1
|
Jones IC, Carnagarin R, Armstrong J, Lin DPL, Baxter-Holland M, Elahy M, Dass CR. Pigment Epithelium-Derived Factor: Inhibition of Phosphorylation of Insulin Receptor (IR)/IR Substrate (IRS), Osteogeneration from Adipocytes, and Increased Levels Due to Doxorubicin Exposure. Pharmaceutics 2023; 15:1960. [PMID: 37514146 PMCID: PMC10384968 DOI: 10.3390/pharmaceutics15071960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVES Pigment epithelium-derived factor (PEDF) has been recently linked to insulin resistance and is capable of differentiating myocytes to bone. We examined in more detail the intricate signalling of the insulin pathway influenced by PEDF in skeletal myocytes. We tested whether this serpin is also capable of generating de novo bone from adipocytes in vitro and in vivo, and how the anticancer drug doxorubicin links with PEDF and cellular metabolism. METHODS AND KEY FINDINGS We demonstrate that PEDF can inhibit phosphorylation of insulin receptor (IR) and insulin receptor substrate (IRS) in skeletal myocytes. PEDF constitutively activates p42/44 MAPK/Erk, but paradoxically does not affect mitogenic signalling. PEDF did not perturb either mitochondrial activity or proliferation in cells representing mesenchymal stem cells, cardiomyocytes, and skeletal myocytes and adipocytes. PEDF induced transdifferentiation of adipocytes to osteoblasts, promoting bone formation in cultured adipocytes in vitro and gelfoam fatpad implants in vivo. Bone formation in white adipose tissue (WAT) was better than in brown adipose tissue (BAT). The frontline anticancer drug doxorubicin increased levels of PEDF in a human breast cancer cell line, mirroring the in vivo finding where cardiac muscle tissue was stained increasingly for PEDF as the dose of doxorubicin increased in mice. PEDF also increased levels of reactive oxygen species (ROS) and glutathione (GSH) in the breast cancer cell line. CONCLUSIONS PEDF may be used to regenerate bone from adipose tissue in cases of trauma such as fractures or bone cancers. The increased presence of PEDF in doxorubicin-treated tumour cells need further exploration, and could be useful therapeutically in future. The safety of PEDF administration in vivo was further demonstrated in this study.
Collapse
Affiliation(s)
- Isobel C Jones
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
- School of Medicine, University of Notre Dame, Fremantle, WA 6160, Australia
| | - Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, University of Western Australia, Perth, WA 6009, Australia
- School of Pharmacy, Curtin University, Bentley, WA 6102, Australia
| | - Jo Armstrong
- School of Pharmacy, Curtin University, Bentley, WA 6102, Australia
| | - Daphne P L Lin
- School of Pharmacy, Curtin University, Bentley, WA 6102, Australia
| | - Mia Baxter-Holland
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Mina Elahy
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
- School of Pharmacy, Curtin University, Bentley, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
2
|
Rajesh R, Atallah R, Bärnthaler T. Dysregulation of metabolic pathways in pulmonary fibrosis. Pharmacol Ther 2023; 246:108436. [PMID: 37150402 DOI: 10.1016/j.pharmthera.2023.108436] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disorder of unknown origin and the most common interstitial lung disease. It progresses with the recruitment of fibroblasts and myofibroblasts that contribute to the accumulation of extracellular matrix (ECM) proteins, leading to the loss of compliance and alveolar integrity, compromising the gas exchange capacity of the lung. Moreover, while there are therapeutics available, they do not offer a cure. Thus, there is a pressing need to identify better therapeutic targets. With the advent of transcriptomics, proteomics, and metabolomics, the cellular mechanisms underlying disease progression are better understood. Metabolic homeostasis is one such factor and its dysregulation has been shown to impact the outcome of IPF. Several metabolic pathways involved in the metabolism of lipids, protein and carbohydrates have been implicated in IPF. While metabolites are crucial for the generation of energy, it is now appreciated that metabolites have several non-metabolic roles in regulating cellular processes such as proliferation, signaling, and death among several other functions. Through this review, we succinctly elucidate the role of several metabolic pathways in IPF. Moreover, we also discuss potential therapeutics which target metabolism or metabolic pathways.
