1
|
Wen SY, Zhi X, Liu HX, Wang X, Chen YY, Wang L. Is the suppression of CD36 a promising way for atherosclerosis therapy? Biochem Pharmacol 2024; 219:115965. [PMID: 38043719 DOI: 10.1016/j.bcp.2023.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023]
Abstract
Atherosclerosis is the main underlying pathology of many cardiovascular diseases and is marked by plaque formation in the artery wall. It has posed a serious threat to the health of people all over the world. CD36 acts as a significant regulator of lipid homeostasis, which is closely associated with the onset and progression of atherosclerosis and may be a new therapeutic target. The abnormal overexpression of CD36 facilitates lipid accumulation, foam cell formation, inflammation, endothelial apoptosis, and thrombosis. Numerous natural products and lipid-lowering agents are found to target the suppression of CD36 or inhibit the upregulation of CD36 to prevent and treat atherosclerosis. Here, the structure, expression regulation and function of CD36 in atherosclerosis and its related pharmacological therapies are reviewed. This review highlights the importance of drugs targeting CD36 suppression in the treatment and prevention of atherosclerosis, in order to develop new therapeutic strategies and potential anti-atherosclerotic drugs both preclinically and clinically.
Collapse
Affiliation(s)
- Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Zhi
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Hai-Xin Liu
- School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xiaohui Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
2
|
Mangoni AA, Zinellu A. A systematic review and meta-analysis of neopterin in rheumatic diseases. Front Immunol 2023; 14:1271383. [PMID: 37799718 PMCID: PMC10548830 DOI: 10.3389/fimmu.2023.1271383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction Novel biomarkers of inflammation and oxidative stress might enhance the early recognition, management, and clinical outcomes of patients with rheumatic diseases (RDs). We assessed the available evidence regarding the pathophysiological role of neopterin, the oxidation product of 7,8-dihydroneopterin, a pteridine generated in macrophages activated by interferon-γ, by conducting a systematic review and meta-analysis of studies reporting its concentrations in biological fluids in RD patients and healthy controls. Methods We searched electronic databases for relevant articles published between inception and 31 August 2023. The risk of bias and the certainty of evidence were assessed using the Joanna Briggs Institute Critical Appraisal Checklist and the Grades of Recommendation, Assessment, Development and Evaluation Working Group system, respectively. Results In 37 studies, when compared to healthy controls, RD patients had significantly higher concentrations of neopterin both in plasma or serum (standard mean difference, SMD=1.31, 95% CI 1.01 to 1.61; p<0.001; moderate certainty of evidence) and in the urine (SMD=1.65, 95% CI 0.86 to 2.43, p<0.001; I2 = 94.2%, p<0.001; low certainty of evidence). The results were stable in sensitivity analysis. There were non-significant associations in meta-regression and subgroup analysis between the effect size and age, male to female ratio, year of publication, sample size, RD duration, C-reactive protein, erythrocyte sedimentation rate, specific type of RD, presence of connective tissue disease, analytical method used, or biological matrix investigated (plasma vs. serum). By contrast, the effect size was significantly associated with the geographical area in studies assessing serum or plasma and with the type of RD in studies assessing urine. Discussion Pending additional studies that also focus on early forms of disease, our systematic review and meta-analysis supports the proposition that neopterin, a biomarker of inflammation and oxidative stress, can be useful for the identification of RDs. (PROSPERO registration number: CRD42023450209). Systematic review registration PROSPERO, identifier CRD42023450209.
