approaches. ALKBH1 knockout (KO) abrogated f5C and hm5C levels and led to mitochondrial dysfunction, reduced proliferation, and impacted mRNA translation rates. Our analysis revealed that tRNA queuosine (tRNA-Q) is a master regulator of the mitochondrial stress response. KO of QTRT1 or QTRT2, the enzymes responsible for tRNA-Q synthesis, led to mitochondrial dysfunction, translational dysregulation, and metabolic alterations in mitochondria-related pathways, without altering cellular proliferation. In addition, our analysis revealed that tRNA-Q loss led to a domino effect on various tRNA modifications. Some of these changes could be explained by metabolic profiling. Our analysis also revealed that utilizing serum deprivation or alteration with Queuine supplementation to study tRNA-Q or stress response can introduce various confounding factors by altering many other tRNA modifications. In summary, our data show that tRNA modifications are master regulators of the mitochondrial stress response by driving changes in codon decoding.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shadi Al-Mesitef
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Abdulrahman Mousa
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuan Zhou
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daisuke Ando
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, Tohoku university Graduate school of Medicine, Sendai, Japan
| | - Guangxin Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
| | - Tomoko Fukuuchi
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yuko Iwasaki
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Jingdong Xiang
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
| | - Shane R Byrne
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
- Codomax Inc, 17 Briden St STE 219, Worcester, MA 01605
| | - Jingjing Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Campus for Research Excellence and Technological Enterprise, Singapore
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Thomas J Begley
- Department of Biological Sciences, University at Albany, Albany, NY, USA
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Campus for Research Excellence and Technological Enterprise, Singapore
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
5
|
Taurine protects R28 cells from hypoxia/re-oxygenation-induced damage via regulation of mitochondrial energy metabolism. Amino Acids 2022; 54:1585-1599. [PMID: 36056163 DOI: 10.1007/s00726-022-03199-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
Oxidative-induced damage and hypoxia/re-oxygenation (H/R) injury are common causes of irreversible visual impairment. The goals of this study were to explore the effects of taurine on R28 cells under the two damage models and the underlying mechanisms. Low doses of taurine supplementation promoted cell viability, mitochondrial membrane potential (MMP), SOD levels, ATP contents and attenuated cytotoxicity and intracellular ROS generation of the R28 cells under the two kinds of damage. The expression level of GTPBP3, a mitochondrial-tRNA (mt-tRNA) modification enzyme that catalyzes the taurine involved modification, was decreased under the two damage and taurine could reverse the reduction. After knocking down GTPBP3, the R28 cells become vulnerable to damage. The viability, cytotoxicity, MMP and intracellular ROS level of knockdown cells changed more obviously under the H/R injury than those of control cell. We also found that knockdown of GTPBP3 significantly decreased mitochondrial energy metabolism by measuring the oxidative respiration rate by the Seahorse XFe24 extracellular flux analyzer. The protection of low doses of taurine disappeared on knockdown R28 cells, indicating that GTPBP3 is crucial in the protection mechanisms of taurine. However, the impacts of the reduction of GTPBP3 level can be reversed by relatively high doses of taurine, implying the protection effects of taurine were dose-dependent, and there were more complicated mechanisms remain to be explored. This study explored a new mechanism of the neuroprotective effects of taurine, which depend on the GTPBP3-mediated taurine modification of mt-tRNAs and the promotion of mitochondrial energy metabolism.
Collapse
|
6
|
Cahill T, Cope H, Bass JJ, Overbey EG, Gilbert R, da Silveira WA, Paul AM, Mishra T, Herranz R, Reinsch SS, Costes SV, Hardiman G, Szewczyk NJ, Tahimic CGT. Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight. Int J Mol Sci 2021; 22:ijms22179470. [PMID: 34502375 PMCID: PMC8430797 DOI: 10.3390/ijms22179470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bioinformatics approaches have proven useful in understanding biological responses to spaceflight. Spaceflight experiments remain resource intensive and rare. One outstanding issue is how to maximize scientific output from a limited number of omics datasets from traditional animal models including nematodes, fruitfly, and rodents. The utility of omics data from invertebrate models in anticipating mammalian responses to spaceflight has not been fully explored. Hence, we performed comparative analyses of transcriptomes of soleus and extensor digitorum longus (EDL) in mice that underwent 37 days of spaceflight. Results indicate shared stress responses and altered circadian rhythm. EDL showed more robust growth signals and Pde2a downregulation, possibly underlying its resistance to atrophy versus soleus. Spaceflight and hindlimb unloading mice shared differential regulation of proliferation, circadian, and neuronal signaling. Shared gene regulation in muscles of humans on bedrest and space flown rodents suggest targets for mitigating muscle atrophy in space and on Earth. Spaceflight responses of C. elegans were more similar to EDL. Discrete life stages of D. melanogaster have distinct utility in anticipating EDL and soleus responses. In summary, spaceflight leads to shared and discrete molecular responses between muscle types and invertebrate models may augment mechanistic knowledge gained from rodent spaceflight and ground-based studies.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
| | - Henry Cope
- Nottingham Biomedical Research Centre (BRC), School of Computer Science, University of Nottingham, Nottingham NG7 2QL, UK;
| | - Joseph J. Bass
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham NG7 2QL, UK; (J.J.B.); (N.J.S.)
| | - Eliah G. Overbey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Rachel Gilbert
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Universities Space Research Association, Columbia, MD 21046, USA
| | - Willian Abraham da Silveira
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
- Department of Biological Sciences, School of Life Sciences and Education, Staffordshire University, Stoke-on-Trent ST4 2DF, UK
| | - Amber M. Paul
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Tejaswini Mishra
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA 94305, USA;
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas–CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Sigrid S. Reinsch
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
| | - Sylvain V. Costes
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
| | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathaniel J. Szewczyk
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham NG7 2QL, UK; (J.J.B.); (N.J.S.)