Collapse
Affiliation(s)
- Rishi Rajesh
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Reham Atallah
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Thomas Bärnthaler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
3
|
Pecchillo Cimmino T, Ammendola R, Cattaneo F, Esposito G. NOX Dependent ROS Generation and Cell Metabolism. Int J Mol Sci 2023; 24:ijms24032086. [PMID: 36768405 PMCID: PMC9916913 DOI: 10.3390/ijms24032086] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen species (ROS) represent a group of high reactive molecules with dualistic natures since they can induce cytotoxicity or regulate cellular physiology. Among the ROS, the superoxide anion radical (O2·-) is a key redox signaling molecule prominently generated by the NADPH oxidase (NOX) enzyme family and by the mitochondrial electron transport chain. Notably, altered redox balance and deregulated redox signaling are recognized hallmarks of cancer and are involved in malignant progression and resistance to drugs treatment. Since oxidative stress and metabolism of cancer cells are strictly intertwined, in this review, we focus on the emerging roles of NOX enzymes as important modulators of metabolic reprogramming in cancer. The NOX family includes seven isoforms with different activation mechanisms, widely expressed in several tissues. In particular, we dissect the contribute of NOX1, NOX2, and NOX4 enzymes in the modulation of cellular metabolism and highlight their potential role as a new therapeutic target for tumor metabolism rewiring.
Collapse
Affiliation(s)
- Tiziana Pecchillo Cimmino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
- Correspondence: (F.C.); (G.E.)
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore S.c.a.r.l., 80131 Naples, Italy
- Correspondence: (F.C.); (G.E.)
| |
Collapse
|
4
|
Low S, Pek S, Moh A, Ang K, Khoo J, Shao YM, Tang WE, Lim Z, Subramaniam T, Sum CF, Lim SC. Triglyceride-glucose index is prospectively associated with chronic kidney disease progression in Type 2 diabetes - mediation by pigment epithelium-derived factor. Diab Vasc Dis Res 2022; 19:14791641221113784. [PMID: 35938490 PMCID: PMC9364218 DOI: 10.1177/14791641221113784] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Triglyceride-glucose (TyG) index is a surrogate marker of insulin resistance. Its role in chronic kidney disease (CKD) progression in Type 2 Diabetes Mellitus (T2DM) is unclear. We investigated the association between TyG index and CKD progression, and possible mediation of the association by pigment epithelium-derived factor (PEDF). METHODS This was a prospective study on 1571 patients with T2DM. CKD progression was defined as worsening across KDIGO estimated glomerular filtration rate (eGFR) categories with ≥25% reduction from baseline. PEDF was quantitated using enzyme-linked immunosorbent assay method. Cox proportional hazards regression model was used to assess the relationship between TyG index and CKD progression. RESULTS Over a follow-up period of up to 8.6 years (median 4.6 years, IQR 3.0-3.6), 42.7% of subjects had CKD progression. Every unit increase in TyG was associated with hazards of 1.44 (95%CI 1.29-1.61; p < 0.001) in unadjusted analysis and 1.21 (1.06-1.37; p = 0.004) in fully adjusted model. Compared to tertile 1, tertiles 2 and 3 TyG index were positively associated with CKD progression with corresponding hazard ratios HRs 1.24 (1.01-1.52; p = 0.037) and 1.37 (1.11-1.68; p = 0.003) in fully adjusted models. PEDF accounted for 36.0% of relationship between TyG index and CKD progression. CONCLUSIONS Higher TyG index independently predicted CKD progression in T2DM. PEDF mediated the association between TyG index and CKD progression.
Collapse
Affiliation(s)
- Serena Low
- Diabetes Centre, Admiralty Medical
Centre, Singapore
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological
University, Singapore
| | - Sharon Pek
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Angela Moh
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Jonathon Khoo
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Yi-Ming Shao
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Wern E Tang
- National Healthcare Group
Polyclinics, Singapore
| | - Ziliang Lim
- National Healthcare Group
Polyclinics, Singapore
| | | | - Chee F Sum
- Diabetes Centre, Admiralty Medical
Centre, Singapore
| | - Su C Lim
- Diabetes Centre, Admiralty Medical
Centre, Singapore
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological
University, Singapore
- Saw Swee Hock School of Public
Health, National University of
Singapore, Singapore
- Su C Lim, Diabetes Centre, Admiralty
Medical Centre, 676 Woodlands Drive 71, #03-01 Kampung Admiralty, Singapore
730676.
