1
|
Kulkarni R, Kumari S, Dhapola R, Sharma P, Singh SK, Medhi B, HariKrishnaReddy D. Association Between the Gut Microbiota and Alzheimer's Disease: An Update on Signaling Pathways and Translational Therapeutics. Mol Neurobiol 2025; 62:4499-4519. [PMID: 39460901 DOI: 10.1007/s12035-024-04545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Alzheimer's disease (AD) is a cognitive disease with high morbidity and mortality. In AD patients, the diversity of the gut microbiota is altered, which influences pathology through the gut-brain axis. Probiotic therapy alleviates pathological and psychological consequences by restoring the diversity of the gut microbial flora. This study addresses the role of altered gut microbiota in the progression of neuroinflammation, which is a major hallmark of AD. This process begins with the activation of glial cells, leading to the release of proinflammatory cytokines and the modulation of cholinergic anti-inflammatory pathways. Short-chain fatty acids, which are bacterial metabolites, provide neuroprotective effects and maintain blood‒brain barrier integrity. Furthermore, the gut microbiota stimulates oxidative stress and mitochondrial dysfunction, which promote AD progression. The signaling pathways involved in gut dysbiosis-mediated neuroinflammation-mediated promotion of AD include cGAS-STING, C/EBPβ/AEP, RAGE, TLR4 Myd88, and the NLRP3 inflammasome. Preclinical studies have shown that natural extracts such as Ganmaidazao extract, isoorentin, camelia oil, Sparassis crispa-1, and xanthocerasides improve gut health and can delay the worsening of AD. Clinical studies using probiotics such as Bifidobacterium spp., yeast beta-glucan, and drugs such as sodium oligomannate and rifaximine have shown improvements in gut health, resulting in the amelioration of AD symptoms. This study incorporates the most current research on the pathophysiology of AD involving the gut microbiota and highlights the knowledge gaps that need to be filled to develop potent therapeutics against AD.
Collapse
Affiliation(s)
- Rutweek Kulkarni
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Sunil K Singh
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India.
| |
Collapse
|
2
|
Croes CA, Noriega DB, Wichers H, Savelkoul HFJ, Ruinemans-Koerts J, Teodorowicz M. Characterization of different stages of Maillard reaction in soy: impact on physicochemical properties and immunogenicity of soy proteins. Food Funct 2025; 16:2577-2588. [PMID: 40042129 DOI: 10.1039/d4fo04400b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
The Maillard reaction (MR, glycation) frequently occurs during processing of soy-based products widely consumed in Western diets. MR leads to the formation of a number of chemically different structures called Maillard reaction products (MRPs), which include early glycation products and advanced glycation end products (AGEs). AGEs/MRPs were shown to modulate the immune response by interaction with specific receptors expressed on immune cells, such as the receptor for advanced glycation end products (RAGE). However, the structure-function relationship of MRPs formed during soy processing in relation to binding to AGE receptors has not been well studied. The aim of the present study is to characterize the MRPs formed during different heating times of soy proteins (SP) with glucose by analyzing the biochemical changes and to relate them to the functional changes, including binding to AGE receptors and stimulating immune cells. Our results demonstrated time-dependent differences in the biochemical characteristics of glycated SP compared with heated SP, which could be attributed to the different stages of MR and the diversity of MRPs. Moreover, the formation of AGEs over time was positively correlated with binding capacity to AGE receptors. Additionally, stimulating peripheral blood adherent monocytes with glycated SP resulted in increased gene expression levels of pro-inflammatory cytokines (IL-1β, IL-8 and TNF-α) when compared to non-glycated SP, suggesting that the formed AGEs bind to and activate receptors, such as RAGE. Our findings highlight the importance of studying immunomodulation upon processing of SP, which may lead to optimisation of the processing conditions of soy based food products.
Collapse
Affiliation(s)
- Cresci-Anne Croes
- Department Cell Biology and Immunology, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | - Daniela Briceno Noriega
- Department Cell Biology and Immunology, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | - Harry Wichers
- Wageningen Food & Biobased Research, Wageningen University and Research Centre, The Netherlands
| | - Huub F J Savelkoul
- Department Cell Biology and Immunology, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | - Janneke Ruinemans-Koerts
- Department Cell Biology and Immunology, Wageningen University and Research Centre, Wageningen, The Netherlands.
- Department of Clinical Chemistry and Hematology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Malgorzata Teodorowicz
- Department Cell Biology and Immunology, Wageningen University and Research Centre, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Croes CACC, Chrysanthou M, Hoppenbrouwers T, Wichers H, Keijer J, Savelkoul HFJ, Teodorowicz M. Diabetic Glycation of Human Serum Albumin Affects Its Immunogenicity. Biomolecules 2024; 14:1492. [PMID: 39766199 PMCID: PMC11673269 DOI: 10.3390/biom14121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Advanced glycation end-products (AGEs) are products of a non-enzymatic reaction between amino acids and reducing sugars. Glycated human serum albumin (HSA) increases in diabetics as a consequence of elevated blood glucose levels and glycating metabolites like methylglyoxal (MGO). The impact of different types of glycation on the immunomodulatory properties of HSA is poorly understood and is studied here. HSA was glycated with D-glucose, MGO, or glyoxylic acid (CML). Glycation-related biochemical changes were characterized using various biochemical methods. The binding of differentially glycated HSA to AGE receptors was determined with inhibition ELISAs, and the impact on inflammatory markers in macrophage cell line THP-1 and adherent monocytes isolated from human peripheral blood mononuclear cells (PBMCs) was studied. All glycation methods led to unique AGE profiles and had a distinct impact on protein structure. Glycation resulted in increased binding of HSA to the AGE receptors, with MGO modification showing the highest binding, followed by glucose and, lastly, CML. Additionally, modification of HSA with MGO led to the increased expression of pro-inflammatory markers in THP-1 macrophages and enhanced phosphorylation of NF-κB p65. The same pattern, although less prominent, was observed for HSA glycated with glucose and CML, respectively. An increase in pro-inflammatory markers was also observed in PBMC-derived monocytes exposed to all glycated forms of HSA, although HSA-CML led to a significantly higher inflammatory response. In conclusion, the type of HSA glycation impacts immune functional readouts with potential relevance for diabetes.
Collapse
Affiliation(s)
- Cresci-Anne C. C. Croes
- Department of Cell Biology and Immunology, Wageningen University and Research Centre, 6700 AH Wageningen, The Netherlands (M.T.)
| | - Marialena Chrysanthou
- Department of Food Quality and Design, Wageningen University and Research Centre, 6708 WG Wageningen, The Netherlands; (M.C.); (T.H.)
- Department of Food Chemistry, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands;
| | - Tamara Hoppenbrouwers
- Department of Food Quality and Design, Wageningen University and Research Centre, 6708 WG Wageningen, The Netherlands; (M.C.); (T.H.)
- Department of Food and Biobased Research, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands
| | - Harry Wichers
- Department of Food Chemistry, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands;
- Department of Food and Biobased Research, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands
| | - Jaap Keijer
- Department of Human and Animal Physiology, Wageningen University and Research Centre, 6700 AH Wageningen, The Netherlands;
| | - Huub F. J. Savelkoul
- Department of Cell Biology and Immunology, Wageningen University and Research Centre, 6700 AH Wageningen, The Netherlands (M.T.)
| | - Malgorzata Teodorowicz
- Department of Cell Biology and Immunology, Wageningen University and Research Centre, 6700 AH Wageningen, The Netherlands (M.T.)
| |
Collapse
|
4
|
Sarkar S, Prasanna VS, Das P, Suzuki H, Fujihara K, Kodama S, Sone H, Sreedhar R, Velayutham R, Watanabe K, Arumugam S. The onset and the development of cardiometabolic aging: an insight into the underlying mechanisms. Front Pharmacol 2024; 15:1447890. [PMID: 39391689 PMCID: PMC11464448 DOI: 10.3389/fphar.2024.1447890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024] Open
Abstract
Metabolic compromise is crucial in aggravating age-associated chronic inflammation, oxidative stress, mitochondrial damage, increased LDL and triglycerides, and elevated blood pressure. Excessive adiposity, hyperglycemia, and insulin resistance due to aging are associated with elevated levels of damaging free radicals, inducing a proinflammatory state and hampering immune cell activity, leading to a malfunctioning cardiometabolic condition. The age-associated oxidative load and redox imbalance are contributing factors for cardiometabolic morbidities via vascular remodelling and endothelial damage. Recent evidence has claimed the importance of gut microbiota in maintaining regular metabolic activity, which declines with chronological aging and cardiometabolic comorbidities. Genetic mutations, polymorphic changes, and environmental factors strongly correlate with increased vulnerability to aberrant cardiometabolic changes by affecting key physiological pathways. Numerous studies have reported a robust link between biological aging and cardiometabolic dysfunction. This review outlines the scientific evidence exploring potential mechanisms behind the onset and development of cardiovascular and metabolic issues, particularly exacerbated with aging.
Collapse
Affiliation(s)
- Sulogna Sarkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| | - Vani S. Prasanna
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| | - Pamelika Das
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| | - Hiroshi Suzuki
- Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuya Fujihara
- Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoru Kodama
- Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Remya Sreedhar
- School of Pharmacy, Sister Nivedita University, Kolkata, West Bengal, India
| | - Ravichandiran Velayutham
- Director, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| | - Kenichi Watanabe
- Department of Laboratory Medicine and Clinical Epidemiology for Prevention of Noncommunicable Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Somasundaram Arumugam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Vitorakis N, Piperi C. Pivotal role of AGE-RAGE axis in brain aging with current interventions. Ageing Res Rev 2024; 100:102429. [PMID: 39032613 DOI: 10.1016/j.arr.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Brain aging is characterized by several structural, biochemical and molecular changes which can vary among different individuals and can be influenced by genetic, environmental and lifestyle factors. Accumulation of protein aggregates, altered neurotransmitter composition, low-grade chronic inflammation and prolonged oxidative stress have been shown to contribute to brain tissue damage. Among key metabolic byproducts, advanced glycation end products (AGEs), formed endogenously through non-enzymatic reactions or acquired directly from the diet or other exogenous sources, have been detected to accumulate in brain tissue, exerting detrimental effects on cellular structure and function, contributing to neurodegeneration and cognitive decline. Upon binding to signal transduction receptor RAGE, AGEs can initiate pro-inflammatory pathways, exacerbate oxidative stress and neuroinflammation, thus impairing neuronal function and cognition. AGE-RAGE signaling induces programmed cell death, disrupts the blood-brain barrier and promotes protein aggregation, further compromising brain health. In this review, we investigate the intricate relationship between the AGE-RAGE pathway and brain aging in order to detect affected molecules and potential targets for intervention. Reduction of AGE deposition in brain tissue either through novel pharmacological therapeutics, dietary modifications, and lifestyle changes, shows a great promise in mitigating cognitive decline associated with brain aging.
Collapse
Affiliation(s)
- Nikolaos Vitorakis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, Athens 11527, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, Athens 11527, Greece.
| |
Collapse
|
6
|
Alfei S, Schito GC, Schito AM, Zuccari G. Reactive Oxygen Species (ROS)-Mediated Antibacterial Oxidative Therapies: Available Methods to Generate ROS and a Novel Option Proposal. Int J Mol Sci 2024; 25:7182. [PMID: 39000290 PMCID: PMC11241369 DOI: 10.3390/ijms25137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The increasing emergence of multidrug-resistant (MDR) pathogens causes difficult-to-treat infections with long-term hospitalizations and a high incidence of death, thus representing a global public health problem. To manage MDR bacteria bugs, new antimicrobial strategies are necessary, and their introduction in practice is a daily challenge for scientists in the field. An extensively studied approach to treating MDR infections consists of inducing high levels of reactive oxygen species (ROS) by several methods. Although further clinical investigations are mandatory on the possible toxic effects of ROS on mammalian cells, clinical evaluations are extremely promising, and their topical use to treat infected wounds and ulcers, also in presence of biofilm, is already clinically approved. Biochar (BC) is a carbonaceous material obtained by pyrolysis of different vegetable and animal biomass feedstocks at 200-1000 °C in the limited presence of O2. Recently, it has been demonstrated that BC's capability of removing organic and inorganic xenobiotics is mainly due to the presence of persistent free radicals (PFRs), which can activate oxygen, H2O2, or persulfate in the presence or absence of transition metals by electron transfer, thus generating ROS, which in turn degrade pollutants by advanced oxidation processes (AOPs). In this context, the antibacterial effects of BC-containing PFRs have been demonstrated by some authors against Escherichia coli and Staphylococcus aureus, thus giving birth to our idea of the possible use of BC-derived PFRs as a novel method capable of inducing ROS generation for antimicrobial oxidative therapy. Here, the general aspects concerning ROS physiological and pathological production and regulation and the mechanism by which they could exert antimicrobial effects have been reviewed. The methods currently adopted to induce ROS production for antimicrobial oxidative therapy have been discussed. Finally, for the first time, BC-related PFRs have been proposed as a new source of ROS for antimicrobial therapy via AOPs.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| | - Gian Carlo Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| |
Collapse
|
7
|
Dello Russo M, Sirangelo I, Lauria F, Formisano A, Iannuzzi C, Hebestreit A, Pala V, Siani A, Russo P. Dietary Advanced Glycation End Products (AGEs) and Urinary Fluorescent AGEs in Children and Adolescents: Findings from the Italian I.Family Project. Nutrients 2024; 16:1831. [PMID: 38931185 PMCID: PMC11206686 DOI: 10.3390/nu16121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Advanced glycation end products (AGEs) have been implicated in chronic diseases in adults, but their role in paediatric populations remains uncertain. This study, conducted on the Italian sample of the I.Family project, aimed to investigate the relationship between dietary and urinary fluorescent AGEs in children and adolescents. The secondary objective was to investigate the sources of dietary AGEs (dAGEs) and their association with dietary composition and anthropometric parameters. Dietary data were collected from 1048 participants via 24 h dietary recall in 2013/2014 to estimate dAGEs intake, while urinary fluorescent AGE levels were measured in 544 individuals. Participants were stratified based on dAGEs intake and compared with respect to urinary fluorescent AGE levels, anthropometric measurements, and dietary intake. The results showed no significant correlation between dietary and urinary fluorescent AGE levels, nor between dAGEs and anthropometric parameters. Notably, higher dAGEs were associated with a diet richer in protein (especially from meat sources) and fat and lower in carbohydrates. In addition, the consumption of ultra-processed foods was lower in participants with a higher DAGE intake. This study highlights the lack of a clear association between dietary and urinary fluorescent AGEs in children, but suggests a distinctive dietary pattern associated with increased dAGEs intake. Further investigation is warranted to elucidate the potential health implications of dAGEs in paediatric populations.