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Candice G. T. Tahimic
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
- Correspondence:
| |
Collapse
|
7
|
Xiao C, Liu S, Wang H, Ding Y, Chen Y, Liu H. Genetic etiology study of four Chinese families with two nonsyndromic deaf children in succession by targeted next-generation sequencing. Mol Genet Genomic Med 2021; 9:e1634. [PMID: 33638616 PMCID: PMC8123758 DOI: 10.1002/mgg3.1634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/09/2020] [Accepted: 02/10/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Genetic components contribute significantly to the cause of hearing loss. Nonsyndromic hearing loss has been shown to have high genetic heterogeneity. For families who had given birth to two nonsyndromic deaf children in succession, it seems that their deafness was highly related to genetics. OBJECTIVES This study aimed to disclose the genetic causes of the subjects from the four Chinese families with two nonsyndromic deaf children in succession who failed to find the genetic etiology of the hearing loss by common deafness genetic screening (GJB2, GJB3, SLC26A4, and MT-RNR1, including 20 hot variants in 4 genes). METHODS Targeted next-generation sequencing (NGS) of 127 known deafness genes was performed in probands of four families, followed by a series of comprehensive analyses of all family members combined with a literature review of related genes. RESULTS We identified pathogenic variants in three families including c.919-2A>G/c.1985G>A in SLC26A4; c.109G>A (p.V37I) in GJB2; and m.7505T>C in MT-TS1. Sanger sequencing confirmed that these variants segregated with the hearing impairment of each family. We also identified c.331C>T/c.625-5C>T/c.5717G>A in CDH23; c.138T>C in POU3F4 in two families, in which the pathogenicity in clinical was likely pathogenic or unknown. CONCLUSIONS Using the NGS detection technology, we found the genetic etiology of the HL in part of deaf families. Our study provided a useful piece of information for the variant spectrum of hearing loss in Chinese families with two deaf children in succession.
Collapse
Affiliation(s)
- Caixia Xiao
- Tianjin Women and Children Healthcare CenterTianjinChina
| | - Shuang Liu
- Tianjin Women and Children Healthcare CenterTianjinChina
| | - Hongyue Wang
- Tianjin Women and Children Healthcare CenterTianjinChina
| | - Yibing Ding
- Tianjin Women and Children Healthcare CenterTianjinChina
| | - Yaqiu Chen
- Tianjin Women and Children Healthcare CenterTianjinChina
| | - Haiyan Liu
- Tianjin Women and Children Healthcare CenterTianjinChina
| |
Collapse
|
8
|
Abstract
Mitochondrial dysfunction has been suggested to be a risk factor for sensorineural hearing loss (SNHL) induced by aging, noise, ototoxic drugs, and gene. Reactive oxygen species (ROS) are mainly derived from mitochondria, and oxidative stress induced by ROS contributes to cochlear damage as well as mitochondrial DNA mutations, which may enhance the sensitivity and severity of hearing loss and disrupt ion homeostasis (e.g., Ca2+ homeostasis). The formation and accumulation of ROS further undermine mitochondrial components and ultimately lead to apoptosis and necrosis. SIRT3–5, located in mitochondria, belong to the family of sirtuins, which are highly conserved deacetylases dependent on nicotinamide adenine dinucleotide (NAD+). These deacetylases regulate diverse cellular biochemical activities. Recent studies have revealed that mitochondrial sirtuins, especially SIRT3, modulate ROS levels in hearing loss pathologies. Although the precise functions of SIRT4 and SIRT5 in the cochlea remain unclear, the molecular mechanisms in other tissues indicate a potential protective effect against hearing loss. In this review, we summarize the current knowledge regarding the role of mitochondrial dysfunction in hearing loss, discuss possible functional links between mitochondrial sirtuins and SNHL, and propose a perspective that SIRT3–5 have a positive effect on SNHL.
Collapse
|
9
|
Ramachandra CJA, Chua J, Cong S, Kp MMJ, Shim W, Wu JC, Hausenloy DJ. Human-induced pluripotent stem cells for modelling metabolic perturbations and impaired bioenergetics underlying cardiomyopathies. Cardiovasc Res 2020; 117:694-711. [PMID: 32365198 DOI: 10.1093/cvr/cvaa125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
Normal cardiac contractile and relaxation functions are critically dependent on a continuous energy supply. Accordingly, metabolic perturbations and impaired mitochondrial bioenergetics with subsequent disruption of ATP production underpin a wide variety of cardiac diseases, including diabetic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, anthracycline cardiomyopathy, peripartum cardiomyopathy, and mitochondrial cardiomyopathies. Crucially, there are no specific treatments for preventing the onset or progression of these cardiomyopathies to heart failure, one of the leading causes of death and disability worldwide. Therefore, new treatments are needed to target the metabolic disturbances and impaired mitochondrial bioenergetics underlying these cardiomyopathies in order to improve health outcomes in these patients. However, investigation of the underlying mechanisms and the identification of novel therapeutic targets have been hampered by the lack of appropriate animal disease models. Furthermore, interspecies variation precludes the use of animal models for studying certain disorders, whereas patient-derived primary cell lines have limited lifespan and availability. Fortunately, the discovery of human-induced pluripotent stem cells has provided a promising tool for modelling cardiomyopathies via human heart tissue in a dish. In this review article, we highlight the use of patient-derived iPSCs for studying the pathogenesis underlying cardiomyopathies associated with metabolic perturbations and impaired mitochondrial bioenergetics, as the ability of iPSCs for self-renewal and differentiation makes them an ideal platform for investigating disease pathogenesis in a controlled in vitro environment. Continuing progress will help elucidate novel mechanistic pathways, and discover novel therapies for preventing the onset and progression of heart failure, thereby advancing a new era of personalized therapeutics for improving health outcomes in patients with cardiomyopathy.