Collapse
Affiliation(s)
- Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
3
|
Neopterin Levels in Periodontitis and after Nonsurgical Periodontal Therapy: Evaluation of Gingival Crevicular Fluid, Oral Fluid, Serum and Urinary Samples-A Case-Control Study. Biomedicines 2022; 10:biomedicines10123200. [PMID: 36551955 PMCID: PMC9776342 DOI: 10.3390/biomedicines10123200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease that leads to the destruction of the tooth-supporting tissues with complex immune response. Neopterin (Np), secreted via activated macrophages, is considered a biomarker of cellular immunity. The aim of this study was to evaluate the impact of periodontitis and nonsurgical periodontal therapy. Np gingival crevicular fluid (GCF), oral fluid, serum and urine levels were compared in subjects with periodontitis before periodontal treatment, three months after and in a healthy control. Np GCF concentrations in the study group after treatment were significantly higher than the control group (p = 0.038). The GCF total amount (amount of substance) was significantly higher in the study group before periodontal treatment than in the control group (p = 0.001) and higher than the levels taken after treatment collection (p = 0.024). The oral fluid Np concentrations in the study group after treatment were significantly increased compared to the before treatment concentrations (p = 0.020). The same trend was observed in the urine samples. Significant correlation was found between the serum and oral fluid Np concentrations (p = 0.001, ρ = 0.40). Our results confirm the impact of cellular immunity and macrophages on periodontitis and on the resolution of periodontal inflammation. The presence of neopterin in oral fluid most likely originates in the serum.
Collapse
|
4
|
Ghodsian N, Yeandle A, Hock BD, Gieseg SP. CD36 down regulation by the macrophage antioxidant 7,8-dihydroneopterin through modulation of PPAR-γ activity. Free Radic Res 2022; 56:366-377. [PMID: 36017639 DOI: 10.1080/10715762.2022.2114904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
CD36 is the key scavenger receptor driving the formation of cholesterol loaded foam cells, the principal cellular component of atherosclerotic plaques. CD36 is down regulated by 7,8-dihydroneopterin, a potent superoxide and hypochlorite scavenging antioxidant generated by interferon-γ stimulated macrophages. 7,8-dihydroneopterin down regulates CD36 mRNA and protein levels so inhibiting macrophage foam cell formation in vitro.We examined the mechanism of 7,8-dihydroneopterin down regulation of CD36 by measuring CD36 and PPAR-γ levels by western blot analysis, in the monocyte-like U937 cells with a range of PPAR-γ stimulants and inhibitors. Lipoxygenase activity was measured by monitoring linoleic acid oxidation at 234 nm for diene formation.Between 100 and 200 μM, 7,8-dihydroneopterin decreased CD36 levels by 50% within 12 hours with levels dropping below 25% by 24 hours. CD36 levels returned to basal levels after 24 hours. Inhibition of protein synthesis by cycloheximide show 7,8-dihydroneopterin had no effect on CD36 degradation rates. PPAR-γ levels were not altered by the addition of 7,8-dihydroneopterin. MAP Kinase, P38 and NF-κB pathways inhibitors SP600125, PD98059, SB202190 and BAY 11-7082 respectively, did not restore the CD36 levels in the presence of 7,8-dihydroneopterin. The addition the lipophilic PPAR-γ activators rosiglitazone and azelaoyl-PAF prevented the CD36 down regulation by 7,8-dihydroneopterin. 7,8-dihydroneopterin inhibited soybean lipoxygenase and reduced U937 cell basal levels of cellular lipid oxides as measured by HPLC-TBARS analysis.The data shows 7,8-dihydroneopterin down regulates CD36 expression by decreasing the level of lipid oxide stimulation of PPAR-γ promotor activity, potentially through lipoxygenase inhibition.