Collapse
Affiliation(s)
- Marika Dello Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (M.D.R.); (A.F.); (A.S.); (P.R.)
| | - Ivana Sirangelo
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (I.S.); (C.I.)
| | - Fabio Lauria
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (M.D.R.); (A.F.); (A.S.); (P.R.)
| | - Annarita Formisano
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (M.D.R.); (A.F.); (A.S.); (P.R.)
| | - Clara Iannuzzi
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (I.S.); (C.I.)
| | - Antje Hebestreit
- Leibniz Institute for Prevention Research and Epidemiology—BIPS, 28359 Bremen, Germany;
| | - Valeria Pala
- Epidemiology and Prevention Unit, Fondazione IRCCS, Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Alfonso Siani
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (M.D.R.); (A.F.); (A.S.); (P.R.)
| | - Paola Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (M.D.R.); (A.F.); (A.S.); (P.R.)
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (I.S.); (C.I.)
| |
Collapse
|
8
|
Mori Y, Terasaki M, Osaka N, Fujikawa T, Yashima H, Saito T, Kataoka Y, Ohara M, Higashimoto Y, Matsui T, Yamagishi SI. DNA Aptamer Raised against Advanced Glycation End Products Improves Sperm Concentration, Motility, and Viability by Suppressing Receptors for Advanced Glycation End Product-Induced Oxidative Stress and Inflammation in the Testes of Diabetic Mice. Int J Mol Sci 2024; 25:5947. [PMID: 38892134 PMCID: PMC11172898 DOI: 10.3390/ijms25115947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a risk factor for male infertility, but the underlying molecular mechanisms remain unclear. Advanced glycation end products (AGEs) are pathogenic molecules for diabetic vascular complications. Here, we investigated the effects of the DNA aptamer raised against AGEs (AGE-Apt) on testicular and sperm abnormalities in a T2DM mouse model. KK-Ay (DM) and wild-type (non-DM) 4- and 7-week-old male mice were sacrificed to collect the testes and spermatozoa for immunofluorescence, RT-PCR, and histological analyses. DM and non-DM 7-week-old mice were subcutaneously infused with the AGE-Apt or control-aptamer for 6 weeks and were then sacrificed. Plasma glucose, testicular AGEs, and Rage gene expression in 4-week-old DM mice and plasma glucose, testicular AGEs, oxidative stress, and pro-inflammatory gene expressions in 7-week-old DM mice were higher than those in age-matched non-DM mice, the latter of which was associated with seminiferous tubular dilation. AGE-Apt did not affect glycemic parameters, but it inhibited seminiferous tubular dilation, reduced the number of testicular macrophages and apoptotic cells, and restored the decrease in sperm concentration, motility, and viability of 13-week-old DM mice. Our findings suggest that AGEs-Apt may improve sperm abnormality by suppressing AGE-RAGE-induced oxidative stress and inflammation in the testes of DM mice.
Collapse
Affiliation(s)
- Yusaku Mori
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Anti-Glycation Research Section, Showa University Graduate School of Medicine, Shinagawa 142-8555, Tokyo, Japan
| | - Michishige Terasaki
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University Graduate School of Medicine, Shinagawa 142-8555, Tokyo, Japan; (M.T.); (S.-i.Y.)
| | - Naoya Osaka
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University Graduate School of Medicine, Shinagawa 142-8555, Tokyo, Japan; (M.T.); (S.-i.Y.)
| | - Tomoki Fujikawa
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University Graduate School of Medicine, Shinagawa 142-8555, Tokyo, Japan; (M.T.); (S.-i.Y.)
| | - Hironori Yashima
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University Graduate School of Medicine, Shinagawa 142-8555, Tokyo, Japan; (M.T.); (S.-i.Y.)
| | - Tomomi Saito
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University Graduate School of Medicine, Shinagawa 142-8555, Tokyo, Japan; (M.T.); (S.-i.Y.)
| | - Yurie Kataoka
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University Graduate School of Medicine, Shinagawa 142-8555, Tokyo, Japan; (M.T.); (S.-i.Y.)
| | - Makoto Ohara
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University Graduate School of Medicine, Shinagawa 142-8555, Tokyo, Japan; (M.T.); (S.-i.Y.)
| | - Yuichiro Higashimoto
- Department of Chemistry, Kurume University School of Medicine, Kurume 830-0011, Fukuoka, Japan;
| | - Takanori Matsui
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji 910-1195, Fukui, Japan
| | - Sho-ichi Yamagishi
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University Graduate School of Medicine, Shinagawa 142-8555, Tokyo, Japan; (M.T.); (S.-i.Y.)
| |
Collapse
|
9
|
Watanabe M, Toyomura T, Wake H, Nishinaka T, Hatipoglu OF, Takahashi H, Nishibori M, Mori S. Cationic ribosomal proteins can inhibit pro-inflammatory action stimulated by LPS+HMGB1 and are hindered by advanced glycation end products. Biotechnol Appl Biochem 2024; 71:264-271. [PMID: 38010900 DOI: 10.1002/bab.2538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
We previously found that ribosomal protein L9 (RPL9) is a novel advanced glycation end product (AGE)-binding protein that can decrease pro-inflammatory TNF-α expression stimulated by lipopolysaccharide (LPS) plus high-mobility group box 1 (HMGB1), suggesting that RPL9 has a role in regulating LPS+HMGB1-stimulated inflammatory reactions. Among the various ribosomal proteins, it was found that RPS5 reproduced the regulatory activity of RPL9 on LPS+HMGB1-stimulated TNF-α expression in macrophage-like RAW264.7 cells. RPL9 and RPS5 share a common feature as cationic proteins. Polylysine, a cationic polypeptide, and a synthetic peptide of the cationic region from RPL9 also exhibited reducing activity on LPS+HMGB1-induced TNF-α expression. By pull-down assay, RPL9 and RPS5 were confirmed to interact with AGEs. When AGEs coexisted with LPS, HMGB1, plus RPL9 or RPS5, the reducing effect of TNF-α expression by these cationic ribosomal proteins was shown to be abrogated. The results suggest that cationic ribosomal proteins have a regulatory role in the pro-inflammatory response induced by LPS+HMGB1, and in the pathophysiological condition of accumulating AGEs, this regulatory effect is abolished, which exacerbates inflammation.
Collapse
Affiliation(s)
- Masahiro Watanabe
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Okayama, Japan
| | - Takao Toyomura
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Okayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Takashi Nishinaka
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Omer Faruk Hatipoglu
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Hideo Takahashi
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Masahiro Nishibori
- Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shuji Mori
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Okayama, Japan
| |
Collapse
|
10
|
Reurean-Pintilei D, Pantea Stoian A, Potcovaru CG, Salmen T, Cinteză D, Stoica RA, Lazăr S, Timar B. Skin Autofluorescence as a Potential Adjunctive Marker for Cardiovascular Risk Assessment in Type 2 Diabetes: A Systematic Review. Int J Mol Sci 2024; 25:3889. [PMID: 38612699 PMCID: PMC11012197 DOI: 10.3390/ijms25073889] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Diabetes mellitus (DM), due to its long-term hyperglycemia, leads to the accumulation of advanced glycation end-products (AGEs), especially in the vessel walls. Skin autofluorescence (SAF) is a non-invasive tool that measures AGEs. DM patients have a rich dietary source in AGEs, associated with high oxidative stress and long-term inflammation. AGEs represent a cardiovascular (CV) risk factor, and they are linked with CV events. Our objective was to assess whether SAF predicts future CV events (CVE) by examining its association with other CV risk factors in patients with type 2 DM (T2DM). Additionally, we assessed the strengths and limitations of SAF as a predictive tool for CVE. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology, we conducted a systematic review with CRD42024507397 protocol, focused on AGEs, T2DM, SAF, and CV risk. We identified seven studies from 2014 to 2024 that predominantly used the AGE Reader Diagnostic Optic tool. The collective number of patients involved is 8934, with an average age of 63. So, SAF is a valuable, non-invasive marker for evaluating CV risk in T2DM patients. It stands out as a CV risk factor associated independently with CVE. SAF levels are influenced by prolonged hyperglycemia, lifestyle, aging, and other chronic diseases such as depression, and it can be used as a predictive tool for CVE.
Collapse
Affiliation(s)
- Delia Reurean-Pintilei
- Doctoral School of Medicine and Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, Consultmed Medical Centre, 700544 Iasi, Romania
| | - Anca Pantea Stoian
- Diabetes, Nutrition and Metabolic Diseases Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Claudia-Gabriela Potcovaru
- 9th Department of Physical Medicine and Rehabilitation, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Teodor Salmen
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Delia Cinteză
- 9th Department of Physical Medicine and Rehabilitation, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Roxana-Adriana Stoica
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Sandra Lazăr
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- First Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Hematology, Emergency Municipal Hospital Timisoara, 300041 Timisoara, Romania
| | - Bogdan Timar
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, “Pius Brinzeu” Emergency Hospital, 300723 Timisoara, Romania
| |
Collapse
|
11
|
Delrue C, Speeckaert R, Delanghe JR, Speeckaert MM. Breath of fresh air: Investigating the link between AGEs, sRAGE, and lung diseases. VITAMINS AND HORMONES 2024; 125:311-365. [PMID: 38997169 DOI: 10.1016/bs.vh.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are compounds formed via non-enzymatic reactions between reducing sugars and amino acids or proteins. AGEs can accumulate in various tissues and organs and have been implicated in the development and progression of various diseases, including lung diseases. The receptor of advanced glycation end products (RAGE) is a receptor that can bind to advanced AGEs and induce several cellular processes such as inflammation and oxidative stress. Several studies have shown that both AGEs and RAGE play a role in the pathogenesis of lung diseases, such as chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis, cystic fibrosis, and acute lung injury. Moreover, the soluble form of the receptor for advanced glycation end products (sRAGE) has demonstrated its ability to function as a decoy receptor, possessing beneficial characteristics such as anti-inflammatory, antioxidant, and anti-fibrotic properties. These qualities make it an encouraging focus for therapeutic intervention in managing pulmonary disorders. This review highlights the current understanding of the roles of AGEs and (s)RAGE in pulmonary diseases and their potential as biomarkers and therapeutic targets for preventing and treating these pathologies.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | | | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium; Research Foundation-Flanders (FWO), Brussels, Belgium.
| |
Collapse
|
12
|
He H, Wei Q, Chang J, Yi X, Yu X, Luo G, Li X, Yang W, Long Y. Exploring the hypoglycemic mechanism of chlorogenic acids from Pyrrosia petiolosa (Christ) Ching on type 2 diabetes mellitus based on network pharmacology and transcriptomics strategy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117580. [PMID: 38104881 DOI: 10.1016/j.jep.2023.117580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pyrrosia petiolosa (Christ) Ching (YBSW) is a Traditional Chinese medicine rich in chlorogenic acids. It is an important component in many Traditional Chinese medicinal hypoglycemic formulas and is commonly used by the Miao people to treat diabetes with good efficacy. Our previous research has suggested that chlorogenic acids may be the active ingredients in YBSW. AIM OF THE STUDY To explore the mechanisms underlying the anti-type 2 diabetes mellitus (T2DM) hypoglycemic effects of chlorogenic acids contained in YBSW. MATERIALS AND METHODS In vivo experiments, hematoxylin-eosin staining (HE) staining, and immunohistochemistry (IHC) were used to determine the effects of chlorogenic acids contained in YBSW in rats. mRNA expression profiling, microarray analysis, and network pharmacology were used to analyze the underlying mechanisms of the effects. Finally, apoptosis and changes in the related pathways were evaluated in vitro using a 3-(4,5-dimethyl-2-thia-zolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, quantitative real-time polymerase chain reaction, immunofluorescence (IF) assessment, and flow cytometry. RESULTS After the administration of isochlorogenic acid B, the levels of triglycerides, serum total cholesterol, and fasting blood glucose significantly decreased. HE and IHC staining revealed that isochlorogenic acid B significantly increased insulin expression in islet cells. Using network pharmacology and RNA-seq Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, we screened the advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE) signaling pathway. We also verified that YBSW and its chlorogenic acid can inhibit apoptosis and downregulate the expression of related mRNA in the AGE-RAGE pathway in RIN-m5f cells. CONCLUSIONS YBSW exhibits a significant hypoglycemic effect, with chlorogenic acid being an effective component. The therapeutic effect of chlorogenic acids contained in YBSW is mainly realized by promoting insulin secretion and pancreatic tissue repair. Moreover, YBSW substantially mitigates apoptosis via the AGE-RAGE pathway in T2DM.