Collapse
Affiliation(s)
- Chrishan J A Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jasper Chua
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Faculty of Science, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Shuo Cong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Myu Mai Ja Kp
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Winston Shim
- Health and Social Sciences Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Joseph C Wu
- Cardiovascular Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Medicine, Stanford University, Stanford, CA 94305, USA.,Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.,Yong Loo Lin Medical School, National University of Singapore, 10 Medical Drive, Singapore 11759, Singapore.,The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, Bloomsbury, London WC1E 6HX, UK.,Cardiovascular Research Centre, College of Medical and Health Sciences, Asia University, No. 500, Liufeng Road, Wufeng District, Taichung City 41354,Taiwan
| |
Collapse
|
10
|
Sato K, Rashad S, Niizuma K, Tominaga T. Stress Induced tRNA Halves (tiRNAs) as Biomarkers for Stroke and Stroke Therapy; Pre-clinical Study. Neuroscience 2020; 434:44-54. [DOI: 10.1016/j.neuroscience.2020.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 01/10/2023]
|
11
|
Zheng J, Bai X, Xiao Y, Ji Y, Meng F, Aishanjiang M, Gao Y, Wang H, Fu Y, Guan MX. Mitochondrial tRNA mutations in 887 Chinese subjects with hearing loss. Mitochondrion 2020; 52:163-172. [PMID: 32169613 DOI: 10.1016/j.mito.2020.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/13/2020] [Accepted: 03/09/2020] [Indexed: 01/24/2023]
Abstract
Mutations in the mitochondrial tRNAs have been reported to be the important cause of hearing loss. However, only a few cases have been identified thus far and the prevalence of mitochondrial tRNA mutations in hearing-impaired patients remain unclear. Here we performed the mutational analysis of 22 mitochondrial tRNA genes in a large cohort of 887 Han Chinese subjects with hearing loss by Sanger sequencing. The systemic evaluation of putative pathogenic variants was further carried out by frequency in controls (<1%), phylogenetic analysis, structural analysisandfunctionalprediction. As a result, a total of 147 variants on 22 tRNA genes were identified. Among these, 39 tRNA mutations (10 pathogenic and 29 likely pathogenic) which absent or present <1% in 773 Chinese controls, localized at highly conserved nucleotides, or changed the modified nucleotides, could have potential structural alterations and functional significance, thereby considered to be deafness-associated mutations. Furthermore, 44 subjects carried one of these 39 pathogenic/likely pathogenic tRNA mutations with a total prevalence of 4.96%. However, the phenotypic variability and incomplete penetrance of hearing loss in pedigrees carrying these tRNA mutations indicate the involvement of modifier factors, such as nuclear encoded genes associated with mitochondrion biogenesis, mitochondrial haplotypes, epigenetic and environmental factors. Thus, our data provide the evidence that mitochondrial tRNA mutations are the important causes of hearing loss among Chinese population. These findings further increase our knowledge on the clinical relevance of tRNA mutations in the mitochondrial genome, and should be helpful to elucidate the pathogenesis of maternal hearing loss.
Collapse
Affiliation(s)
- Jing Zheng
- Division of Medical Genetics and Genomics, and Department of Genetic and Metabolic Diseases, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Bai
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250022, China
| | - Yun Xiao
- Division of Medical Genetics and Genomics, and Department of Genetic and Metabolic Diseases, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250022, China
| | - Yanchun Ji
- Division of Medical Genetics and Genomics, and Department of Genetic and Metabolic Diseases, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Feilong Meng
- Division of Medical Genetics and Genomics, and Department of Genetic and Metabolic Diseases, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Maerhaba Aishanjiang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yinglong Gao
- Division of Medical Genetics and Genomics, and Department of Genetic and Metabolic Diseases, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Haibo Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250022, China.
| | - Yong Fu
- Division of Medical Genetics and Genomics, and Department of Genetic and Metabolic Diseases, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Department of Otorhinolaryngology Head and Neck Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China.