| |
Collapse
|
5
|
Xing Z, Li S, Liu Z, Zhang C, Bai Z. CircSERPINA3 regulates SERPINA3-mediated apoptosis, autophagy and aerobic glycolysis of prostate cancer cells by competitively binding to MiR-653-5p and recruiting BUD13. J Transl Med 2021; 19:492. [PMID: 34861864 PMCID: PMC8642898 DOI: 10.1186/s12967-021-03063-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) belongs to an epithelial malignancy that occurs in the prostate gland and is the most common malignancy of the male genitourinary system. Referring to related literature, circSERPINA3 has been reported to be up-regulated in PCa. However, its biological function remains unclear. PURPOSE This study aimed to reveal the specific role and relevant molecular mechanism of circSERPINA3 in PCa. METHODS RT-qPCR was used to examine gene expression and functional analyses were conducted to verify the effect of circSERPINA3 on cell apoptosis, autophagy and aerobic glycolysis in PCa cells. Mechanism assays were applied to evaluate the relationship among circSERPINA3/miR-653-5p/SERPINA3/BUD13. RESULTS CircSERPINA3 was verified to be up-regulated in PCa cells and to inhibit cell apoptosis while promoting aerobic glycolysis and autophagy in PCa cells. CircSERPINA3 and SERPINA3 were also testified to bind to miR-653-5p through a line of mechanism experiments. Moreover, it was discovered that circSERPINA3 could stabilize SERPINA3 mRNA via recruiting BUD13. Additionally, SERPINA3 was verified to inhibit cell apoptosis, while promoting aerobic glycolysis and autophagy in PCa cells. CONCLUSIONS Our study suggested that circSERPINA3 regulated apoptosis, autophagy and aerobic glycolysis of PCa cells by competitively binding to miR-653-5p and recruiting BUD13.
Collapse
Affiliation(s)
- Zengshu Xing
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Road, Meilan District, Haikou, 570208, Hainan, China.
| | - Sailian Li
- Department of Gastroenterology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No.43 Renmin Road, Meilan District, Haikou, 570208, Hainan, China
| | - Zhenxiang Liu
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Road, Meilan District, Haikou, 570208, Hainan, China
| | - Chong Zhang
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Road, Meilan District, Haikou, 570208, Hainan, China
| | - Zhiming Bai
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Road, Meilan District, Haikou, 570208, Hainan, China
| |
Collapse
|
6
|
Su X, Cheng Y, Zhang G, Wang B. Novel insights into the pathological mechanisms of metabolic related dyslipidemia. Mol Biol Rep 2021; 48:5675-5687. [PMID: 34218408 DOI: 10.1007/s11033-021-06529-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/27/2021] [Indexed: 12/21/2022]
Abstract
Due to the technological advances, it has been well-established that obesity is strongly correlated with various health problems. Among these problems, dyslipidemia is one of the most important concomitant symptoms under obese status which is the main driving force behind the pathological progression of cardio-metabolic disorder diseases. Importantly, the type of dyslipidemia, arising from concerted action of obesity, has been identified as "metabolic related dyslipidemia", which is characterized by increased circulating levels of Low density lipoprotein cholesterol (LDL-C), Triglycerides (TG) accompanied by lower circulating levels of High density lipoprotein cholesterol (HDL-C). On the other hand, the metabolic related dyslipidemia is being verified as a vital link between obesity and hypertension, diabetes mellitus, and Cardiovascular disease (CVD). In this review, we summarized the current understanding of metabolic related dyslipidemia and the potential mechanisms which lead to the pathogenesis of obesity. Meanwhile, we also summarized the emerging results which focused on several novel lipid bio-markers in metabolic related dyslipidemia, such as pro-protein convertase subtilisin/kexin type 9 (PCSK9) and sphingosine-1-phosphate (S1P), and their potential use as biomarkers of metabolic related dyslipidemia.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China
| | - Ye Cheng
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China
| | - Guoming Zhang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China.
| | - Bin Wang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China.