Collapse
Affiliation(s)
- Nooshin Ghodsian
- Free Radical Biochemistry, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Anthony Yeandle
- Free Radical Biochemistry, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Barry D Hock
- Haematology Research Group, Christchurch Hospital, New Zealand
| | - Steven P Gieseg
- Free Radical Biochemistry, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Department of Radiology, University of Otago Christchurch, New Zealand.,MARS Bioimaging Ltd., 29a Clyde Rd, Christchurch 8140, New Zealand
| |
Collapse
|
5
|
Ikemoto K, Sumi-Ichinose C, Suganuma Y, Kano T, Ihira N, Nagatsu T, Kondo K. Salivary neopterin and related pterins: their comparison to those in plasma and changes in individuals. J Biochem 2021; 170:559-567. [PMID: 34181024 DOI: 10.1093/jb/mvab076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/26/2021] [Indexed: 02/02/2023] Open
Abstract
Neopterin (NP), biopterin (BP) and monapterin (MP) exist in saliva. The physiological role of salivary NP as well as the pathophysiological role of increased NP in the immune-activated state has been unclear. Saliva is a characteristic specimen different from other body fluids. In this study, we analysed salivary NP and related pterin compounds, BP and MP and revealed some of its feature. High-performance liquid chromatography (HPLC) analysis of saliva and plasma obtained from 26 volunteers revealed that salivary NP existed mostly in its fully oxidized form. The results suggested that salivary NP as well as BP would mostly originate from the oral cavity, perhaps the salivary glands, and that salivary NP levels might not reflect those in the plasma. We also found that a gender difference existed in correlations between concentrations of salivary total concentrations of NP (tNP) and BP (tBP). HPLC analysis of saliva obtained from 5 volunteers revealed that the concentrations of salivary tNP as well as tBP fluctuated in an irregular fashion in various individuals. MP, a diastereomer of NP, might have come from oral cavity NP itself or its precursor. These results indicated that the nature of salivary NP might be different from that of NP in the blood or urine.
Collapse
Affiliation(s)
- Kazuhisa Ikemoto
- Department of Pharmacology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Toyoake, Aichi 470-1192, Japan
| | - Chiho Sumi-Ichinose
- Department of Pharmacology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Toyoake, Aichi 470-1192, Japan
| | - Yui Suganuma
- Department of Pharmacology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Toyoake, Aichi 470-1192, Japan
| | - Taiki Kano
- Department of Pharmacology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Toyoake, Aichi 470-1192, Japan
| | - Noriko Ihira
- Department of Pharmacology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Toyoake, Aichi 470-1192, Japan
| | - Toshiharu Nagatsu
- Center for Research Promotion and Support, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Toyoake, Aichi 470-1192, Japan
| | - Kazunao Kondo
- Department of Pharmacology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
6
|
Neuditschko B, Leibetseder M, Brunmair J, Hagn G, Skos L, Gerner MC, Meier-Menches SM, Yotova I, Gerner C. Epithelial Cell Line Derived from Endometriotic Lesion Mimics Macrophage Nervous Mechanism of Pain Generation on Proteome and Metabolome Levels. Biomolecules 2021; 11:1230. [PMID: 34439896 PMCID: PMC8393596 DOI: 10.3390/biom11081230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a benign disease affecting one in ten women of reproductive age worldwide. Although the pain level is not correlated to the extent of the disease, it is still one of the cardinal symptoms strongly affecting the patients' quality of life. Yet, a molecular mechanism of this pathology, including the formation of pain, remains to be defined. Recent studies have indicated a close interaction between newly generated nerve cells and macrophages, leading to neurogenic inflammation in the pelvic area. In this context, the responsiveness of an endometriotic cell culture model was characterized upon inflammatory stimulation by employing a multi-omics approach, including proteomics, metabolomics and eicosanoid analysis. Differential proteomic profiling of the 12-Z endometriotic cell line treated with TNFα and IL1β unexpectedly showed that the inflammatory stimulation was able to induce a protein signature associated with neuroangiogenesis, specifically including neuropilins (NRP1/2). Untargeted metabolomic profiling in the same setup further revealed that the endometriotic cells were capable of the autonomous production of 7,8-dihydrobiopterin (BH2), 7,8-dihydroneopterin, normetanephrine and epinephrine. These metabolites are related to the development of neuropathic pain and the former three were found up-regulated upon inflammatory stimulation. Additionally, 12-Z cells were found to secrete the mono-oxygenated oxylipin 16-HETE, a known inhibitor of neutrophil aggregation and adhesion. Thus, inflammatory stimulation of endometriotic 12-Z cells led to specific protein and metabolite expression changes suggesting a direct involvement of these epithelial-like cells in endometriosis pain development.