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, and Department of Genetic and Metabolic Diseases, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
12
|
Abstract
Over the past decades, tRNA was found to be a rich hub of RNA modifications such as 1-methyladenosine and 5-methycytosine modifications and others, holding more than half of all modifications occurring in RNA molecules. Moreover, tRNA was discovered to be a source of various small noncoding RNA species, such as the stress induced angiogenin cleaved tRNA halves (tiRNA) or the miRNA like tRNA derived fragments. tRNA cleavage under stress was fist discovered in bacteria and later was found to be conserved across different species, including mammals. Under cellular stress conditions, tRNA undergoes conformational changes and angiogenin cleaves it into 3' and 5' halves. 5'tiRNA halves were shown to repress protein translations. tRNA cleavage is thought of to be a cytoprotective mechanism by which cells evade apoptosis, however some data hints to the opposite; that tiRNA are cytotoxic or at least related to apoptosis initiation. tRNA cleavage also was shown to be affected by tRNA modifications via different enzymes in the cytosol and mitochondria. In this review, we will highlight the biology of tRNA cleavage, show the evidence of it being cytoprotective or a marker of cell death and shed a light on its role in disease models and human diseases as well as possible future directions in this field of RNA research.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgery; Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgery; Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine; Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
13
|
Chen D, Zhang Z, Chen C, Yao S, Yang Q, Li F, He X, Ai C, Wang M, Guan MX. Deletion of Gtpbp3 in zebrafish revealed the hypertrophic cardiomyopathy manifested by aberrant mitochondrial tRNA metabolism. Nucleic Acids Res 2019; 47:5341-5355. [PMID: 30916346 PMCID: PMC6547414 DOI: 10.1093/nar/gkz218] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022] Open
Abstract
GTPBP3 is a highly conserved tRNA modifying enzyme for the biosynthesis of τm5U at the wobble position of mitochondrial tRNAGlu, tRNAGln, tRNALys, tRNATrp and tRNALeu(UUR). The previous investigations showed that GTPBP3 mutations were associated with hypertrophic cardiomyopathy (HCM). However, the pathophysiology of GTPBP3 deficiency remains elusively. Using the gtpbp3 knockout zebrafish generated by CRISPR/Cas9 system, we demonstrated the aberrant mitochondrial tRNA metabolism in gtpbp3 knock-out zebrafish. The deletion of gtpbp3 may alter functional folding of tRNA, indicated by conformation changes and sensitivity to S1-mediated digestion of tRNAGlu, tRNALys, tRNATrp and tRNALeu(UUR). Strikingly, gtpbp3 knock-out zebrafish displayed the global increases in the aminoacylated efficiencies of mitochondrial tRNAs. The aberrant mitochondrial tRNA metabolisms impaired mitochondrial translation, produced proteostasis stress and altered activities of respiratory chain complexes. These mitochondria dysfunctions caused the alterations in the embryonic heart development and reduced fractional shortening of ventricles in mutant zebrafish. Notably, the gtpbp3 knock-out zebrafish exhibited hypertrophy of cardiomyocytes and myocardial fiber disarray in ventricles. These cardiac defects in the gtpbp3 knock-out zebrafish recapitulated the clinical phenotypes in HCM patients carrying the GTPBP3 mutation(s). Our findings highlight the fundamental role of defective nucleotide modifications of tRNAs in mitochondrial biogenesis and their pathological consequences in hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Danni Chen
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zengming Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chao Chen
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shihao Yao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qingxian Yang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Feng Li
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiao He
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Cheng Ai
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Meng Wang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
14
|
Asano K, Suzuki T, Saito A, Wei FY, Ikeuchi Y, Numata T, Tanaka R, Yamane Y, Yamamoto T, Goto T, Kishita Y, Murayama K, Ohtake A, Okazaki Y, Tomizawa K, Sakaguchi Y, Suzuki T. Metabolic and chemical regulation of tRNA modification associated with taurine deficiency and human disease. Nucleic Acids Res 2019; 46:1565-1583. [PMID: 29390138 PMCID: PMC5829720 DOI: 10.1093/nar/gky068] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/23/2018] [Indexed: 12/21/2022] Open
Abstract
Modified uridine containing taurine, 5-taurinomethyluridine (τm5U), is found at the anticodon first position of mitochondrial (mt-)transfer RNAs (tRNAs). Previously, we reported that τm5U is absent in mt-tRNAs with pathogenic mutations associated with mitochondrial diseases. However, biogenesis and physiological role of τm5U remained elusive. Here, we elucidated τm5U biogenesis by confirming that 5,10-methylene-tetrahydrofolate and taurine are metabolic substrates for τm5U formation catalyzed by MTO1 and GTPBP3. GTPBP3-knockout cells exhibited respiratory defects and reduced mitochondrial translation. Very little τm5U34 was detected in patient's cells with the GTPBP3 mutation, demonstrating that lack of τm5U results in pathological consequences. Taurine starvation resulted in downregulation of τm5U frequency in cultured cells and animal tissues (cat liver and flatfish). Strikingly, 5-carboxymethylaminomethyluridine (cmnm5U), in which the taurine moiety of τm5U is replaced with glycine, was detected in mt-tRNAs from taurine-depleted cells. These results indicate that tRNA modifications are dynamically regulated via sensing of intracellular metabolites under physiological condition.