Collapse
Affiliation(s)
- Hanjiao He
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No. 4 Dongqingnan Road, Huaxi District, Guiyang, Guizhou 550025, PR China
| | - Qing Wei
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No. 4 Dongqingnan Road, Huaxi District, Guiyang, Guizhou 550025, PR China
| | - Jiao Chang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No. 4 Dongqingnan Road, Huaxi District, Guiyang, Guizhou 550025, PR China
| | - Xu Yi
- Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, No. 32 Feishan Road, Nanming District, Guiyang, Guizhou 550002, PR China
| | - Xiang Yu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No. 4 Dongqingnan Road, Huaxi District, Guiyang, Guizhou 550025, PR China
| | - Guoyong Luo
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No. 4 Dongqingnan Road, Huaxi District, Guiyang, Guizhou 550025, PR China
| | - Xinfeng Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No. 4 Dongqingnan Road, Huaxi District, Guiyang, Guizhou 550025, PR China.
| | - Wude Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No. 4 Dongqingnan Road, Huaxi District, Guiyang, Guizhou 550025, PR China.
| | - Yi Long
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No. 4 Dongqingnan Road, Huaxi District, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
13
|
Aimaretti E, Porchietto E, Mantegazza G, Gargari G, Collotta D, Einaudi G, Ferreira Alves G, Marzani E, Algeri A, Dal Bello F, Aragno M, Cifani C, Guglielmetti S, Mastrocola R, Collino M. Anti-Glycation Properties of Zinc-Enriched Arthrospira platensis (Spirulina) Contribute to Prevention of Metaflammation in a Diet-Induced Obese Mouse Model. Nutrients 2024; 16:552. [PMID: 38398877 PMCID: PMC10892558 DOI: 10.3390/nu16040552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Advanced glycation end products (AGEs) exert a key pathogenic role in the development of obesity and insulin resistance. Thanks to its abundance in bioactive compounds, the microalga Arthrospira platensis (spirulina, SP) is proposed as a nutritional supplement. Here, we investigated the potential anti-glycating properties of SP enriched with zinc (Zn-SP) and the following impact on diet-induced metabolic derangements. Thirty male C57Bl6 mice were fed a standard diet (SD) or a high-fat high-sugar diet (HFHS) for 12 weeks, and a subgroup of HFHS mice received 350 mg/kg Zn-SP three times a week. A HFHS diet induced obesity and glucose intolerance and increased plasma levels of pro-inflammatory cytokines and transaminases. Zn-SP administration restored glucose homeostasis and reduced hepatic dysfunction and systemic inflammation. In the liver of HFHS mice, a robust accumulation of AGEs was detected, paralleled by increased expression of the main AGE receptor (RAGE) and depletion of glyoxalase-1, whereas Zn-SP administration efficiently prevented these alterations reducing local pro-inflammatory responses. 16S rRNA gene profiling of feces and ileum content revealed altered bacterial community structure in HFHS mice compared to both SD and HFHS + Zn-SP groups. Overall, our study demonstrates relevant anti-glycation properties of Zn-SP which contribute to preventing AGE production and/or stimulate AGE detoxification, leading to the improvement of diet-related dysbiosis and metabolic derangements.
Collapse
Affiliation(s)
- Eleonora Aimaretti
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (E.A.); (M.A.); (R.M.)
| | - Elisa Porchietto
- Pharmacology Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.P.); (G.E.); (G.F.A.); (C.C.)
| | - Giacomo Mantegazza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy; (G.M.); (G.G.)
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy; (G.M.); (G.G.)
| | - Debora Collotta
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, 10125 Turin, Italy; (D.C.); (E.M.)
| | - Giacomo Einaudi
- Pharmacology Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.P.); (G.E.); (G.F.A.); (C.C.)
| | - Gustavo Ferreira Alves
- Pharmacology Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.P.); (G.E.); (G.F.A.); (C.C.)
| | - Enrica Marzani
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, 10125 Turin, Italy; (D.C.); (E.M.)
| | - Alessandro Algeri
- Italian Union of Biological Spirulin (Unione Spirulina Biologica Italiana, USBI), Curtatone (Mantova), 46010 Mantova, Italy;
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy;
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (E.A.); (M.A.); (R.M.)
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.P.); (G.E.); (G.F.A.); (C.C.)
| | - Simone Guglielmetti
- Department of Biotechnology and Biosciences (BtBs), University of Milano-Bicocca, 20126 Milan, Italy
| | - Raffaella Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (E.A.); (M.A.); (R.M.)
| | - Massimo Collino
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, 10125 Turin, Italy; (D.C.); (E.M.)
| |
Collapse
|
14
|
Lu T, Lahousse L, Wijnant S, Chen J, Brusselle GG, van Hoek M, Zillikens MC. The AGE-RAGE axis associates with chronic pulmonary diseases and smoking in the Rotterdam study. Respir Res 2024; 25:85. [PMID: 38336742 PMCID: PMC10858545 DOI: 10.1186/s12931-024-02698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) and asthma associate with high morbidity and mortality. High levels of advanced glycation end products (AGEs) were found in tissue and plasma of COPD patients but their role in COPD and asthma is unclear. METHODS In the Rotterdam Study (n = 2577), AGEs (by skin autofluorescence (SAF)), FEV1 and lung diffusing capacity (DLCOc and DLCOc /alveolar volume [VA]) were measured. Associations of SAF with asthma, COPD, GOLD stage, and lung function were analyzed using logistic and linear regression adjusted for covariates, followed by interaction and stratification analyses. sRAGE and EN-RAGE associations with COPD prevalence were analyzed by logistic regression. RESULTS SAF associated with COPD prevalence (OR = 1.299 [1.060, 1.591]) but not when adjusted for smoking (OR = 1.106 [0.89, 1.363]). SAF associated with FEV1% predicted (β=-3.384 [-4.877, -1.892]), DLCOc (β=-0.212 [-0.327, -0.097]) and GOLD stage (OR = 4.073, p = 0.001, stage 3&4 versus 1). Stratified, the association between SAF and FEV1%predicted was stronger in COPD (β=-6.362 [-9.055, -3.670]) than non-COPD (β=-1.712 [-3.306, -0.118]). Association of SAF with DLCOc and DLCOc/VA were confined to COPD (β=-0.550 [-0.909, -0.191]; β=-0.065 [-0.117, -0.014] respectively). SAF interacted with former smoking and COPD prevalence for associations with lung function. Lower sRAGE and higher EN-RAGE associated with COPD prevalence (OR = 0.575[0.354, 0.931]; OR = 1.778[1.142, 2.768], respectively). CONCLUSIONS Associations between SAF, lung function and COPD prevalence were strongly influenced by smoking. SAF associated with COPD severity and its association with lung function was more prominent within COPD. These results fuel further research into interrelations and causality between SAF, smoking and COPD. TAKE-HOME MESSAGE Skin AGEs associated with prevalence and severity of COPD and lung function in the general population with a stronger effect in COPD, calling for further research into interrelations and causality between SAF, smoking and COPD.
Collapse
Affiliation(s)
- Tianqi Lu
- Department of Internal Medicine, Erasmus University Medical Center, 's-Gravendijkwal 230, 3015GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lies Lahousse
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sara Wijnant
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Jinluan Chen
- Department of Internal Medicine, Erasmus University Medical Center, 's-Gravendijkwal 230, 3015GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Guy G Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mandy van Hoek
- Department of Internal Medicine, Erasmus University Medical Center, 's-Gravendijkwal 230, 3015GD, Rotterdam, The Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, 's-Gravendijkwal 230, 3015GD, Rotterdam, The Netherlands.
| |
Collapse
|
15
|
Sukon N, Choopong P, Tungsattayathitthan U, Tesavibul N, Sanpan W, Boonsopon S. Association between advanced glycation end products and uveitis/scleritis activity in patients with active immune-mediated ocular inflammatory diseases. Int Ophthalmol 2024; 44:33. [PMID: 38329659 PMCID: PMC10853306 DOI: 10.1007/s10792-024-02980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/29/2023] [Indexed: 02/09/2024]
Abstract
PURPOSE To investigate for association between skin autofluorescence (SAF) advanced glycation end products (AGEs) and uveitis/scleritis activity in systemic inflammatory disease-related active non-infectious uveitis/scleritis patients. METHODS This cross-sectional study was conducted at Siriraj Hospital during October 2019 to March 2020. AGEs were measured by SAF method in systemic immune-related disease patients with active uveitis/scleritis, and those results were compared with those of healthy age-matched controls. RESULTS Thirty-one active non-infectious uveitis/scleritis patients and 31 age-matched controls were enrolled. The mean age of patients was 40.0 ± 12.8 years, and most were female (55.0%). The most common associated systemic immune-related disease was Vogt-Koyanagi-Harada disease (n = 14). Mean SAF AGE level in the study group compared to the control group was 2.38 ± 0.66 arbitrary units (AU) versus 2.58 ± 0.56 AU, respectively (p = 0.20). Multivariate analysis showed decreased SAF AGE level to be significantly associated with active ocular inflammation, (odds ratio: 0.01, 95% confidence interval: 0.00004-0.81; p = 0.04). CONCLUSIONS SAF AGE level was not so far found to be a reliable biomarker for indicating uveitis/scleritis activity in systemic immune-related disease patients with active ocular inflammation. CLINICAL TRIAL REGISTRATION Thai Clinical Trials Registry, https://www.thaiclinicaltrials.org/ . (Reg. No. TCTR20200114004, registered date 01/01/2020, beginning date of the trial 10/01/2019).
Collapse
Affiliation(s)
- Nutchaya Sukon
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pitipol Choopong
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Usanee Tungsattayathitthan
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nattaporn Tesavibul
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wilawan Sanpan
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sutasinee Boonsopon
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
16
|
Almasri F, Collotta D, Aimaretti E, Sus N, Aragno M, Dal Bello F, Eva C, Mastrocola R, Landberg R, Frank J, Collino M. Dietary Intake of Fructooligosaccharides Protects against Metabolic Derangements Evoked by Chronic Exposure to Fructose or Galactose in Rats. Mol Nutr Food Res 2024; 68:e2300476. [PMID: 38158337 DOI: 10.1002/mnfr.202300476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/30/2023] [Indexed: 01/03/2024]
Abstract
SCOPE Diets rich in fat and sugars evoke chronic low-grade inflammation, leading to metabolic derangements. This study investigates the impact of fructose and galactose, two commonly consumed simple sugars, on exacerbation of the harmful effects caused by high fat intake. Additionally, the potential efficacy of fructooligosaccharides (FOS), a fermentable dietary fiber, in counteracting these effects is examined. METHODS AND RESULTS Male Sprague-Dawley rats (six/group) are fed 8 weeks as follows: control 5% fat diet (CNT), 20% fat diet (FAT), FAT+10% FOS diet (FAT+FOS), FAT+25% galactose diet (FAT+GAL), FAT+GAL+10% FOS diet (FAT+GAL+FOS), FAT+25% fructose diet (FAT+FRU), FAT+FRU+10% FOS diet (FAT+FRU+FOS). The dietary manipulations tested do not affect body weight gain, blood glucose, or markers of systemic inflammation whereas significant increases in plasma concentrations of triacylglycerols, cholesterol, aspartate aminotransferase, and alanine aminotrasferase are detected in both FAT+FRU and FAT+GAL compared to CNT. In the liver and skeletal muscle, both sugars induce significant accumulation of lipids and advanced glycation end-products (AGEs). FOS supplementation prevents these impairments. CONCLUSION This study extends the understanding of the deleterious effects of a chronic intake of simple sugars and demonstrates the beneficial role of the prebiotic FOS in dampening the sugar-induced metabolic impairments by prevention of lipid and AGEs accumulation.
Collapse
Affiliation(s)
- Fidèle Almasri
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Garbenstr. 28, 70599, Stuttgart, Germany
| | - Debora Collotta
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Corso Raffaello 30, Torino, 10125, Piemonte, Italy
| | - Eleonora Aimaretti
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin, 10125, Piemonte, Italy
| | - Nadine Sus
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Garbenstr. 28, 70599, Stuttgart, Germany
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin, 10125, Piemonte, Italy
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Torino, 10126, Piemonte, Italy
| | - Carola Eva
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Corso Raffaello 30, Torino, 10125, Piemonte, Italy
| | - Raffaella Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin, 10125, Piemonte, Italy
| | - Rikard Landberg
- Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Garbenstr. 28, 70599, Stuttgart, Germany
| | - Massimo Collino
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Corso Raffaello 30, Torino, 10125, Piemonte, Italy
| |
Collapse
|
17
|
Ravi S, Martin LC, Krishnan M, Kumaresan M, Manikandan B, Ramar M. Interactions between macrophage membrane and lipid mediators during cardiovascular diseases with the implications of scavenger receptors. Chem Phys Lipids 2024; 258:105362. [PMID: 38006924 DOI: 10.1016/j.chemphyslip.2023.105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The onset and progression of cardiovascular diseases with the major underlying cause being atherosclerosis, occur during chronic inflammatory persistence in the vascular system, especially within the arterial wall. Such prolonged maladaptive inflammation is driven by macrophages and their key mediators are generally attributed to a disparity in lipid metabolism. Macrophages are the primary cells of innate immunity, endowed with expansive membrane domains involved in immune responses with their signalling systems. During atherosclerosis, the membrane domains and receptors control various active organisations of macrophages. Their scavenger/endocytic receptors regulate the trafficking of intracellular and extracellular cargo. Corresponding influence on lipid metabolism is mediated by their dynamic interaction with scavenger membrane receptors and their integrated mechanisms such as pinocytosis, phagocytosis, cholesterol export/import, etc. This interaction not only results in the functional differentiation of macrophages but also modifies their structural configurations. Here, we reviewed the association of macrophage membrane biomechanics and their scavenger receptor families with lipid metabolites during the event of atherogenesis. In addition, the membrane structure of macrophages and the signalling pathways involved in endocytosis integrated with lipid metabolism are detailed. This article establishes future insights into the scavenger receptors as potential targets for cardiovascular disease prevention and treatment.