Collapse
Affiliation(s)
- Benjamin Neuditschko
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (B.N.); (M.L.); (J.B.); (G.H.); (L.S.); (S.M.M.-M.)
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria
| | - Marlene Leibetseder
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (B.N.); (M.L.); (J.B.); (G.H.); (L.S.); (S.M.M.-M.)
| | - Julia Brunmair
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (B.N.); (M.L.); (J.B.); (G.H.); (L.S.); (S.M.M.-M.)
| | - Gerhard Hagn
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (B.N.); (M.L.); (J.B.); (G.H.); (L.S.); (S.M.M.-M.)
| | - Lukas Skos
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (B.N.); (M.L.); (J.B.); (G.H.); (L.S.); (S.M.M.-M.)
| | - Marlene C. Gerner
- Division of Biomedical Science, University of Applied Sciences, FH Campus Wien, Favoritenstraße 226, 1100 Vienna, Austria;
| | - Samuel M. Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (B.N.); (M.L.); (J.B.); (G.H.); (L.S.); (S.M.M.-M.)
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria
- Joint Metabolome Facility, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria
| | - Iveta Yotova
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria;
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (B.N.); (M.L.); (J.B.); (G.H.); (L.S.); (S.M.M.-M.)
- Joint Metabolome Facility, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria
| |
Collapse
|
7
|
Ghodsian N, Yeandle A, Gieseg SP. Foam cell formation but not oxLDL cytotoxicity is inhibited by CD36 down regulation by the macrophage antioxidant 7,8-dihydroneopterin. Int J Biochem Cell Biol 2021; 133:105918. [PMID: 33421634 DOI: 10.1016/j.biocel.2021.105918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/09/2020] [Accepted: 12/23/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND AIMS Cluster of differentiation 36 (CD36) is a key scavenger receptor in the control of macrophage uptake of oxidised low-density lipoproteins (oxLDL). CD36 expression levels are not down regulated by intracellular cholesterol but are upregulated by oxidised low density lipoprotein (oxLDL) leading to the formation of lipid loaded foam cells, a major constituent of atherosclerotic plaques. We have previous shown that CD36 is down regulated by 7,8-dihydroneopterin, an antioxidant generated by γ-interferon activated macrophages. How CD36 down regulation affects oxLDL induced cytotoxicity, CD36 oxLDL upregulation and foam cell formation is examined using human monocyte like U937 cell line as a model system of human macrophages. METHODS Low density lipoprotein (LDL) was prepared by ultracentrifugation from human plasma and oxidised in copper chloride. CD36 levels in U937 cells were measured by western blot analysis. and lipid accumulation was measured by oil red-O staining and 7-ketocholesterol accumulation by high performance liquid chromatography. Cell viability was measured by flow cytometry analysis after propidium iodide staining. RESULTS 7,8-dihydroneopterin concentrations above 100 μM caused a concentration and time dependent decrease in cellular CD36 levels to 20 % of the untreated cells after 24 h. Upregulation of CD36 by oxLDL was inhibited by 7,8-dihydroneopterin treatment. The CD36 down regulation was associated with decrease in foam cell formation but not a reduction on oxLDL cytotoxicity. CONCLUSIONS 7,8-dihydroneopterin down regulated CD36 in U937 cells, inhibiting foam cell formation but not oxLDL mediated cell death. 7,8-dihydroneopterin may modulate foam cell formation in atherosclerotic plaques.