Collapse
Affiliation(s)
- Kana Asano
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takeo Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ayaka Saito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Tomoyuki Numata
- Biological Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Ryou Tanaka
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Animal Medical Center, Fuchu, Tokyo 183-8509, Japan
| | - Yoshihisa Yamane
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Animal Medical Center, Fuchu, Tokyo 183-8509, Japan
| | - Takeshi Yamamoto
- Tamaki Laboratory, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Tamaki, Mie 519-0423, Japan
| | - Takanobu Goto
- Department of Chemistry & Biochemistry, National Institute of Technology, Numazu College, Numazu, Shizuoka 410-8501, Japan
| | - Yoshihito Kishita
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1240, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Midori-ku, Chiba 266-0007, Japan
| | - Akira Ohtake
- Department of Pediatrics, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Yasushi Okazaki
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1240, Japan.,Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1240, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
15
|
Lyu Y, Xu M, Chen J, Ji Y, Guan MX, Zhang J. Frequency and spectrum of MT-TT variants associated with Leber's hereditary optic neuropathy in a Chinese cohort of subjects. MITOCHONDRIAL DNA PART B-RESOURCES 2019; 4:2266-2280. [PMID: 33365504 PMCID: PMC7687527 DOI: 10.1080/23802359.2019.1627921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Leber’s hereditary optic neuropathy (LHON) is a maternally inherited eye disease. In our previous investigations, we have reported the spectrum and frequency of mitochondrial MT-ND1, MT-ND4 and MT-ND6 gene in Chinese LHON population. This study aimed to assess the molecular epidemiology of MT-TT mutations in Chinese families with LHON. A cohort of 352 Chinese Han probands lacking the known LHON-associated mtDNA mutations and 376 control subjects underwent molecular analysis of mtDNA. All variants were evaluated for evolutionary conservation, structural and functional consequences. Fifteen variants were identified in the MT-TT gene by mitochondrial genome analysis of LHON pedigrees, which was substantially higher than that of individuals from general Chinese populations. The incidences of the two known LHON-associated mutations, m.15927G > A and m.15951A > G, were 2.27% and 1.14%, respectively. Nine putative LHON-associated variants were identified in 20 probands, translated into 2.1% cases of this cohort. Moreover, mtDNAs in 41 probands carrying the MT-TT mutation(s) were widely dispersed among nine Eastern Asian haplogroups. Our results suggest that the MT-TT gene is a mutational hotspot for these 352 Chinese families lacking the known LHON-associated mutations. These data further showed the molecular epidemiology of MT-TT mutations in Chinese Han LHON pedigrees.
Collapse
Affiliation(s)
- Yuanyuan Lyu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Laboratory Medicine and Life Sciences, Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Man Xu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Laboratory Medicine and Life Sciences, Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Chen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Laboratory Medicine and Life Sciences, Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - YanChun Ji
- School of Medicine, Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- School of Laboratory Medicine and Life Sciences, Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Medicine, Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Juanjuan Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Laboratory Medicine and Life Sciences, Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
16
|
Zhang Q, Zhang L, Chen D, He X, Yao S, Zhang Z, Chen Y, Guan MX. Deletion of Mtu1 (Trmu) in zebrafish revealed the essential role of tRNA modification in mitochondrial biogenesis and hearing function. Nucleic Acids Res 2018; 46:10930-10945. [PMID: 30137487 PMCID: PMC6237746 DOI: 10.1093/nar/gky758] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 11/14/2022] Open
Abstract
Mtu1(Trmu) is a highly conserved tRNA modifying enzyme responsible for the biosynthesis of τm5s2U at the wobble position of tRNAGln, tRNAGlu and tRNALys. Our previous investigations showed that MTU1 mutation modulated the phenotypic manifestation of deafness-associated mitochondrial 12S rRNA mutation. However, the pathophysiology of MTU1 deficiency remains poorly understood. Using the mtu1 knock-out zebrafish generated by CRISPR/Cas9 system, we demonstrated the abolished 2-thiouridine modification of U34 of mitochondrial tRNALys, tRNAGlu and tRNAGln in the mtu1 knock-out zebrafish. The elimination of this post-transcriptional modification mediated mitochondrial tRNA metabolisms, causing the global decreases in the levels of mitochondrial tRNAs. The aberrant mitochondrial tRNA metabolisms led to the impairment of mitochondrial translation, respiratory deficiencies and reductions of mitochondrial ATP production. These mitochondria dysfunctions caused the defects in hearing organs. Strikingly, mtu1-/- mutant zebrafish displayed the abnormal startle response and swimming behaviors, significant decreases in the sizes of saccular otolith and numbers of hair cells in the auditory and vestibular organs. Furthermore, mtu1-/- mutant zebrafish exhibited the significant reductions in the hair bundle densities in utricle, saccule and lagena. Therefore, our findings may provide new insights into the pathophysiology of deafness, which was manifested by the deficient modifications at wobble position of mitochondrial tRNAs.
Collapse
Affiliation(s)
- Qinghai Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Luwen Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Danni Chen
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiao He
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shihao Yao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zengming Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ye Chen
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
17
|
Xue L, Chen Y, Tang X, Yao J, Huang H, Wang M, Ye S, Wang M, Guan MX. A deafness-associated mitochondrial DNA mutation altered the tRNA Ser(UCN) metabolism and mitochondrial function. Mitochondrion 2018; 46:370-379. [PMID: 30336267 DOI: 10.1016/j.mito.2018.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/09/2018] [Accepted: 10/08/2018] [Indexed: 11/28/2022]
Abstract
Mutations in mitochondrial DNA (mtDNA) have been associated with deafness and their pathophysiology remains poorly understood. In this study, we investigated the pathogenic mechanism of deafness-associated 7505A > G variant in the mitochondrial tRNASer(UCN). The m.7505A > G variant affected the highly conserved adenine at position 11 (A11), disrupted the highly conserved A11-U24 base-pairing of DHU stem of tRNASer(UCN) and introduced a tertiary base pairing (G11-C56) with the C56 in the TΨC loop. We therefore hypothesized that the m.7505A > G variant altered both structure and function of tRNASer(UCN). We demonstrated that the m.7505A > G variant perturbed the conformation and stability of tRNASer(UCN), as indicated by an increased melting temperature and electrophoretic mobility of the mutated tRNA compared with the wild type molecule. Using the cybrids constructed by transferring mitochondria from the Chinese family into mitochondrial DNA (mtDNA)-less cells, we demonstrated the m.7505A > G variant led to significantly decreased steady-state levels of tRNASer(UCN) in the mutant cybrids, as compared with those of control cybrids. The aberrant tRNASer(UCN) metabolism resulted in the variable decreases in mtDNA-encoded polypeptides in the mutant cybrids. Furthermore, we demonstrated that the m.7505A > G variant decreased the activities of mitochondrial respiratory complexes I, III and IV, markedly diminished mitochondrial ATP levels and membrane potential, and increased the production of reactive oxygen species in the mutant cybrids. These results demonstrated that the m.7505A > G variant affected both structure and function of tRNASer(UCN) and consequently altered mitochondrial function. Our findings highlighted critical insights into the pathophysiology of maternally inherited deafness, which is manifested by the aberrant tRNA metabolism.