Collapse
Affiliation(s)
- Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Kumaresan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni's College for Women, Chennai 600 015, India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
18
|
Mori Y, Ohara M, Terasaki M, Osaka N, Yashima H, Saito T, Otoyama-Kataoka Y, Omachi T, Higashimoto Y, Matsui T, Fukui T, Yamagishi SI. Subcutaneous Infusion of DNA-Aptamer Raised against Advanced Glycation End Products Prevents Loss of Skeletal Muscle Mass and Strength in Accelerated-Aging Mice. Biomedicines 2023; 11:3112. [PMID: 38137333 PMCID: PMC10740860 DOI: 10.3390/biomedicines11123112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
We have developed DNA aptamers that can inhibit the toxic effects of advanced glycation end products (AGE-Apts). We herein evaluated the effects of AGE-Apts on muscle mass and strength in senescence-accelerated mouse prone 8 (SAMP8) mice. Eight-month-old male SAMP8 mice received subcutaneous infusion of control DNA aptamers (CTR-Apts) or AGE-Apts. Mice in an age-matched senescence-accelerated mouse resistant strain 1 (SAMR1) group were treated with CTR-Apts as controls. The soleus muscles were collected after the 8-week intervention for weight measurement and histological, RT-PCR, and immunofluorescence analyses. Grip strength was measured before and after the 8-week intervention. AGE-Apt treatment inhibited the progressive decrease in the grip strength of SAMP8 mice. SAMP8 mice had lower soleus muscle weight and fiber size than SAMR1 mice, which was partly restored by AGE-Apt treatment. Furthermore, AGE-Apt-treated SAMP8 mice had a lower interstitial fibrosis area of the soleus muscle than CTR-Apt-treated SAMP8 mice. The soleus muscle levels of AGEs, oxidative stress, receptor for AGEs, and muscle ring-finger protein-1 were increased in the CTR-Apt-treated mice, all of which, except for AGEs, were inhibited by AGE-Apt treatment. Our present findings suggest that the subcutaneous delivery of AGE-Apts may be a novel therapeutic strategy for aging-related decrease in skeletal muscle mass and strength.
Collapse
Affiliation(s)
- Yusaku Mori
- Anti-Glycation Research Section, Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Shinagawa, Tokyo 142-8555, Japan
| | - Makoto Ohara
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Shinagawa, Tokyo 142-8555, Japan (M.T.); (N.O.); (Y.O.-K.); (T.O.)
| | - Michishige Terasaki
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Shinagawa, Tokyo 142-8555, Japan (M.T.); (N.O.); (Y.O.-K.); (T.O.)
| | - Naoya Osaka
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Shinagawa, Tokyo 142-8555, Japan (M.T.); (N.O.); (Y.O.-K.); (T.O.)
| | - Hironori Yashima
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Shinagawa, Tokyo 142-8555, Japan (M.T.); (N.O.); (Y.O.-K.); (T.O.)
| | - Tomomi Saito
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Shinagawa, Tokyo 142-8555, Japan (M.T.); (N.O.); (Y.O.-K.); (T.O.)
| | - Yurie Otoyama-Kataoka
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Shinagawa, Tokyo 142-8555, Japan (M.T.); (N.O.); (Y.O.-K.); (T.O.)
| | - Takemasa Omachi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Shinagawa, Tokyo 142-8555, Japan (M.T.); (N.O.); (Y.O.-K.); (T.O.)
| | - Yuichiro Higashimoto
- Department of Chemistry, Kurume University School of Medicine, Kurume 830-0011, Fukuoka, Japan;
| | - Takanori Matsui
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji 910-1195, Fukui, Japan
| | - Tomoyasu Fukui
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Shinagawa, Tokyo 142-8555, Japan (M.T.); (N.O.); (Y.O.-K.); (T.O.)
| | - Sho-ichi Yamagishi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Shinagawa, Tokyo 142-8555, Japan (M.T.); (N.O.); (Y.O.-K.); (T.O.)
| |
Collapse
|
19
|
Dai Y, Zhou S, Qiao L, Peng Z, Zhao J, Xu D, Wu C, Li M, Zeng X, Wang Q. Non-apoptotic programmed cell deaths in diabetic pulmonary dysfunction: the new side of advanced glycation end products. Front Endocrinol (Lausanne) 2023; 14:1126661. [PMID: 37964954 PMCID: PMC10641270 DOI: 10.3389/fendo.2023.1126661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder that affects multiple organs and systems, including the pulmonary system. Pulmonary dysfunction in DM patients has been observed and studied for years, but the underlying mechanisms have not been fully understood. In addition to traditional mechanisms such as the production and accumulation of advanced glycation end products (AGEs), angiopathy, tissue glycation, oxidative stress, and systemic inflammation, recent studies have focused on programmed cell deaths (PCDs), especially the non-apoptotic ones, in diabetic pulmonary dysfunction. Non-apoptotic PCDs (NAPCDs) including autophagic cell death, necroptosis, pyroptosis, ferroptosis, and copper-induced cell death have been found to have certain correlations with diabetes and relevant complications. The AGE-AGE receptor (RAGE) axis not only plays an important role in the traditional pathogenesis of diabetes lung disease but also plays an important role in non-apoptotic cell death. In this review, we summarize novel studies about the roles of non-apoptotic PCDs in diabetic pulmonary dysfunction and focus on their interactions with the AGE-RAGE axis.
Collapse
Affiliation(s)
- Yimin Dai
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Shuang Zhou
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Lin Qiao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Zhao Peng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Dong Xu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Chanyuan Wu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
20
|
Vasilj M, Goni L, Gayoso L, Razquin C, Sesma MT, Etxeberria U, Ruiz-Canela M. Correlation between serum advanced glycation end products and dietary intake of advanced glycation end products estimated from home cooking and food frequency questionnaires. Nutr Metab Cardiovasc Dis 2023; 33:1768-1777. [PMID: 37414659 DOI: 10.1016/j.numecd.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND & AIMS To our knowledge the association between dietary advanced glycation end-products (dAGEs) and cardiometabolic disease is limited. Our aim was to examine the association between dAGEs and serum concentration of carboxymethyl-lysine (CML) or soluble receptor advanced glycation end-products (sRAGEs), and to assess the difference on dAGEs and circulating AGEs according to lifestyle and biochemical measures. METHODS AND RESULTS 52 overweight or obese adults diagnosed with type 2 diabetes were included in this cross-sectional analysis. dAGEs were estimated from a Food Frequency Questionnaire (FFQ) or from a FFQ + Home Cooking Frequency Questionnaire (HCFQ). Serum concentrations of CML and sRAGEs were measured by ELISA. Correlation tests were used to analyze the association between dAGEs derived from the FFQ or FFQ + HCFQ and concentrations of CML or sRAGEs. Demographic characteristics, lifestyle factors and biochemical measures were analyzed according to sRAGEs and dAGEs using student t-test and ANCOVA. A significant inverse association was found between serum sRAGEs and dAGEs estimated using the FFQ + HCFQ (r = -0.36, p = 0.010), whereas no association was found for dAGEs derived from the FFQ alone. No association was observed between CML and dAGEs. dAGEs intake estimated from the FFQ + HCFQ was significantly higher among younger and male participants, and in those with higher BMI, higher Hb1Ac levels, longer time with type 2 diabetes, lower adherence to Mediterranean diet, and higher use of culinary techniques that generate more AGEs (all p values p < 0.05). CONCLUSIONS These results show knowledge on culinary techniques is relevant to derive the association between dAGEs intake and cardiometabolic risk factors.
Collapse
Affiliation(s)
- Maria Vasilj
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain
| | - Leticia Goni
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Gayoso
- Basque Culinary Center, Faculty of Gastronomic Sciences, Mondragon Unibertsitatea, Donostia-San Sebastián, Spain; BCC Innovation, Technology Center in Gastronomy, Basque Culinary Center, Donostia-San Sebastián, Spain
| | - Cristina Razquin
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Sesma
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Usune Etxeberria
- Basque Culinary Center, Faculty of Gastronomic Sciences, Mondragon Unibertsitatea, Donostia-San Sebastián, Spain; BCC Innovation, Technology Center in Gastronomy, Basque Culinary Center, Donostia-San Sebastián, Spain
| | - Miguel Ruiz-Canela
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
21
|
Russo P, Lauria F, Sirangelo I, Siani A, Iacomino G. Association between Urinary AGEs and Circulating miRNAs in Children and Adolescents with Overweight and Obesity from the Italian I.Family Cohort: A Pilot Study. J Clin Med 2023; 12:5362. [PMID: 37629404 PMCID: PMC10455100 DOI: 10.3390/jcm12165362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/22/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Modern dietary habits are linked to high exposure to Advanced Glycation End products (AGEs) mainly due to the dramatic increase in the consumption of highly processed foods in recent years. Body levels of these compounds vary with food intake and are almost interconnected with age and health status, formally embodying indicators of oxidative stress and inflammation in adults. However, the relationship between AGEs and health issues has not been definitively understood in children, and several pediatric investigations have produced conflicting evidence. Besides, despite extensive research, there are no universally accepted analytical techniques for measuring AGE levels in the human body, with several approaches available, each with its advantages and disadvantages. This pilot study aimed to investigate the association between urinary AGEs, measured using spectrofluorimetry-based assays, and circulating microRNAs (c-miRNAs) in a subsample (n = 22) of Italian children participating in the I.Family Study. Anthropometric measurements, biochemical markers, and miRNA profiles were assessed. The first indication of a relationship between urinary AGEs and c-miRNAs in the context of obesity was found. Specifically, four miRNAs, hsa-miR-10b-5p, hsa-miR-501-5p, hsa-miR-874-3p, and hsa-miR-2355-5p were significantly associated with levels of urinary AGEs. The association between AGEs, obesity, inflammation markers, and specific miRNAs highlights the complex interplay between these factors and their potential impact on cellular and tissue homeostasis. The discovery of altered c-miRNAs profiling has the potential to offer innovative methods for assessing early changes in the body's AGE pool and allow recognition of an increased risk of disease susceptibility, routinely undetected until metabolic complications are identified.
Collapse
Affiliation(s)
- Paola Russo
- Institute of Food Sciences, National Research Council, Via Roma 64, 83100 Avellino, Italy; (P.R.); (A.S.); (G.I.)
| | - Fabio Lauria
- Institute of Food Sciences, National Research Council, Via Roma 64, 83100 Avellino, Italy; (P.R.); (A.S.); (G.I.)
| | - Ivana Sirangelo
- Department of Precision Medicine, School of Medicine and Surgery, University of Campania “Luigi Vanvitelli”, S. Andrea Delle Dame-Via L. De Crecchio 7, 80138 Naples, Italy;
| | - Alfonso Siani
- Institute of Food Sciences, National Research Council, Via Roma 64, 83100 Avellino, Italy; (P.R.); (A.S.); (G.I.)
| | - Giuseppe Iacomino
- Institute of Food Sciences, National Research Council, Via Roma 64, 83100 Avellino, Italy; (P.R.); (A.S.); (G.I.)
| |
Collapse
|
22
|
Khan MI, Ashfaq F, Alsayegh AA, Hamouda A, Khatoon F, Altamimi TN, Alhodieb FS, Beg MMA. Advanced glycation end product signaling and metabolic complications: Dietary approach. World J Diabetes 2023; 14:995-1012. [PMID: 37547584 PMCID: PMC10401445 DOI: 10.4239/wjd.v14.i7.995] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
Advanced glycation end products (AGEs) are a heterogeneous collection of compounds formed during industrial processing and home cooking through a sequence of nonenzymatic glycation reactions. The modern western diet is full of heat-treated foods that contribute to AGE intake. Foods high in AGEs in the contemporary diet include processed cereal products. Due to industrialization and marketing strategies, restaurant meals are modified rather than being traditionally or conventionally cooked. Fried, grilled, baked, and boiled foods have the greatest AGE levels. Higher AGE-content foods include dry nuts, roasted walnuts, sunflower seeds, fried chicken, bacon, and beef. Animal proteins and processed plant foods contain furosine, acrylamide, heterocyclic amines, and 5-hydroxymethylfurfural. Furosine (2-furoil-methyl-lysine) is an amino acid found in cooked meat products and other processed foods. High concentrations of carboxymethyl-lysine, carboxyethyl-lysine, and methylglyoxal-O are found in heat-treated nonvegetarian foods, peanut butter, and cereal items. Increased plasma levels of AGEs, which are harmful chemicals that lead to age-related diseases and physiological aging, diabetes, and autoimmune/inflammatory rheumatic diseases such as systemic lupus erythematosus and rheumatoid arthritis. AGEs in the pathophysiology of metabolic diseases have been linked to individuals with diabetes mellitus who have peripheral nerves with high amounts of AGEs and diabetes has been linked to increased myelin glycation. Insulin resistance and hyperglycemia can impact numerous human tissues and organs, leading to long-term difficulties in a number of systems and organs, including the cardiovascular system. Plasma AGE levels are linked to all-cause mortality in individuals with diabetes who have fatal or nonfatal coronary artery disease, such as ventricular dysfunction. High levels of tissue AGEs are independently associated with cardiac systolic dysfunction in diabetic patients with heart failure compared with diabetic patients without heart failure. It is widely recognized that AGEs and oxidative stress play a key role in the cardiovascular complications of diabetes because they both influence and are impacted by oxidative stress. All chronic illnesses involve protein, lipid, or nucleic acid modifications including crosslinked and nondegradable aggregates known as AGEs. Endogenous AGE formation or dietary AGE uptake can result in additional protein modifications and stimulation of several inflammatory signaling pathways. Many of these systems, however, require additional explanation because they are not entirely obvious. This review summarizes the current evidence regarding dietary sources of AGEs and metabolism-related complications associated with AGEs.