Collapse
Affiliation(s)
- Nooshin Ghodsian
- Free Radical Biochemistry Laboratory, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Anthony Yeandle
- Free Radical Biochemistry Laboratory, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Steven P Gieseg
- Free Radical Biochemistry Laboratory, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Department of Radiology, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
8
|
Watanabe T. Neopterin derivatives - a novel therapeutic target rather than biomarker for atherosclerosis and related diseases. VASA 2020; 50:165-173. [PMID: 32924886 DOI: 10.1024/0301-1526/a000903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review provides an updated overview of the emerging roles of neopterin derivatives in atherosclerosis. Neopterin, a metabolite of guanosine triphosphate, is produced by interferon-γ-activated macrophages and is expressed at high levels in atheromatous plaques within the human carotid and coronary arteries as well as in the aorta. Plasma concentrations of neopterin are higher in patients with carotid, cerebral, and coronary artery diseases as well as aortic aneurysm. The concentration of neopterin is positively correlated with the severity of coronary artery disease. However, a prospective cohort study showed that neopterin contributes to protection against plaque formation in carotid arteries in patients with atherosclerosis. Moreover, using both in vitro and in vivo experiments, a recent study has shown the atheroprotective effects of neopterin. Neopterin suppresses the expression of monocyte chemotactic protein-1, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 in endothelial cells, and thereby suppresses the adhesion of monocytes to endothelial cells. It also suppresses the inflammatory phenotype of monocyte-derived macrophages. In addition, neopterin suppresses oxidized low-density lipoprotein-induced foam cell formation in macrophages and the migration and proliferation of vascular smooth muscle cells. Neopterin injection into apolipoprotein E-deficient (Apoe-/-) mice suppresses the development of atherosclerotic lesions. A neopterin derivative tetrahydroneopterin (BH4), also known as a cofactor for nitric oxide (NO) synthases, suppresses atherosclerosis and vascular injury-induced neointimal hyperplasia in Apoe-/- mice. BH4 administration improves endothelial dysfunction in patients with coronary artery disease. These findings suggest that neopterin production may increase to counteract the progression of atherosclerosis, as neopterin contributes to atheroprotection. Otherwise, the increased neopterin levels in atherosclerosis may reflect a compensatory mechanism associated with inducible NO synthase upregulation in macrophages to supply BH4 for high output NO production caused by decreased endothelial NO synthase in atherosclerosis. Therefore, neopterin derivatives are a novel therapeutic target for atherosclerosis and related diseases.
Collapse
Affiliation(s)
- Takuya Watanabe
- Department of Internal Medicine, Ushioda General Hospital/Clinic, Yokohama, Japan
| |
Collapse
|
9
|
Baxter-Parker G, Prebble HM, Cross S, Steyn N, Shchepetkina A, Hock BD, Cousins A, Gieseg SP. Neopterin formation through radical scavenging of superoxide by the macrophage synthesised antioxidant 7,8-dihydroneopterin. Free Radic Biol Med 2020; 152:142-151. [PMID: 32145301 DOI: 10.1016/j.freeradbiomed.2020.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022]
Abstract
Clinical measurement of neopterin has been extensively used as a marker of inflammation but the in vivo mechanism generating neopterin is poorly understood. Neopterin is described as the oxidation product of 7,8-dihydroneopterin, a potent antioxidant generated by monocyte/macrophages in response to interferon-γ. While peroxyl and hydroxyl scavenging generates dihydroxanthopterin, hypochlorite efficiently oxidises 7,8-dihydroneopterin into neopterin, but this reaction alone does not explain the high levels of neopterin seen in clinical data. Here, we examine whether superoxide scavenging by 7,8-dihydroneopterin generates neopterin. U937 cells incubated with oxLDL showed a time dependent increase superoxide and 7,8-dihydroneopterin oxidation to neopterin. Neopterin generation in oxLDL or phorbol ester treated U937 cells or human monocytes was inhibited by apocynin and PEG-SOD. Addition of the myeloperoxidase inhibitor 4-aminobenzoic acid hydrazide (ABAH) had no effect of the superoxide generation or neopterin formation. 7,8-Dihydroneopterin reacted with superoxide/hydroxy radical mixtures generated by X-ray radiolysis to give neopterin. Formation of neopterin by superoxide derived from the xanthine/xanthine oxidase system was inhibited by superoxide dismutase. Neopterin formation was inhibited by apocynin in phorbol ester treated human carotid plaque rings in tissue culture. These results indicate that 7,8-dihydroneopterin scavenges superoxide and is subsequently oxidised into neopterin in cellular and cell-free experimental systems.