Collapse
Affiliation(s)
- Ling Xue
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Yaru Chen
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang 325035, China; Institute of Genetics, Zhejiang University School of Medicine, Zhejiang, Hangzhou 310058, China; Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Xiaowen Tang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Juan Yao
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Huimin Huang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Min Wang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Shixin Ye
- Laboratory of Computational and Quantitative Biology, Université Pierre-et-Marie-Curie, CNRS, Paris, France
| | - Meng Wang
- Institute of Genetics, Zhejiang University School of Medicine, Zhejiang, Hangzhou 310058, China; Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Min-Xin Guan
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang 325035, China; Institute of Genetics, Zhejiang University School of Medicine, Zhejiang, Hangzhou 310058, China; Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China; Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, China; Joint Institute of Genetics and Genomic Medicine, University of Toronto, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Zhou M, Xue L, Chen Y, Li H, He Q, Wang B, Meng F, Wang M, Guan MX. A hypertension-associated mitochondrial DNA mutation introduces an m 1G37 modification into tRNA Met, altering its structure and function. J Biol Chem 2017; 293:1425-1438. [PMID: 29222331 DOI: 10.1074/jbc.ra117.000317] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/13/2017] [Indexed: 12/20/2022] Open
Abstract
Defective nucleotide modifications of mitochondrial tRNAs have been associated with several human diseases, but their pathophysiology remains poorly understood. In this report, we investigated the pathogenic molecular mechanism underlying a hypertension-associated 4435A→G mutation in mitochondrial tRNAMet The m.4435A→G mutation affected a highly conserved adenosine at position 37, 3' adjacent to the tRNA's anticodon, which is important for the fidelity of codon recognition and stabilization. We hypothesized that the m.4435A→G mutation introduced an m1G37 modification of tRNAMet, altering its structure and function. Primer extension and methylation activity assays indeed confirmed that the m.4435A→G mutation created a tRNA methyltransferase 5 (TRMT5)-catalyzed m1G37 modification of tRNAMet We found that this mutation altered the tRNAMet structure, indicated by an increased melting temperature and electrophoretic mobility of the mutated tRNA compared with the wildtype molecule. We demonstrated that cybrid cell lines carrying the m.4435A→G mutation exhibited significantly decreased efficiency in aminoacylation and steady-state levels of tRNAMet, as compared with those of control cybrids. The aberrant tRNAMet metabolism resulted in variable decreases in mitochondrial DNA (mtDNA)-encoded polypeptides in the mutant cybrids. Furthermore, we found that the m.4435A→G mutation caused respiratory deficiency, markedly diminished mitochondrial ATP levels and membrane potential, and increased the production of reactive oxygen species in mutant cybrids. These results demonstrated that an aberrant m1G37 modification of mitochondrial tRNAMet affected the structure and function of its tRNA and consequently altered mitochondrial function. Our findings provide critical insights into the pathophysiology of maternally inherited hypertension, which is manifested by the deficient tRNA nucleotide modification.
Collapse
Affiliation(s)
- Mi Zhou
- From the Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China
| | - Ling Xue
- the Attardi Institute of Mitochondrial Biomedicine and
| | - Yaru Chen
- the Attardi Institute of Mitochondrial Biomedicine and
| | - Haiying Li
- the Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Qiufen He
- the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China
| | - Bibin Wang
- the Attardi Institute of Mitochondrial Biomedicine and
| | - Feilong Meng
- From the Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China
| | - Meng Wang
- From the Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China
| | - Min-Xin Guan
- From the Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China, .,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China.,the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310058 Zhejiang, China, and.,the Joining Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, 310058 Zhejiang, China
| |
Collapse
|
19
|
Zhou M, Wang M, Xue L, Lin Z, He Q, Shi W, Chen Y, Jin X, Li H, Jiang P, Guan MX. A hypertension-associated mitochondrial DNA mutation alters the tertiary interaction and function of tRNA Leu(UUR). J Biol Chem 2017; 292:13934-13946. [PMID: 28679533 DOI: 10.1074/jbc.m117.787028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/03/2017] [Indexed: 01/10/2023] Open
Abstract
Several mitochondrial tRNA mutations have been associated with hypertension, but their pathophysiology remains poorly understood. In this report, we identified a novel homoplasmic 3253T→C mutation in the mitochondrial tRNALeu(UUR) gene in a Han Chinese family with maternally inherited hypertension. The m.3253T→C mutation affected a highly conserved uridine at position 22 at the D-stem of tRNALeu(UUR), introducing a G-C base pairing (G13-C22) at the D-stem and a tertiary base pairing (C22-G46) between the D-stem and the variable loop. We therefore hypothesized that the m.3253T→C mutation altered both the structure and function of tRNALeu(UUR) Using cytoplasmic hybrid (cybrid) cell lines derived from this Chinese family, we demonstrated that the m.3253T→C mutation perturbed the conformation and stability of tRNALeu(UUR), as suggested by faster electrophoretic mobility of mutated tRNA relative to the wild-type molecule. Northern blot analysis revealed an ∼45% decrease in the steady-state level of tRNALeu(UUR) in the mutant cell lines carrying the m.3253T→C mutation, as compared with control cell lines. Moreover, an ∼35% reduction in aminoacylation efficiency of tRNALeu(UUR) was observed in the m.3253T→C mutant cells. These alterations in tRNALeu(UUR) metabolism impaired mitochondrial translation, especially for those polypeptides with a high proportion of Leu(UUR) codons, such as ND6. Furthermore, we demonstrated that the m.3253T→C mutation decreased the activities of mitochondrial complexes I and V, markedly diminished mitochondrial ATP levels and membrane potential, and increased the production of reactive oxygen species in the cells. In conclusion, our findings may provide new insights into the pathophysiology of maternally inherited hypertension.