Collapse
Affiliation(s)
- Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Fauzia Ashfaq
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Abdulrahman A Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Alshaimaa Hamouda
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Fahmida Khatoon
- Department of Biochemistry, College of Medicine, University of Hail, Hail 2240, Saudi Arabia
| | - Tahani Nasser Altamimi
- Department of Family and Community Medicine, College of Medicine, University of Hail, Hail 2240, Saudi Arabia
| | - Fahad Saad Alhodieb
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | | |
Collapse
|
23
|
Reynaert NL, Vanfleteren LEGW, Perkins TN. The AGE-RAGE Axis and the Pathophysiology of Multimorbidity in COPD. J Clin Med 2023; 12:jcm12103366. [PMID: 37240472 DOI: 10.3390/jcm12103366] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease of the airways and lungs due to an enhanced inflammatory response, commonly caused by cigarette smoking. Patients with COPD are often multimorbid, as they commonly suffer from multiple chronic (inflammatory) conditions. This intensifies the burden of individual diseases, negatively affects quality of life, and complicates disease management. COPD and comorbidities share genetic and lifestyle-related risk factors and pathobiological mechanisms, including chronic inflammation and oxidative stress. The receptor for advanced glycation end products (RAGE) is an important driver of chronic inflammation. Advanced glycation end products (AGEs) are RAGE ligands that accumulate due to aging, inflammation, oxidative stress, and carbohydrate metabolism. AGEs cause further inflammation and oxidative stress through RAGE, but also through RAGE-independent mechanisms. This review describes the complexity of RAGE signaling and the causes of AGE accumulation, followed by a comprehensive overview of alterations reported on AGEs and RAGE in COPD and in important co-morbidities. Furthermore, it describes the mechanisms by which AGEs and RAGE contribute to the pathophysiology of individual disease conditions and how they execute crosstalk between organ systems. A section on therapeutic strategies that target AGEs and RAGE and could alleviate patients from multimorbid conditions using single therapeutics concludes this review.
Collapse
Affiliation(s)
- Niki L Reynaert
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Lowie E G W Vanfleteren
- COPD Center, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Timothy N Perkins
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
24
|
González-Guerrero DE, Lazo-de-la-Vega-Monroy ML, Gómez-Ojeda A, Luévano-Contreras C, Rojas-Rubio A, Garay-Sevilla ME. Polymorphisms −374 T/A and −429 T/C of the Receptor for Advanced Glycation End-Products (RAGE) and Serum Levels of RAGE (sRAGE) Are Not Associated with Metabolic Syndrome. Metabolites 2023; 13:metabo13040521. [PMID: 37110179 PMCID: PMC10144602 DOI: 10.3390/metabo13040521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
RAGE is a multi-ligand transmembrane glycoprotein that promotes biological signals associated with inflammatory responses and degenerative diseases. sRAGE is a soluble variant, proposed as an inhibitor of RAGE activity. −374 T/A and −429 T/C polymorphisms of the advanced glycation end products receptor AGER gene are associated with the development of some diseases, such as type of cancer, cardiovascular disease, and micro and macrovascular disease in diabetes among others but their role in metabolic syndrome (MS) is still unknown. We studied 80 healthy men without MS, and 80 men with MS according to the harmonized criteria. −374 T/A and −429 T/C polymorphisms were genotyped by RT-PCR, and sRAGE was measured by ELISA. Allelic and genotypic frequencies did not differ between Non-MS and MS groups (−374 T/A p = 0.48, p = 0.57 and −429 T/C p = 0.36, p = 0.59). Significant differences were found in fasting glucose levels and diastolic blood pressure among the genotypes of the −374 T/A polymorphism in the Non-MS group (p < 0.01 and p = 0.008). Glucose levels were different between −429 T/C genotypes in the MS group (p = 0.02). sRAGE levels were similar in both groups, but in the Non-MS group showed a significant difference between individuals with only 1 or 2 components of the metabolic syndrome (p = 0.047). However, no associations of any SNP with MS were found (recessive model p = 0.48, dominant model p = 0.82 for −374 T/A; recessive model p = 0.48, dominant model p = 0.42 for −429 T/C). −374 T/A and −429 T/C polymorphisms are not associated with MS in Mexican population and have no influence on serum sRAGE levels.
Collapse
Affiliation(s)
| | | | - Armando Gómez-Ojeda
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, León 36000, Mexico
| | - Claudia Luévano-Contreras
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, León 36000, Mexico
| | - Armando Rojas-Rubio
- Biomedical Research Laboratory, Medicine Faculty, Catholic University of Maule, Talca 3605, Chile
| | - Ma. Eugenia Garay-Sevilla
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, León 36000, Mexico
| |
Collapse
|
25
|
Robles-Rivera K, Rivera-Paredez B, Quezada-Sanchéz AD, Velázquez-Cruz R, Salmerón J. Advanced glycation end products are associated with cardiovascular risk in the Mexican population. Nutr Metab Cardiovasc Dis 2023; 33:826-834. [PMID: 36842957 DOI: 10.1016/j.numecd.2022.12.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/07/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS Chronic exposure to hyperglycemia is a significant risk factor for cardiovascular disease (CVD). Advanced glycation end products (AGES) result from multiple sugar-dependent reactions interacting with proteins and their receptors, generating endothelial dysfunction and CVD. However, there is little epidemiological data about its impact on CVD risk. We aimed to assess the association between circulating AGES and CVD risk in the Mexican population. METHODS AND RESULTS We used longitudinal data from waves 2004-2006 and 2010-2012 of 1195 participants from the Health Workers Cohort Study. Circulating AGES were assessed by radioimmunoassay, and cardiovascular risk (CVR) was computed with the Framingham risk score. Linear and logistic fixed-effects regression models were used to assess the interest association, adjusting for confounding factors. An increase in 200 μU/ml of AGES was associated with a 0.18% increased risk of CVD (95% CI 0.05-0.31%). After adjusting for physical activity and smoking status, individuals who increased their AGES category had higher odds of middle-high CVR (low to medium AGES: OR 1.83, 95% CI 1.11-3.20; low to high AGES: OR 2.61, 95% CI 1.51-4.50). The associations remained statistically significant when we further adjusted for insulin resistance, dietary intake of AGES, and total daily calorie intake. CONCLUSION Our data show that circulating AGES are associated with the Framingham CVD risk score, independently of other major risk factors for CVD in the Mexican population.
Collapse
Affiliation(s)
- Karina Robles-Rivera
- Research Center in Policy, Population, and Health, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico.
| | - Berenice Rivera-Paredez
- Research Center in Policy, Population, and Health, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico.
| | - Amado D Quezada-Sanchéz
- Center for Evaluation and Surveys Research, National Institute of Public Health, Cuernavaca 62100, Mexico.
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico.
| | - Jorge Salmerón
- Research Center in Policy, Population, and Health, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico.
| |
Collapse
|
26
|
Sharma V, Mehdi MM. Oxidative stress, inflammation and hormesis: The role of dietary and lifestyle modifications on aging. Neurochem Int 2023; 164:105490. [PMID: 36702401 DOI: 10.1016/j.neuint.2023.105490] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Oxidative stress (OS) is primarily caused by the formation of free radicals and reactive oxygen species; it is considered as one of the prominent factors in slowing down and degrading cellular machinery of an individual, and it eventually leads to aging and age-related diseases by its continuous higher state. The relation between molecular damage and OS should be particularized to understand the beginning of destruction at the cellular levels, extending outwards to affect tissues, organs, and ultimately to the organism. Several OS biomarkers, which are established at the biomolecular level, are useful in investigating the disease susceptibility during aging. Slowing down the aging process is a matter of reducing the rate of oxidative damage to the cellular machinery over time. The breakdown of homeostasis, the mild overcompensation, the reestablishment of homeostasis, and the adaptive nature of the process are the essential features of hormesis, which incorporates several factors, including calorie restriction, nutrition and lifestyle modifications that play an important role in reducing the OS. In the current review, along with the concept and theories of aging (with emphasis on free radical theory), various manifestations of OS with special attention on mitochondrial dysfunction and age-related diseases have been discussed. To alleviate the OS, hormetic approaches including caloric restriction, exercise, and nutrition have also been discussed.
Collapse
Affiliation(s)
- Vinita Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144401, India
| | - Mohammad Murtaza Mehdi
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144401, India.
| |
Collapse
|
27
|
Vanfleteren LE, Weidner J, Franssen FM, Gaffron S, Reynaert NL, Wouters EF, Spruit MA. Biomarker-based clustering of patients with chronic obstructive pulmonary disease. ERJ Open Res 2023; 9:00301-2022. [PMID: 36755966 PMCID: PMC9900445 DOI: 10.1183/23120541.00301-2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/16/2022] [Indexed: 11/25/2022] Open
Abstract
Rationale COPD has been associated repeatedly with single biomarkers of systemic inflammation, ignoring the complexity of inflammatory pathways. This study aimed to cluster patients with COPD based on systemic markers of inflammatory processes and to evaluate differences in their clinical characterisation and examine how these differences may relate to altered biological pathways. Methods 213 patients with moderate-to-severe COPD in a clinically stable state were recruited and clinically characterised, which included a venous blood sample for analysis of serum biomarkers. Patients were clustered based on the overall similarity in systemic levels of 57 different biomarkers. To determine interactions among the regulated biomarkers, protein networks and biological pathways were examined for each patient cluster. Results Four clusters were identified: two clusters with lower biomarker levels (I and II) and two clusters with higher biomarker levels (III and IV), with only a small number of biomarkers with similar trends in expression. Pathway analysis indicated that three of the four clusters were enriched in Rage (receptor for advanced glycation end-products) and Oncostatin M pathway components. Although the degree of airflow limitation was similar, the clinical characterisation of clusters ranged from 1) better functional capacity and health status and fewer comorbidities; 2) more underweight, osteoporosis and static hyperinflation; 3) more metabolically deranged; and 4) older subjects with worse functional capacity and higher comorbidity load. Conclusions These new insights may help to understand the functionally relevant inflammatory interactions in the pathophysiology of COPD as a heterogeneous disease.
Collapse
Affiliation(s)
- Lowie E.G.W. Vanfleteren
- COPD Center, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Gothenburg, Sweden,Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Corresponding author: Lowie Vanfleteren ()
| | - Julie Weidner
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Frits M.E. Franssen
- Department of Research and Development, CIRO+, Horn, The Netherlands,Department of Respiratory Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands,NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | | | - Niki L. Reynaert
- Department of Respiratory Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands,NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Emiel F.M. Wouters
- Department of Research and Development, CIRO+, Horn, The Netherlands,Department of Respiratory Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands,NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands,Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
| | - Martijn A. Spruit
- Department of Research and Development, CIRO+, Horn, The Netherlands,Department of Respiratory Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands,NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
28
|
Granic A, Hurst C, Dismore L, Dodds RM, Witham MD, Robinson SM, Sayer AA. Advanced glycation end products in skeletal muscle health and sarcopenia: A systematic review of observational studies. Mech Ageing Dev 2023; 209:111744. [PMID: 36368549 DOI: 10.1016/j.mad.2022.111744] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Advanced glycation end products (AGEs) and AGEs receptor (RAGE) may play a role in sarcopenia. This systematic review evaluated the associations between AGEs measured in tissues (skin) by autofluorescence (SAF) and/or circulation (blood, urine) and muscle health outcomes (strength, mass, function) and sarcopenia in observational studies. METHODS MEDLINE, Embase, Scopus and Web of Science were searched for studies reporting associations between AGEs and muscle-related outcomes in community-dwelling adults aged ≥ 30 years (until March 2022). RESULTS Fourteen cross-sectional and one prospective study were included in the narrative summary. SAF was negatively associated with muscle strength, mass, and physical functioning in adults aged ≥ 30 years (four studies), and muscle mass (three studies), strength, and sarcopenia (one study) in adults aged ≥ 65 years. Circulating AGEs were negatively associated with muscle strength and physical functioning (four studies) and predicted the risk of walking disability (one prospective study), and sarcopenia (one study) in older adults. The role of RAGE in muscle health was inconclusive. CONCLUSIONS SAF and circulating AGEs were negatively associated with muscle-related outcomes in adults aged ≥ 30 years in cross-sectional studies. This finding should be confirmed in well-designed prospective studies investigating sarcopenia, as AGEs represent a potentially modifiable target for intervention.