| |
Collapse
|
7
|
Su X, Chen X, Wang B. Pathology of metabolically-related dyslipidemia. Clin Chim Acta 2021; 521:107-115. [PMID: 34192528 DOI: 10.1016/j.cca.2021.06.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/29/2022]
Abstract
It is well established that overweight/obesity is closely associated with multiple health problems. Among these, dyslipidemia is the most important and main driving force behind pathologic development of cardio-metabolic disorders such as diabetes mellitus, atherosclerotic-related cardiovascular disease and hypertension. Notably, a subtype of dyslipidemia, metabolic related dyslipidemia, is now recognized as a vital link between obesity and multiple different cardiovascular diseases. This condition is characterized by increased low density lipoprotein cholesterol (LDL-C) and triglyceride (TG) and very low density lipoprotein cholesterol (VLDL-C) as well as decreased high density lipoprotein cholesterol (HDL-C) in serum. In this review, we summarize the current understanding of metabolic related dyslipidemia and the potential mechanisms which lead to the pathogenesis of obesity/overweight. We focus on several novel lipid biomarkers such as pro-protein convertase subtilisin/kexin type 9 (PCSK9) and sphingosine-1-phosphate (S1P) and their potential use as biomarkers of metabolic related dyslipidemia.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiang Chen
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Bin Wang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
8
|
Lee H, Jose PA. Coordinated Contribution of NADPH Oxidase- and Mitochondria-Derived Reactive Oxygen Species in Metabolic Syndrome and Its Implication in Renal Dysfunction. Front Pharmacol 2021; 12:670076. [PMID: 34017260 PMCID: PMC8129499 DOI: 10.3389/fphar.2021.670076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MetS), a complex of interrelated risk factors for cardiovascular disease and diabetes, is comprised of central obesity (increased waist circumference), hyperglycemia, dyslipidemia (high triglyceride blood levels, low high-density lipoprotein blood levels), and increased blood pressure. Oxidative stress, caused by the imbalance between pro-oxidant and endogenous antioxidant systems, is the primary pathological basis of MetS. The major sources of reactive oxygen species (ROS) associated with MetS are nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases and mitochondria. In this review, we summarize the current knowledge regarding the generation of ROS from NADPH oxidases and mitochondria, discuss the NADPH oxidase- and mitochondria-derived ROS signaling and pathophysiological effects, and the interplay between these two major sources of ROS, which leads to chronic inflammation, adipocyte proliferation, insulin resistance, and other metabolic abnormalities. The mechanisms linking MetS and chronic kidney disease are not well known. The role of NADPH oxidases and mitochondria in renal injury in the setting of MetS, particularly the influence of the pyruvate dehydrogenase complex in oxidative stress, inflammation, and subsequent renal injury, is highlighted. Understanding the molecular mechanism(s) underlying MetS may lead to novel therapeutic approaches by targeting the pyruvate dehydrogenase complex in MetS and prevent its sequelae of chronic cardiovascular and renal diseases.
Collapse
Affiliation(s)
- Hewang Lee
- Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Pedro A Jose
- Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
9
|
Low S, Pek S, Moh A, Khin CYA, Lim CL, Ang SF, Wang J, Ang K, Tang WE, Lim Z, Subramaniam T, Sum CF, Lim SC. Low muscle mass is associated with progression of chronic kidney disease and albuminuria - An 8-year longitudinal study in Asians with Type 2 Diabetes. Diabetes Res Clin Pract 2021; 174:108777. [PMID: 33745995 DOI: 10.1016/j.diabres.2021.108777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
AIMS We examined the longitudinal relationship between baseline skeletal muscle mass and its change over time with eGFR decline and albuminuria progression among Asians with type 2 diabetes(T2D). METHODS This was a prospective cohort study of 1272 T2D patients. Skeletal muscle mass was estimated using tetra-polar multi-frequency bio-impedance analysis and Skeletal Muscle Mass Index(SMI) was defined as skeletal muscle mass/weight * 100. RESULTS After up to 8 years of follow-up, 33.3% of participants had CKD progression and 28.3% albuminuria progression. Every 1-SD above baseline SMI was associated with 18% lower risk of CKD progression[Hazards Ratio(HR)0.82; 95%CI 0.70-0.97; p = 0.018] and 17% lower risk of albuminuria progression [HR 0.83 (95%CI 0.71-0.97; p = 0.017)]. The largest decrease in SMI over time was associated with 67% higher risk of CKD progression, compared to those with the smallest change from baseline SMI tertile 2[HR 1.67 (95%CI 1.10-2.55); p = 0.016]. Pigment epithelium-derived factor(PEDF) and plasma leucine-rich α-2-glycoprotein (LRG1) accounted for 40.1% of the association between SMI and CKD progression. CONCLUSIONS Low baseline skeletal muscle mass and its reduction over time is associated with increased risk of progression of CKD among Asians with T2D. PEDF and LRG1 mediated the inverse relationship between SMI and CKD progression.