Collapse
Affiliation(s)
- Mi Zhou
- From the Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China,; Institute of Genetics and Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Meng Wang
- From the Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China,; Institute of Genetics and Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ling Xue
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou 325600, Zhejiang, China
| | - Zhi Lin
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou 325600, Zhejiang, China
| | - Qiufen He
- Institute of Genetics and Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wenwen Shi
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou 325600, Zhejiang, China
| | - Yaru Chen
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou 325600, Zhejiang, China
| | - Xiaofen Jin
- Institute of Genetics and Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Haiying Li
- Department of Cardiology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325600, Zhejiang, China
| | - Pingping Jiang
- From the Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China,; Institute of Genetics and Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Min-Xin Guan
- From the Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China,; Institute of Genetics and Zhejiang University, Hangzhou 310058, Zhejiang, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, Zhejiang, China,; Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
20
|
Xu G, Li Z, Xiao J, Li F, Ye W, Zhao H, Zhou Q, Zhong X. Expression pattern and functional analysis of fundc1 in rare minnow (Gobiocypris rarus). Gene 2017; 626:149-157. [PMID: 28495578 DOI: 10.1016/j.gene.2017.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/15/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
Fundc1 is a mitochondrial outer membrane protein and plays important roles in mitochondria fission and hypoxia-induced mitophagy in mammalian cells. However, there is no relevant report of fundc1 in fish. In the present study, we cloned a 942bp fundc1 cDNA from rare minnow. The cDNA, designated as Grfundc1 cDNA, contains an open reading frame (ORF) of 459bp which encodes a polypeptide of 152 amino acid residues. Comparisons of deduced amino acid sequences demonstrated that Grfundc1 was highly homologous with those of other vertebrates. RT-PCR and real time PCR detection revealed that the transcripts of Grfundc1 were not detectable in the unfertilized eggs and had high levels at blastula and gastrula stages. Whole mount in situ hybridization analysis observed that Grfundc1 was ubiquitously expressed at early stage and later riched in specific regions, such as brain, branchial arch, eye and somite during embryogenesis. Grfundc1 was expressed in all the tissues of rare minnow adult, including brain, liver, gill, eyes, heart, kidney, intestine, muscle, testis and ovary. The expression of Grfundc1 in the brain, gill, heart and eye of rare minnow adult was significantly down-regulated by hypoxia. Similar hypoxic response was observed in the rare minnow embryos at 48hpf following hypoxia exposure. Functional analysis showed that knockdown of Grfundc1 significantly caused defects in the body axis and dorsal neural tissues of rare minnow embryos. These results indicate that Grfundc1 may play important roles in embryogenesis in fish.
Collapse
Affiliation(s)
- Gongyu Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Zhenzhen Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Jinwen Xiao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Fangqing Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Weiyuan Ye
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Haobin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Qingchun Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Xueping Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
21
|
Xue L, Wang M, Li H, Wang H, Jiang F, Hou L, Geng J, Lin Z, Peng Y, Zhou H, Yu H, Jiang P, Mo JQ, Guan MX. Mitochondrial tRNA mutations in 2070 Chinese Han subjects with hypertension. Mitochondrion 2016; 30:208-21. [PMID: 27544295 DOI: 10.1016/j.mito.2016.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/21/2016] [Accepted: 08/16/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Mitochondria have the profound impact on vascular function in both health and disease. However, mitochondrial genetic determinants for the development of hypertension remain poorly explored. METHODS AND RESULTS The Sanger sequence analysis of 22 mitochondrial tRNA genes were performed in a cohort of 2070 Han Chinese hypertensive and 512 control subjects. This analysis identified 165 variants among 22 tRNA genes. These variants were evaluated for the pathogenicity using the following criteria: (1) present in <1% of the controls; (2) evolutional conservation; (3) potential structural and functional alterations. We identified 47 (5 known and 42 novel/putative) hypertension-associated tRNA variants in 80 hypertensive subjects. These variants could have potential structural alterations and functional significance of tRNAs. By using lymphoblastoid cell lines derived from 6 probands carrying one of 6 represented variants (tRNA(Ala) 5655T>C, tRNA(Gly) 10003T>C, tRNA(Leu(UUR)) 3253T>C, tRNA(Asp) 7551A>G, tRNA(Glu) 14692A>G, tRNA(Thr) 15909A>G) and 6 control subjects lacking these variants, we showed marked reductions in the steady-state level of corresponding 5 tRNAs, but not tRNA(Thr), in mutant cell lines, compared with control cells lines. The various decreases in the activities of complexes I, III and IV were observed in mutant cells carrying one of five tRNA variants, except tRNA(Thr) 15909A>G variant. The deficient respirations were responsible for the decrease in the mitochondrial ATP production and increasing production of reactive oxygen species in mutant cell lines carrying one of five tRNA variants. CONCLUSION Mitochondrial tRNA variants are the important causes of hypertension, accounting for 3.9% cases of 2070 Han Chinese hypertensive subjects. Our findings may provide new insights into the pathophysiology of hypertension that were manifested by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ling Xue
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Meng Wang
- Institute of Genetics, Zhejiang University, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiying Li
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Heng Wang
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feng Jiang
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingling Hou
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junwei Geng
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhi Lin
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanyan Peng
- Institute of Genetics, Zhejiang University, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hong Zhou
- Institute of Genetics, Zhejiang University, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Han Yu
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pingping Jiang
- Institute of Genetics, Zhejiang University, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Qin Mo
- Department of Pathology, Rady Children's Hospital, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Min-Xin Guan
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Genetics, Zhejiang University, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Joining Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China.