Collapse
Affiliation(s)
- Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Christopher Hurst
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lorelle Dismore
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom; Northumbria Healthcare NHS Foundation Trust, Research and Development, North Tyneside General Hospital, North Shields, United Kingdom
| | - Richard M Dodds
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Miles D Witham
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sian M Robinson
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Avan A Sayer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
29
|
Protective Effect of High-Intensity Interval Training (HIIT) and Moderate-Intensity Continuous Training (MICT) against Vascular Dysfunction in Hyperglycemic Rats. J Nutr Metab 2022; 2022:5631488. [PMID: 36510592 PMCID: PMC9741543 DOI: 10.1155/2022/5631488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022] Open
Abstract
Background Hyperglycemia is a major risk factor for endothelial dysfunction. Endothelial dysfunction is associated with the inability of endothelial cells to maintain homeostasis of the cardiovascular system. Regular exercise may be considered as an effective and low-cost nonpharmacological tool for improving vascular function, though there is no agreement on the best type of exercise. Objectives To determine how high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) may prevent endothelial dysfunction under hyperglycemic conditions, and to compare these two interventions. Method Twenty-four eight-week-old male Wistar rats were randomly assigned into four groups: healthy nonexercising control (C), hyperglycemic control (HG-C), hyperglycemic + HIIT (HG-IT), and hyperglycemic + MICT (HG-CT). Hyperglycemia was induced by a single injection of streptozotocin. Hyperglycemic animals were subjected to HIIT or MICT protocols six days a week for six weeks. Decapitation was performed the day after the exercise protocols were completed. The ascending aorta (until the abdominal artery) was examined. An enzyme-linked immunosorbent assay (ELISA) was used to measure the glucagon-likepeptide-1 (GLP-1), endothelial nitric oxide synthase (eNOS), and tumor necrosis factor-alpha (TNFα) levels. A colorimetric assay was used to measure superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels. Quantitative real-time polymerase chain reaction (PCR) was used to measure the expression of the receptor for advanced glycation end-products (RAGE) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Hematoxylin and eosin (H&E) staining was used to histologically analyze the aortas. Results There was a significantly higher level of GLP-1 and lower expression of RAGE, NF-κB, and TNFα in the HG-IT and HG-CT group compared to the HG-C group. Microscopic examination of aortic tissue showed a better tissue arrangement in both treatment groups than in the HG-C group. Except for the MDA level, there were no significant differences in any of the measured parameters between the HG-IT and HG-CT groups. Conclusion Under hyperglycemic conditions, both HIIT and MICT have a protective role against endothelial dysfunction.
Collapse
|
30
|
Csongová M, Scheijen JLJM, van de Waarenburg MPH, Gurecká R, Koborová I, Tábi T, Szökö É, Schalkwijk CG, Šebeková K. Association of α-Dicarbonyls and Advanced Glycation End Products with Insulin Resistance in Non-Diabetic Young Subjects: A Case-Control Study. Nutrients 2022; 14:nu14224929. [PMID: 36432614 PMCID: PMC9695161 DOI: 10.3390/nu14224929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
α-Dicarbonyls and advanced glycation end products (AGEs) may contribute to the pathogenesis of insulin resistance by a variety of mechanisms. To investigate whether young insulin-resistant subjects present markers of increased dicarbonyl stress, we determined serum α-dicarbonyls-methylglyoxal, glyoxal, 3-deoxyglucosone; their derived free- and protein-bound, and urinary AGEs using the UPLC/MS-MS method; soluble receptors for AGEs (sRAGE), and cardiometabolic risk markers in 142 (49% females) insulin resistant (Quantitative Insulin Sensitivity Check Index (QUICKI) ≤ 0.319) and 167 (47% females) age-, and waist-to-height ratio-matched insulin-sensitive controls aged 16-to-22 years. The between-group comparison was performed using the two-factor (sex, presence/absence of insulin resistance) analysis of variance; multiple regression via the orthogonal projection to latent structures model. In comparison with their insulin-sensitive peers, young healthy insulin-resistant individuals without diabetes manifest alterations throughout the α-dicarbonyls-AGEs-sRAGE axis, dominated by higher 3-deoxyglucosone levels. Variables of α-dicarbonyls-AGEs-sRAGE axis were associated with insulin sensitivity independently from cardiometabolic risk markers, and sex-specifically. Cleaved RAGE associates with QUICKI only in males; while multiple α-dicarbonyls and AGEs independently associate with QUICKI particularly in females, who displayed a more advantageous cardiometabolic profile compared with males. Further studies are needed to elucidate whether interventions alleviating dicarbonyl stress ameliorate insulin resistance.
Collapse
Affiliation(s)
- Melinda Csongová
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 811 07 Bratislava, Slovakia
| | - Jean L. J. M. Scheijen
- Department of Internal Medicine, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | | | - Radana Gurecká
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 811 07 Bratislava, Slovakia
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
| | - Ivana Koborová
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 811 07 Bratislava, Slovakia
| | - Tamás Tábi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary
| | - Éva Szökö
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary
| | - Casper G. Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 811 07 Bratislava, Slovakia
- Correspondence:
| |
Collapse
|
31
|
Association between Urinary Advanced Glycation End Products and Subclinical Inflammation in Children and Adolescents: Results from the Italian I.Family Cohort. Nutrients 2022; 14:nu14194135. [PMID: 36235787 PMCID: PMC9571918 DOI: 10.3390/nu14194135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Advanced Glycation End Products (AGEs) have been positively correlated with inflammation in adults, while inconsistent evidence is available in children. We evaluated the association between urinary AGEs, measured by fluorescence spectroscopy, and biomarkers of subclinical inflammation in 676 healthy children/adolescents (age 11.8 ± 1.6 years, M ± SD) from the Italian cohort of the I.Family project. Urinary fluorescent AGEs were used as independent variable and high-sensitivity C-reactive protein (hs-CRP) was the primary outcome, while other biomarkers of inflammation were investigated as secondary outcomes. Participants with urinary AGEs above the median of the study population showed statistically significantly higher hs-CRP levels as compared to those below the median (hs-CRP 0.44 ± 1.1 vs. 0.24 ± 0.6 mg/dL, M ± SD p = 0.002). We found significant positive correlations between urinary AGEs and hs-CRP (p = 0.0001), IL-15 (p = 0.001), IP-10 (p = 0.006), and IL-1Ra (p = 0.001). At multiple regression analysis, urinary AGEs, age, and BMI Z-score were independent variables predicting hs-CRP levels. We demonstrated for the first time, in a large cohort of children and adolescents, that the measurement of fluorescent urinary AGEs may represent a simple, noninvasive, and rapid technique to evaluate the association between AGEs and biomarkers of inflammation. Our data support a role of AGEs as biomarkers of subclinical inflammation in otherwise healthy children and adolescents.
Collapse
|
32
|
Sandys O, Te Velde A. Raising the Alarm: Environmental Factors in the Onset and Maintenance of Chronic (Low-Grade) Inflammation in the Gastrointestinal Tract. Dig Dis Sci 2022; 67:4355-4368. [PMID: 34981314 DOI: 10.1007/s10620-021-07327-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022]
Abstract
Chronic inflammatory disease of the gastrointestinal (GI) tract is defined by several pathophysiological characteristics, such as dysbiosis of the microbiota, epithelial barrier hyperpermeability, systemic dissemination of endotoxins and chronic inflammation. In addition to well-reported environmental factors in non-communicable disease, such as smoking, diet, and exercise, humans are frequently exposed to myriads more environmental factors, from pesticides to food additives. Such factors are ubiquitous across both our diet and indoor/outdoor environments. A major route of human exposure to these factors is ingestion, which frequently occurs due to their intentional addition (intentional food additives) and/or unintentional contamination (unintentional food contaminants) of food products-often linked to environmental pollution. Understanding how this persistent, diverse exposure impacts GI health is of paramount importance, as deterioration of the GI barrier is proposed to be the first step towards systemic inflammation and chronic disease. Therefore, we aim to evaluate the impact of ingestion of environmental factors on inflammatory processes in the GI tract. In this review, we highlight human exposure to intentional food additives (e.g. emulsifiers, bulking agents) and unintentional food contaminants (e.g. persistent organic pollutants, pesticides, microplastics), then present evidence for their association with chronic disease, modification of the GI microbiota, increased permeability of the GI barrier, systemic dissemination of endotoxins, local (and distal) pro-inflammatory signalling, and induction of oxidative stress and/or endoplasmic reticulum stress. We also propose a link to NLRP3-inflammasome activation. These findings highlight the contribution of common environmental factors towards deterioration of GI health and the induction of pathophysiology associated with onset and maintenance of chronic inflammation in the GI tract.
Collapse
Affiliation(s)
- Oliver Sandys
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam, The Netherlands
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anje Te Velde
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Dong H, Zhang Y, Huang Y, Deng H. Pathophysiology of RAGE in inflammatory diseases. Front Immunol 2022; 13:931473. [PMID: 35967420 PMCID: PMC9373849 DOI: 10.3389/fimmu.2022.931473] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a non-specific multi-ligand pattern recognition receptor capable of binding to a range of structurally diverse ligands, expressed on a variety of cell types, and performing different functions. The ligand-RAGE axis can trigger a range of signaling events that are associated with diabetes and its complications, neurological disorders, cancer, inflammation and other diseases. Since RAGE is involved in the pathophysiological processes of many diseases, targeting RAGE may be an effective strategy to block RAGE signaling.
Collapse
|
34
|
Rochín-Hernández LS, Rochín-Hernández LJ, Flores-Cotera LB. Endophytes, a Potential Source of Bioactive Compounds to Curtail the Formation–Accumulation of Advanced Glycation End Products: A Review. Molecules 2022; 27:molecules27144469. [PMID: 35889349 PMCID: PMC9322667 DOI: 10.3390/molecules27144469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023] Open
Abstract
Endophytes, microorganisms that live in the internal tissues and organs of the plants, are known to produce numerous bioactive compounds, including, at times, some phytochemicals of their host plant. For such reason, endophytes have been quoted as a potential source for discovering bioactive compounds, particularly, of medical interest. Currently, many non-communicable diseases are threatening global human health, noticeably: diabetes, neurodegenerative diseases, cancer, and other ailment related to chronic inflammation and ageing. Intriguingly, the pathogenesis and development of these diseases have been linked to an excessive formation and accumulation of advanced glycation end products (AGEs). AGEs are a heterogeneous group of compounds that can alter the conformation, function, and lifetime of proteins. Therefore, compounds that prevent the formation and consequent accumulation of AGEs (AntiAGEs compounds) could be useful to delay the progress of some chronic diseases, and/or harmful effects of undue AGEs accumulation. Despite the remarkable ability of endophytes to produce bioactive compounds, most of the natural antiAGEs compounds reported in the literature are derived from plants. Accordingly, this work covers 26 plant antiAGEs compounds and some derivatives that have been reported as endophytic metabolites, and discusses the importance, possible advantages, and challenges of using endophytes as a potential source of antiAGEs compounds.
Collapse
Affiliation(s)
- Lory Sthephany Rochín-Hernández
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México City 07360, Mexico;
| | - Lory Jhenifer Rochín-Hernández
- Department of Biomedicine and Molecular Biology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México City 07360, Mexico;
| | - Luis Bernardo Flores-Cotera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México City 07360, Mexico;
- Correspondence: ; Tel.: +55-13499526
| |
Collapse
|
35
|
Ward B, Yombi JC, Balligand JL, Cani PD, Collet JF, de Greef J, Dewulf JP, Gatto L, Haufroid V, Jodogne S, Kabamba B, Pyr dit Ruys S, Vertommen D, Elens L, Belkhir L. HYGIEIA: HYpothesizing the Genesis of Infectious Diseases and Epidemics through an Integrated Systems Biology Approach. Viruses 2022; 14:1373. [PMID: 35891354 PMCID: PMC9318602 DOI: 10.3390/v14071373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
More than two years on, the COVID-19 pandemic continues to wreak havoc around the world and has battle-tested the pandemic-situation responses of all major global governments. Two key areas of investigation that are still unclear are: the molecular mechanisms that lead to heterogenic patient outcomes, and the causes of Post COVID condition (AKA Long-COVID). In this paper, we introduce the HYGIEIA project, designed to respond to the enormous challenges of the COVID-19 pandemic through a multi-omic approach supported by network medicine. It is hoped that in addition to investigating COVID-19, the logistics deployed within this project will be applicable to other infectious agents, pandemic-type situations, and also other complex, non-infectious diseases. Here, we first look at previous research into COVID-19 in the context of the proteome, metabolome, transcriptome, microbiome, host genome, and viral genome. We then discuss a proposed methodology for a large-scale multi-omic longitudinal study to investigate the aforementioned biological strata through high-throughput sequencing (HTS) and mass-spectrometry (MS) technologies. Lastly, we discuss how a network medicine approach can be used to analyze the data and make meaningful discoveries, with the final aim being the translation of these discoveries into the clinics to improve patient care.
Collapse
Affiliation(s)
- Bradley Ward
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (B.W.); (S.P.d.R.)