Collapse
Affiliation(s)
- Serena Low
- Diabetes Centre, Admiralty Medical Centre, Singapore, Block 676, Level 4, Kampung Admiralty, Woodlands Drive 71, Singapore 730676, Singapore; Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 90 Yishun Central, Singapore 768828, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Sharon Pek
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 90 Yishun Central, Singapore 768828, Singapore
| | - Angela Moh
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 90 Yishun Central, Singapore 768828, Singapore
| | - Chaw Yu Aung Khin
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 90 Yishun Central, Singapore 768828, Singapore
| | - Chin Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Su Fen Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 90 Yishun Central, Singapore 768828, Singapore
| | - Jiexun Wang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 90 Yishun Central, Singapore 768828, Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 90 Yishun Central, Singapore 768828, Singapore
| | - Wern Ee Tang
- National Healthcare Group Polyclinics, Singapore, 3 Fusionopolis Link, Nexus@one-north, South Tower, Singapore 138543, Singapore
| | - Ziliang Lim
- National Healthcare Group Polyclinics, Singapore, 3 Fusionopolis Link, Nexus@one-north, South Tower, Singapore 138543, Singapore
| | - Tavintharan Subramaniam
- Diabetes Centre, Admiralty Medical Centre, Singapore, Block 676, Level 4, Kampung Admiralty, Woodlands Drive 71, Singapore 730676, Singapore
| | - Chee Fang Sum
- Diabetes Centre, Admiralty Medical Centre, Singapore, Block 676, Level 4, Kampung Admiralty, Woodlands Drive 71, Singapore 730676, Singapore
| | - Su Chi Lim
- Diabetes Centre, Admiralty Medical Centre, Singapore, Block 676, Level 4, Kampung Admiralty, Woodlands Drive 71, Singapore 730676, Singapore; Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 90 Yishun Central, Singapore 768828, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, #10-01, Singapore 117549, Singapore.
| |
Collapse
|
10
|
Su X, Peng D. Emerging functions of adipokines in linking the development of obesity and cardiovascular diseases. Mol Biol Rep 2020; 47:7991-8006. [PMID: 32888125 DOI: 10.1007/s11033-020-05732-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
Increasing evidence shows that obesity is the critical factor in shaping cardio-metabolic phenotypes. However, the pathogenic mechanisms remain incompletely clarified. According to the published reports, adipose tissue communicates with several diverse organs, such as heart, lungs, and kidneys through the secretion of various cytokines named adipokines. The adipocytes isolated from obese mice or humans are dysfunctional with aberrant production of pro-inflammatory adipokines, which subsequently induce both acute and chronic inflammatory reaction and facilitate the process of cardio-metabolic disorder complications. Furthermore, the microenvironment within adipose tissue under obese status also influence the secretion of adipokines. Recently, given that several important adipokines have been completely researched and causally involved in various diseases, we could make a conclusion that adipokines play an essential role in modulating the development of cardio-metabolic disorder diseases, whereas several novel adipokines continue to be explored and elucidated. In the present review, we summarized the current knowledge of the microenvironment of adipose tissue and the published mechanisms whereby adipocytes affects obesity and cardiovascular diseases. On the other hand, we also provide the evidence to elucidate the functions of adipokines in controlling and regulating the inflammatory reactions which contribute to obesity and cardiovascular disease.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China.,Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
11
|
Su X, Peng D. Adipokines as novel biomarkers of cardio-metabolic disorders. Clin Chim Acta 2020; 507:31-38. [PMID: 32283064 DOI: 10.1016/j.cca.2020.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/16/2022]
|
12
|