| |
Collapse
|
22
|
Wang M, Peng Y, Zheng J, Zheng B, Jin X, Liu H, Wang Y, Tang X, Huang T, Jiang P, Guan MX. A deafness-associated tRNAAsp mutation alters the m1G37 modification, aminoacylation and stability of tRNAAsp and mitochondrial function. Nucleic Acids Res 2016; 44:10974-10985. [PMID: 27536005 PMCID: PMC5159531 DOI: 10.1093/nar/gkw726] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 08/05/2016] [Indexed: 02/04/2023] Open
Abstract
In this report, we investigated the pathogenic mechanism underlying the deafness-associated mitochondrial(mt) tRNAAsp 7551A > G mutation. The m.7551A > G mutation is localized at a highly conserved nucleotide(A37), adjacent (3′) to the anticodon, which is important for the fidelity of codon recognition and stabilization in functional tRNAs. It was anticipated that the m.7551A > G mutation altered the structure and function of mt-tRNAAsp. The primer extension assay demonstrated that the m.7551A > G mutation created the m1G37 modification of mt-tRNAAsp. Using cybrid cell lines generated by transferring mitochondria from lymphoblastoid cell lines derived from a Chinese family into mitochondrial DNA(mtDNA)-less (ρo) cells, we demonstrated the significant decreases in the efficiency of aminoacylation and steady-state level of mt-tRNAAsp in mutant cybrids, compared with control cybrids. A failure in metabolism of mt-tRNAAsp caused the variable reductions in mtDNA-encoded polypeptides in mutant cybrids. Impaired mitochondrial translation led to the respiratory phenotype in mutant cybrids. The respiratory deficiency lowed mitochondrial adenosine triphosphate production and increased the production of oxidative reactive species in mutant cybrids. Our data demonstrated that mitochondrial dysfunctions caused by the m.7551A > G mutation are associated with deafness. Our findings may provide new insights into the pathophysiology of maternally transmitted deafness that was manifested by altered nucleotide modification of mitochondrial tRNA.
Collapse
Affiliation(s)
- Meng Wang
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yanyan Peng
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jing Zheng
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Binjiao Zheng
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Xiaofen Jin
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Hao Liu
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yong Wang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaowen Tang
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Pingping Jiang
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China .,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China .,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
23
|
Wang M, Liu H, Zheng J, Chen B, Zhou M, Fan W, Wang H, Liang X, Zhou X, Eriani G, Jiang P, Guan MX. A Deafness- and Diabetes-associated tRNA Mutation Causes Deficient Pseudouridinylation at Position 55 in tRNAGlu and Mitochondrial Dysfunction. J Biol Chem 2016; 291:21029-21041. [PMID: 27519417 DOI: 10.1074/jbc.m116.739482] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Indexed: 02/03/2023] Open
Abstract
Several mitochondrial tRNA mutations have been associated with maternally inherited diabetes and deafness. However, the pathophysiology of these tRNA mutations remains poorly understood. In this report, we identified the novel homoplasmic 14692A→G mutation in the mitochondrial tRNAGlu gene among three Han Chinese families with maternally inherited diabetes and deafness. The m.14692A→G mutation affected a highly conserved uridine at position 55 of the TΨC loop of tRNAGlu The uridine is modified to pseudouridine (Ψ55), which plays an important role in the structure and function of this tRNA. Using lymphoblastoid cell lines derived from a Chinese family, we demonstrated that the m.14692A→G mutation caused loss of Ψ55 modification and increased angiogenin-mediated endonucleolytic cleavage in mutant tRNAGlu The destabilization of base-pairing (18A-Ψ55) caused by the m.14692A→G mutation perturbed the conformation and stability of tRNAGlu An approximately 65% decrease in the steady-state level of tRNAGlu was observed in mutant cells compared with control cells. A failure in tRNAGlu metabolism impaired mitochondrial translation, especially for polypeptides with a high proportion of glutamic acid codons such as ND1, ND6, and CO2 in mutant cells. An impairment of mitochondrial translation caused defective respiratory capacity, especially reducing the activities of complexes I and IV. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These mitochondrial dysfunctions caused an increasing production of reactive oxygen species in the mutant cells. Our findings may provide new insights into the pathophysiology of maternally inherited diabetes and deafness, which is primarily manifested by the deficient nucleotide modification of mitochondrial tRNAGlu.
Collapse
Affiliation(s)
- Meng Wang
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Hao Liu
- the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Jing Zheng
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Bobei Chen
- the Department of Otolaryngology, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035, the Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Mi Zhou
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Wenlu Fan
- the Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Hen Wang
- the Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Xiaoyang Liang
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Xiaolong Zhou
- the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China 200031, and
| | - Gilbert Eriani
- the Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg, France
| | - Pingping Jiang
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Min-Xin Guan
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and Joining Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, Zhejiang, China 310058,
| |
Collapse
|