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.d.G.); (J.P.D.); (V.H.)
| | - Jean Cyr Yombi
- Department of Internal Medicine, Cliniques Universitaires Saint-Luc, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Jean-Luc Balligand
- WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Patrice D. Cani
- WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Jean-François Collet
- WELBIO (Walloon Excellence in Life Sciences and Biotechnology), de Duve Institute, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Julien de Greef
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.d.G.); (J.P.D.); (V.H.)
- Department of Internal Medicine, Cliniques Universitaires Saint-Luc, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Joseph P. Dewulf
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.d.G.); (J.P.D.); (V.H.)
- Department of Laboratory Medicine, Cliniques Universitaires Saint-Luc, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Department of Biochemistry, de Duve Institute, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Laurent Gatto
- Computational Biology and Bioinformatics Unit (CBIO), de Duve Institute, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Vincent Haufroid
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.d.G.); (J.P.D.); (V.H.)
- Department of Laboratory Medicine, Cliniques Universitaires Saint-Luc, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Sébastien Jodogne
- Computer Science and Engineering Department (INGI), Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), UCLouvain, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Benoît Kabamba
- Department of Laboratory Medicine, Cliniques Universitaires Saint-Luc, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Pôle de Microbiologie, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Sébastien Pyr dit Ruys
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (B.W.); (S.P.d.R.)
| | - Didier Vertommen
- De Duve Institute, and MASSPROT Platform, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Laure Elens
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (B.W.); (S.P.d.R.)
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.d.G.); (J.P.D.); (V.H.)
| | - Leïla Belkhir
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.d.G.); (J.P.D.); (V.H.)
- Department of Internal Medicine, Cliniques Universitaires Saint-Luc, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
| |
Collapse
|
36
|
Higher hepatic advanced glycation end products and liver damage markers are associated with non-alcoholic steatohepatitis. Nutr Res 2022; 104:71-81. [PMID: 35635899 DOI: 10.1016/j.nutres.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/01/2022] [Accepted: 04/15/2022] [Indexed: 11/23/2022]
|
37
|
Watanabe M, Toyomura T, Wake H, Nishinaka T, Hatipoglu OF, Takahashi H, Nishibori M, Mori S. Identification of ribosomal protein L9 as a novel regulator of proinflammatory damage-associated molecular pattern molecules. Mol Biol Rep 2022; 49:2831-2838. [DOI: 10.1007/s11033-021-07096-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023]
|
38
|
Receptor Mediated Effects of Advanced Glycation End Products (AGEs) on Innate and Adaptative Immunity: Relevance for Food Allergy. Nutrients 2022; 14:nu14020371. [PMID: 35057553 PMCID: PMC8778532 DOI: 10.3390/nu14020371] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
As of late, evidence has been emerging that the Maillard reaction (MR, also referred to as glycation) affects the structure and function of food proteins. MR induces the conformational and chemical modification of food proteins, not only on the level of IgG/IgE recognition, but also by increasing the interaction and recognition of these modified proteins by antigen-presenting cells (APCs). This affects their biological properties, including digestibility, bioavailability, immunogenicity, and ultimately their allergenicity. APCs possess various receptors that recognize glycation structures, which include receptor for advanced glycation end products (RAGE), scavenger receptors (SRs), galectin-3 and CD36. Through these receptors, glycation structures may influence the recognition, uptake and antigen-processing of food allergens by dendritic cells (DCs) and monocytes. This may lead to enhanced cytokine production and maturation of DCs, and may also induce adaptive immune responses to the antigens/allergens as a result of antigen uptake, processing and presentation to T cells. Here, we aim to review the current literature on the immunogenicity of AGEs originating from food (exogenous or dietary AGEs) in relation to AGEs that are formed within the body (endogenous AGEs), their interactions with receptors present on immune cells, and their effects on the activation of the innate as well as the adaptive immune system. Finally, we review the clinical relevance of AGEs in food allergies.
Collapse
|
39
|
Jardim MZ, Costa BVDL, Pessoa MC, Duarte CK. Ultra-processed foods increase noncommunicable chronic disease risk. Nutr Res 2021; 95:19-34. [PMID: 34798466 DOI: 10.1016/j.nutres.2021.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022]
Abstract
Several studies have associated the food processing classification - NOVA - and health, but this is not true for all noncommunicable chronic diseases (NCDs). This study aimed to systematically review the association between the intake of NOVA food groups and NCDs. We hypothesized that ultra-processed foods and drinks (UPFD) and processed foods (PF) could increase the risk of NCDs, and that unprocessed (UPF) and minimally processed foods (MPF) may provide protection. We carried out a systematic review of observational studies in January 2021. Searches were performed in SCOPUS, MEDLINE (via PubMed), EMBASE, WEB OF SCIENCE, SCIELO, related articles, hand-searching of reference lists, and direct author contact. In all, 2217 citations were identified and 38 articles met the eligibility criteria for inclusion in this systematic review. Among the analyzed food groups, higher UPFD consumption was positively associated with obesity and associated with the development of all NCDs, mainly hypertension, diabetes and dyslipidemia. However, only a few studies have demonstrated the protective effect of natural foods and MPF consumption on the occurrence of NCDs. In conclusion, UPF may increase the risk of NCDs, and natural foods and MPF may reduce it. Our results reinforce the need for the implementation of policies to mitigate the intake of UPF by the population, as it would improve the quality of the dietary patterns, and directly impact on the incidence of NCDs.
Collapse
Affiliation(s)
- Mariana Zogbi Jardim
- Post-Graduate Program in Nutrition and Health, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Vieira de Lima Costa
- Department of Nutrition and Health, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Department of Nutrition, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Milene Cristine Pessoa
- Department of Nutrition and Health, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Department of Nutrition, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Kümmel Duarte
- Department of Nutrition, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
40
|
Cumpstey AF, Clark AD, Santolini J, Jackson AA, Feelisch M. COVID-19: A Redox Disease-What a Stress Pandemic Can Teach Us About Resilience and What We May Learn from the Reactive Species Interactome About Its Treatment. Antioxid Redox Signal 2021; 35:1226-1268. [PMID: 33985343 DOI: 10.1089/ars.2021.0017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19), affects every aspect of human life by challenging bodily, socioeconomic, and political systems at unprecedented levels. As vaccines become available, their distribution, safety, and efficacy against emerging variants remain uncertain, and specific treatments are lacking. Recent Advances: Initially affecting the lungs, COVID-19 is a complex multisystems disease that disturbs the whole-body redox balance and can be long-lasting (Long-COVID). Numerous risk factors have been identified, but the reasons for variations in susceptibility to infection, disease severity, and outcome are poorly understood. The reactive species interactome (RSI) was recently introduced as a framework to conceptualize how cells and whole organisms sense, integrate, and accommodate stress. Critical Issues: We here consider COVID-19 as a redox disease, offering a holistic perspective of its effects on the human body, considering the vulnerability of complex interconnected systems with multiorgan/multilevel interdependencies. Host/viral glycan interactions underpin SARS-CoV-2's extraordinary efficiency in gaining cellular access, crossing the epithelial/endothelial barrier to spread along the vascular/lymphatic endothelium, and evading antiviral/antioxidant defences. An inflammation-driven "oxidative storm" alters the redox landscape, eliciting epithelial, endothelial, mitochondrial, metabolic, and immune dysfunction, and coagulopathy. Concomitantly reduced nitric oxide availability renders the sulfur-based redox circuitry vulnerable to oxidation, with eventual catastrophic failure in redox communication/regulation. Host nutrient limitations are crucial determinants of resilience at the individual and population level. Future Directions: While inflicting considerable damage to health and well-being, COVID-19 may provide the ultimate testing ground to improve the diagnosis and treatment of redox-related stress diseases. "Redox phenotyping" of patients to characterize whole-body RSI status as the disease progresses may inform new therapeutic approaches to regain redox balance, reduce mortality in COVID-19 and other redox diseases, and provide opportunities to tackle Long-COVID. Antioxid. Redox Signal. 35, 1226-1268.
Collapse
Affiliation(s)
- Andrew F Cumpstey
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anna D Clark
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), Biochemistry, Biophysics and Structural Biology, CEA, CNRS, Université Paris-Sud, Universite Paris-Saclay, Gif-sur-Yvette, France
| | - Alan A Jackson
- Human Nutrition, University of Southampton and University Hospital Southampton, Southampton, United Kingdom
| | - Martin Feelisch
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
41
|
Ates KM, Estes AJ, Liu Y. Potential underlying genetic associations between keratoconus and diabetes mellitus. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2021; 1:100005. [PMID: 34746916 PMCID: PMC8570550 DOI: 10.1016/j.aopr.2021.100005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/14/2022]
Abstract
Background Keratoconus (KC) is the most common ectatic corneal disease, characterized by significantly localized thinning of the corneal stroma. Genetic, environmental, hormonal, and metabolic factors contribute to the pathogenesis of KC. Additionally, multiple comorbidities, such as diabetes mellitus, may affect the risk of KC. Main Body Patients with diabetes mellitus (DM) have been reported to have lower risk of developing KC by way of increased endogenous collagen crosslinking in response to chronic hyperglycemia. However, this remains a debated topic as other studies have suggested either a positive association or no association between DM and KC. To gain further insight into the underlying genetic components of these two diseases, we reviewed candidate genes associated with KC and central corneal thickness in the literature. We then explored how these genes may be regulated similarly or differentially under hyperglycemic conditions and the role they play in the systemic complications associated with DM. Conclusion Our comprehensive review of potential genetic factors underlying KC and DM provides a direction for future studies to further determine the genetic etiology of KC and how it is influenced by systemic diseases such as diabetes.
Collapse
Affiliation(s)
- Kristin M. Ates
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Amy J. Estes
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
42
|
Malik P, Hoidal JR, Mukherjee TK. Implication of RAGE Polymorphic Variants in COPD Complication and Anti-COPD Therapeutic Potential of sRAGE. COPD 2021; 18:737-748. [PMID: 34615424 DOI: 10.1080/15412555.2021.1984417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a slowly progressive and poorly reversible airway obstruction disease. It is caused either alone or in combination of emphysema, chronic bronchitis (CB), and small airways disease. COPD is thought to be a multi-factorial disorder in which genetic susceptibility, environmental factors and tobacco exposure could be doubly or simultaneously implicated. Available medicines against COPD include anti-inflammatory drugs, such as β2-agonists and anticholinergics, which efficiently reduce airflow limitation but are unable to avert disease progression and mortality. Advanced glycation end products (AGE) and their receptors i.e. receptor for advanced glycation end products (RAGE) are some molecules that have been implicated in the complication of COPD. Several RAGE single nucleotide polymorphic (SNP) variants are produced by the mammalian cells. Based on the ethnicity some SNPs aggravate the COPD severity. Mammalian cells produce several alternative RAGE splice variants including a soluble RAGE (sRAGE) and an endogenous soluble RAGE (esRAGE). Both of these act as decoy receptor and thus may help to arrest the COPD complications. Several lines of evidences indicate a decreased level of sRAGE in the COPD subjects. One of the new strategies to reduce COPD complication may be sRAGE therapeutic administration to the COPD subjects. This comprehensive discussion sheds light on the role of RAGE and its polymorphic variants in the COPD complication along with sRAGE therapeutic significance in the COPD prevention.
Collapse
Affiliation(s)
- Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - John R Hoidal
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tapan Kumar Mukherjee
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
43
|
Biological Aspects of Inflamm-Aging in Childhood Cancer Survivors. Cancers (Basel) 2021; 13:cancers13194933. [PMID: 34638416 PMCID: PMC8508005 DOI: 10.3390/cancers13194933] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Anti-cancer treatments improve survival in children with cancer. A total of 80% of children treated for childhood cancer achieve 5-year survival, becoming long-term survivors. However, they undergo several chronic late effects related to treatments. In childhood cancer survivors a chronic low-grade inflammation, known as inflamm-aging, is responsible for frailty, a condition characterized by vital organ failure and by premature aging processes. Inflamm-aging is closely related to chemotherapy and radiotherapy, which induce inflammation, accumulation of senescent cells, DNA mutations, and the production of reactive oxygen species. All these conditions are responsible for the onset of secondary diseases, such as osteoporosis, cardiovascular diseases, obesity, and infertility. Considering that the pathobiology of frailty among childhood cancer survivors is still unknown, investigations are needed to better understand frailty's biological and molecular processes and to identify inflamm-aging key biomarkers in order to facilitate the screening of comorbidities and to clarify whether treatments, normally used to modulate inflamm-aging, may be beneficial. This review offers an overview of the possible biological mechanisms involved in the development of inflamm-aging, focusing our attention on immune system alteration, oxidative stress, cellular senescence, and therapeutic strategies.