Wei Y, Elahy M, Friedhuber AM, Wong JY, Hughes JD, Doschak MR, Dass CR. Triple-threat activity of PEDF in bone tumors: Tumor inhibition, tissue preservation and cardioprotection against doxorubicin. Bone 2019; 124:103-117. [PMID: 31028961 DOI: 10.1016/j.bone.2019.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is known for its osteogenic properties, but its effects against primary and secondary bone tumors have not comprehensively been demonstrated. We show the ubiquitous expression of PEDF in murine embryonic tissue. Continuous administration of PEDF in pregnant mice for five days did not adversely affect foetal health, despite PEDF's known potent antiangiogenic properties. In the case of the devastating childhood bone cancer osteosarcoma, PEDF has direct anticancer activity per se, and protects against the toxicity of doxorubicin in the heart, small intestine and testes. PEDF demonstrated anti-proliferative and pro-apoptotic effects against human prostate and breast cancer cells, tumors which are known to metastasize to bone as the preferred secondary site. Caspase-2 was activated in both tumor cell types by PEDF. In models of prostate and breast cancer in bone, PEDF significantly reduced tumor volumes. When combined with zoledronic acid, continuously-administered PEDF significantly reduced breast tumor volume at the bone, and was able to preserve the quality of bone better than the combination therapy. These multiple positive findings make PEDF an ideal endogenous and safe biological for possible future clinical testing.
Collapse
Affiliation(s)
- Yongzhong Wei
- Department of Orthopaedics, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Mina Elahy
- School of Medical Sciences, University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| | - Anna M Friedhuber
- Department of Pathology, University of Melbourne, Parkville, Melbourne, VIC 3050, Australia
| | - Jia Y Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Jeffery D Hughes
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Michael R Doschak
- Department of Biomedical Engineering, University of Alberta, Alberta T6G 2E1, Canada; Department of Dentistry, University of Alberta, Alberta T6G 2E1, Canada
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Perth, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; College of Health and Biomedicine, Victoria University, St Albans, Melbourne, VIC 3021, Australia.
| |
Collapse
|
13
|
Carnagarin R, Elahy M, Dharmarajan AM, Dass CR. Insulin antagonises pigment epithelium-derived factor (PEDF)-induced modulation of lineage commitment of myocytes and heterotrophic ossification. Mol Cell Endocrinol 2018; 472:159-166. [PMID: 29258756 DOI: 10.1016/j.mce.2017.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/07/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022]
Abstract
Extensive bone defects arising as a result of trauma, infection and tumour resection and other bone pathologies necessitates the identification of effective strategies in the form of tissue engineering, gene therapy and osteoinductive agents to enhance the bone repair process. PEDF is a multifunctional glycoprotein which plays an important role in regulating osteoblastic differentiation and bone formation. PEDF treatment of mice and human skeletal myocytes at physiological concentration inhibited myogenic differentiation and activated Erk1/2 MAPK- dependent osteogenic transdifferentiation of myocytes. In mice, insulin, a promoter of bone regeneration, attenuated PEDF-induced expression of osteogenic markers such as osteocalcin, alkaline phosphatase and mineralisation for bone formation in the muscle and surrounding adipose tissue. These results provide new insights into the molecular aspects of the antagonising effect of insulin on PEDF-dependent modulation of the differentiation commitment of musculoskeletal environment into osteogenesis, and suggest that PEDF may be developed as an effective clinical therapy for bone regeneration as its heterotopic ossification can be controlled via co-administration of insulin.
Collapse
Affiliation(s)
- Revathy Carnagarin
- Curtin Health Innovation Research Institute, Bentley, 6102, Australia; School of Pharmacy, Curtin University, Bentley, 6102, Australia; School of Biomedical Sciences, Curtin University, Bentley, 6102, Australia; Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin University, Bentley, 6102, Australia
| | - Mina Elahy
- Curtin Health Innovation Research Institute, Bentley, 6102, Australia; School of Biomedical Sciences, Curtin University, Bentley, 6102, Australia
| | - Arun M Dharmarajan
- Curtin Health Innovation Research Institute, Bentley, 6102, Australia; Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin University, Bentley, 6102, Australia
| | - Crispin R Dass
- Curtin Health Innovation Research Institute, Bentley, 6102, Australia; School of Pharmacy, Curtin University, Bentley, 6102, Australia.
| |
Collapse
|