Collapse
|
44
|
Zhang L, Li S, Li J, Li Y. LncRNA ORLNC1 Promotes Bone Marrow Mesenchyml Stem Cell Pyroptosis Induced by Advanced Glycation End Production by Targeting miR-200b-3p/Foxo3 Pathway. Stem Cell Rev Rep 2021; 17:2262-2275. [PMID: 34482528 DOI: 10.1007/s12015-021-10247-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2021] [Indexed: 01/06/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are a type of adult stem cells that originate from the mesoderm and have important roles in the body because of their self-renewal and multidirectional differentiation potential. Now it has been proved that BMSCs are closely related to the development of osteoporosis (OP). There is growing evidence that lncRNAs are involved in regulating the pyroptosis of BMSCs. And advanced glycation end-products (AGEs) have been recognized as NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome activators. In this study, we aimed to explore the role of lncRNA ORLNC1 (NONMMUT016106.2) on the pyroptosis of BMSCs under CML (Nε-(carboxymethyl) lysine, the most common AGEs) treatment and its specific molecular mechanisms. Our study revealed that CML treatment promoted pyroptosis of BMSCs and upregulated ORLNC1 expression. As a competing endogenous RNA (ceRNA) of miR-200b-3p, the level of ORLNC1 was negatively correlated with miR-200b-3p. Foxo3 was a target of miR-200b-3p and ORLNC1 promoted BMSCs pyroptosis induced by CML through targeting miR-200b-3p/Foxo3 pathway.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei Province, People's Republic of China.,Department of Endocrinology, The Second Hospital of Shijiazhuang, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Shilun Li
- Department of Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Juan Li
- Department of Endocrinology, The Second Hospital of Shijiazhuang, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Yukun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei Province, People's Republic of China.
| |
Collapse
|
45
|
Naganuma T, Takahashi S, Takeshima T, Kurita N, Omae K, Yoshioka T, Ohnishi T, Ito F, Fukuma S, Hamaguchi S, Fukuhara S. Cohort profile: A super-elderly population-based cohort in Japan (the Sukagawa Study). Int J Epidemiol 2021; 50:727-727h. [PMID: 33544828 DOI: 10.1093/ije/dyaa285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 12/24/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Toru Naganuma
- Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan.,Department of Health care Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sei Takahashi
- Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan.,Department of Health care Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Taro Takeshima
- Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan.,Department of General Medicine, Shirakawa Satellite for Teaching and Research (STAR), Fukushima Medical University, Fukushima, Japan
| | - Noriaki Kurita
- Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan.,Department of Innovative Research and Education for Clinicians and Trainees (DiRECT), Fukushima Medical University Hospital, Fukushima, Japan.,Department of Clinical Epidemiology, Graduate School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kenji Omae
- Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan.,Department of Health care Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Innovative Research and Education for Clinicians and Trainees (DiRECT), Fukushima Medical University Hospital, Fukushima, Japan
| | - Takashi Yoshioka
- Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan.,Department of Health care Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Ohnishi
- Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan.,Department of Nephrology, Kasukabe Central General Hospital, Kusagabe, Saitama, Japan
| | - Fumihito Ito
- Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan.,Department of Clinical Epidemiology, Graduate School of Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Emergency Medicine, School of Medicine, International University of Health and Welfare, Narita, Chiba, Japan
| | - Shingo Fukuma
- Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan.,Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sugihiro Hamaguchi
- Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan.,Department of General Internal Medicine, Fukushima Medical University, Fukushima, Japan
| | - Shunichi Fukuhara
- Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan.,Department of Health care Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
46
|
Cervantes-Valencia ME, González-Villalva A, Cano-Gutiérrez G, Albarrán-Alonso JC, Fortoul TI. Effects of Vanadium Inhalation and Sweetened Beverage Ingestion in Mice: Morphological and Biochemical Changes in the Liver. Int J Toxicol 2021; 40:466-474. [PMID: 34284608 DOI: 10.1177/10915818211030858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of this report was to evaluate the morphological and biochemical changes in the liver by the inhalation of vanadium and consumption of sweetened beverages in a subchronic murine model. Forty CD-1 male mice were randomly divided into four groups: control, vanadium (V), sucrose 30% (S), and vanadium-sucrose (V + S). V was inhaled (1.4 mg/m3) for 1h, twice/week; 30% sucrose solution was given orally ad libitum. Blood samples were obtained for AST, ALT, and LDH determination. Liver samples were processed for histological and oxidative stress immunohistochemical evaluation with 4-hydroxynonenal at weeks 4 and 8 of exposure. Regarding liver function tests, a statistically significant increase (P < 0.05) was observed in groups V, S, and V + S at weeks 4 and 8 compared to the control group. A greater number of hepatocytes with meganuclei and binuclei were observed in V and V + S at week 8 compared to the other groups. Steatosis and regenerative changes were more extensive in the eighth week V + S group. 4-Hydroxynonenal immunoreactivity increased in the V + S group at both exposure times compared to the other groups; however, the increment was more evident in the V + S group at week 4 compared to the V + S group at week 8. An increase in De Ritis ratio (>1) was noticed in experimental groups at weeks 4 and 8. Findings demonstrate that in the liver, V, S, and V + S induced oxidative stress and regenerative changes that increased with the length of exposure. Results support possible potentiation of liver damage in areas with high air pollution and high-sweetened beverage consumption.
Collapse
Affiliation(s)
- María Eugenia Cervantes-Valencia
- Departamento de Biología Celular y Tisular, Facultad de Medicina, 61589Universidad Nacional Autonoma de México (UNAM), Mexico City, Mexico
| | - Adriana González-Villalva
- Departamento de Biología Celular y Tisular, Facultad de Medicina, 61589Universidad Nacional Autonoma de México (UNAM), Mexico City, Mexico
| | - Gumaro Cano-Gutiérrez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, 61589Universidad Nacional Autonoma de México (UNAM), Mexico City, Mexico
| | - Juan Carlos Albarrán-Alonso
- Departamento de Biología Celular y Tisular, Facultad de Medicina, 61589Universidad Nacional Autonoma de México (UNAM), Mexico City, Mexico
| | - Teresa Imelda Fortoul
- Departamento de Biología Celular y Tisular, Facultad de Medicina, 61589Universidad Nacional Autonoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
47
|
Mozzini C, Setti A, Cicco S, Pagani M. The Most Severe Paradigm of Early Cardiovascular Disease: Hutchinson-Gilford Progeria. Focus on the Role of Oxidative Stress. Curr Probl Cardiol 2021; 47:100900. [PMID: 34167843 DOI: 10.1016/j.cpcardiol.2021.100900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Oxidative stress (OS) is one of the most frequently recognized causes of ageing. Telomere erosion, defects in the DNA damage response and alterations in the nuclear architecture are also associated with premature ageing. The most severe premature ageing syndrome, Hutchinson-Gilford progeria syndrome (HGPS) is associated with alterations in nuclear shape resulting in the deregulation of lamin A/C. In this review we describe emerging data reporting the role of OS and antioxidant defence in progeroid syndromes focusing on HGPS. We explore precise antioxidant defence mechanisms and related drugs that may create a potential path out of the woods in this disease. Pathways regulated by Nuclear factor E2 related factor (Nrf2), by Nuclear Factor kappa B (NF-kB), and related to the Unfolded Protein Response (UPR) and Endoplasmic Reticulum (ER) stress are under investigation in HGPS patients for which the goal is a significant lifespan extension in particular by postponing atherosclerosis-related complications.
Collapse
Affiliation(s)
- Chiara Mozzini
- Department of Medicine, Section of Internal Medicine, Carlo Poma Hospital, Mantova Italy.
| | - Angela Setti
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy.
| | - Sebastiano Cicco
- Unit of Internal Medicine "Guido Baccelli", Department of Biomedical Sciences and Human Oncology University of Bari, Aldo Moro Medical School, Bari, Italy.
| | - Mauro Pagani
- Department of Medicine, Section of Internal Medicine, Carlo Poma Hospital, Mantova Italy.
| |
Collapse
|
48
|
Page TH, Chiappo D, Brunini F, Garnica J, Blackburn J, Dudhiya F, Prendecki M, McAdoo SP, Pusey CD. Danger-associated molecular pattern molecules and the receptor for advanced glycation end products enhance ANCA-induced responses. Rheumatology (Oxford) 2021; 61:834-845. [PMID: 33974049 PMCID: PMC8824420 DOI: 10.1093/rheumatology/keab413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/04/2021] [Indexed: 11/25/2022] Open
Abstract
Objectives The pro-inflammatory activities of the calgranulins and HMGB1 can be counteracted by sRAGE, the soluble form of their shared receptor. To understand the role of these molecules in AAV and their potential as therapeutic targets we have studied (i) the relationship between these DAMPS and disease activity; (ii) the expression of RAGE and sRAGE in biopsy tissue and peripheral blood; and (iii) the effect of these molecules on ANCA-mediated cytokine production. Methods We examined circulating levels of calgranulins (S100A8/A9 and S100A12), HMGB1 and sRAGE by ELISA. RAGE was examined in AAV kidney and lung biopsies by immunohistochemistry and RAGE expression was monitored in peripheral blood by qPCR. In vitro, the effect of co-stimulating PBMC with ANCA and S100A8/A9 on cytokine production was studied by ELISA. Results We found significantly raised levels of calgranulins and HMGB1 in active AAV regardless of clinical phenotype (PR3+/MPO+ AAV). Levels of calgranulins showed significant correlations with each other. RAGE protein and message was raised in peripheral blood and in cells infiltrating kidney and lung biopsy tissue, while sRAGE was lowered. Furthermore, ANCA-mediated production of IL-8 from PBMC was significantly enhanced by the presence of S100A8/A9 in a RAGE/TLR4-dependent manner. Conclusions Raised circulating calgranulins provide a good marker of disease activity in AAV and are unlikely to be counteracted by sRAGE. Increased RAGE expression in AAV indicates receptor stimulation in active disease that may exacerbate ANCA-induced cytokine production. Targeting the RAGE pathway may provide a useful therapeutic approach in AAV.
Collapse
Affiliation(s)
- Theresa H Page
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Hospital, London, UK
| | - Derick Chiappo
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Hospital, London, UK
| | - Francesca Brunini
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Hospital, London, UK.,Nephrology and Dialysis Unit, Ospedale di Circolo e Fondazione Macchi, ASST-Settelaghi, Varese, Italy
| | - Josep Garnica
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Hospital, London, UK.,Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, 08036, Spain
| | - Jack Blackburn
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Hospital, London, UK
| | - Fayaz Dudhiya
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Hospital, London, UK
| | - Maria Prendecki
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Hospital, London, UK
| | - Stephen P McAdoo
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Hospital, London, UK
| | - Charles D Pusey
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
49
|
Guo Y, Jia X, Cui Y, Song Y, Wang S, Geng Y, Li R, Gao W, Fu D. Sirt3-mediated mitophagy regulates AGEs-induced BMSCs senescence and senile osteoporosis. Redox Biol 2021; 41:101915. [PMID: 33662874 PMCID: PMC7930642 DOI: 10.1016/j.redox.2021.101915] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 02/09/2023] Open
Abstract
Senile osteoporosis (SOP) is widely regarded as one of the typical aging-related diseases due to a decrease in bone mass and the destruction in microarchitecture. The inhibition of mitophagy can promote bone marrow mesenchymal stem cells (BMSCs) senescence, and increasing studies have shown that interventions targeting BMSCs senescence can ameliorate osteoporosis, exhibiting their potential for use as therapeutic strategies. Sirtuin-3 (Sirt3) is an essential mitochondria metabolic regulatory enzyme that plays an important role in mitochondrial homeostasis, but its role in bone homeostasis remains largely unknown. This study seeks to investigate whether advanced glycation end products (AGEs) accumulation aggravated BMSCs senescence and SOP, and explored the mechanisms underlying these effects. We observed that AGEs significantly aggravated BMSCs senescence, as well as promoted mitochondrial dysfunction and inhibited mitophagy in a concentration-dependent manner. In addition, this effect could be further strengthened by Sirt3 silencing. Importantly, we identified that the reduction of Sirt3 expression and the mitophagy were vital mechanisms in AGEs-induced BMSCs senescence. Furthermore, overexpression of Sirt3 by intravenously injection with recombinant adeno-associated virus 9 carrying Sirt3 plasmids (rAAV-Sirt3) significantly alleviated BMSCs senescence and the formation of SOP in SAMP6. In conclusion, our data demonstrated that Sirt3 protects against AGEs-induced BMSCs senescence and SOP. Targeting Sirt3 to improve mitophagy may represent a potential therapeutic strategy for attenuating AGEs-associated SOP.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xiong Jia
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Yongzhi Cui
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Siyuan Wang
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Yongtao Geng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Rui Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Weihang Gao
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Dehao Fu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
50
|
HbA1c may contribute to the development of non-alcoholic fatty liver disease even at normal-range levels. Biosci Rep 2021; 40:221879. [PMID: 31940026 PMCID: PMC6997109 DOI: 10.1042/bsr20193996] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/24/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Previous clinical studies highlighted nonalcoholic fatty liver disease (NAFLD) as a hepatic facet of metabolic syndrome, which progresses toward Type 2 diabetes along with an elevation of HbA1c in the blood. Longitudinal observations were performed in a cohort of 2811 participants with no liver disease at inception. The rate of the conversion into NAFLD was 15.7% (440/2811), with a steady increase in prevalence observed in sub-cohorts with increasing HbA1c levels. Moreover, regression analysis indicated that HbA1c levels serve as the risk factors for NAFLD after multiple adjustments (odds ratio: 1.58, P-value < 0.004). When HbA1c-related molecular networks were investigated using natural language programming algorithms, multiple genetic/small molecular (SM) pathways were highlighted as connectors between the HbA1c levels and the development of NAFLD, including ones for nitric oxide, hypoxia and receptor for advanced glycation end products (RAGE). Our results suggest that increased levels of HbA1c may contribute to the progression of NAFLD either directly, by stimulating RAGE or indirectly, through the promotion of hypoxia and suppression of the release of NO. Further studies are needed to test the impact of HbA1c on the development of the chronic liver disease.
Collapse
|