Collapse
Affiliation(s)
- Gregory Baxter-Parker
- Free Radical Biochemistry, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Hannah M Prebble
- Free Radical Biochemistry, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sean Cross
- Free Radical Biochemistry, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Nina Steyn
- Free Radical Biochemistry, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Anastasia Shchepetkina
- Free Radical Biochemistry, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Barry D Hock
- Haematology Research, Department of Pathology and Biomedical Sciences, University of Otago Christchurch, New Zealand
| | - Andrew Cousins
- Department of Medical Physics and Bioengineering, Christchurch Hospital, Canterbury District Health Board, New Zealand
| | - Steven P Gieseg
- Free Radical Biochemistry, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Department of Radiology, University of Otago Christchurch, New Zealand; European Organization for Nuclear Research (CERN), Geneva, Switzerland.
| |
Collapse
|
10
|
Janmale TV, Lindsay A, Gieseg SP. Nucleoside transporters are critical to the uptake and antioxidant activity of 7,8-dihydroneopterin in monocytic cells. Free Radic Res 2020; 54:341-350. [DOI: 10.1080/10715762.2020.1764948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Tejraj V. Janmale
- Free Radical Biochemistry Laboratory, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Angus Lindsay
- Free Radical Biochemistry Laboratory, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Steven P. Gieseg
- Free Radical Biochemistry Laboratory, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
11
|
Lindsay A, Gieseg SP. Pterins as diagnostic markers of exercise-induced stress: a systematic review. J Sci Med Sport 2019; 23:53-62. [PMID: 31501021 DOI: 10.1016/j.jsams.2019.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 01/17/2023]
Abstract
OBJECTIVES To evaluate pterins as diagnostic biomarkers of exercise-induced stress. DESIGN Systematic review of the literature. METHODS MEDLINE, Scopus and Web of Science were searched in March 2019 for relevant literature. We only considered in vivo studies of healthy humans that reported measurement of a pterin(s) in response to exercise or sport with no underlying prior disease or complication. Relevant articles were independently reviewed and resolved by consensus. RESULTS We included 29 studies with 644 participants. We classified articles by running/hiking, cycling, rugby, mixed martial arts (MMA) or other. Eighty-six percent of studies measured a significant increase in a pterin in response to exercise. Changes in pterin concentrations were within 24h of the exercise-stimulus in 79% of studies and 17% measured a change from baseline greater than 48h post-exercise (49% did not measure or report beyond 48h). Neopterin or total neopterin (neopterin+7,8-dihydroneopterin) were the primary pterin measured (28 studies) and they were equally sensitive to exercise regardless of whether the stimulus was running, cycling, rugby, MMA or other. CONCLUSIONS Neopterin and total neopterin increase in response to exercise-induced stress. Pterins may have limited capacity for monitoring long-term stress beyond 48h but further research is required.
Collapse
Affiliation(s)
- Angus Lindsay
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| | - Steven P Gieseg
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; Department of Radiology, University of Otago Christchurch, PO Box 4345, Christchurch 8011, New Zealand
| |
Collapse
|
12
|
Prebble H, Cross S, Marks E, Healy J, Searle E, Aamir R, Butler A, Roake J, Hock B, Anderson N, Gieseg SP. Induced macrophage activation in live excised atherosclerotic plaque. Immunobiology 2018; 223:526-535. [DOI: 10.1016/j.imbio.2018.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/29/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
|
13
|
Neopterin, Inflammation, and Oxidative Stress: What Could We Be Missing? Antioxidants (Basel) 2018; 7:antiox7070080. [PMID: 29949851 PMCID: PMC6071275 DOI: 10.3390/antiox7070080] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 01/17/2023] Open
Abstract
Neopterin has been extensively used as a clinical marker of immune activation during inflammation in a wide range of conditions and stresses. However, the analysis of neopterin alone neglects the cellular reactions that generate it in response to interferon-γ. Neopterin is the oxidation product of 7,8-dihydroneopterin, which is a potent antioxidant generated by interferon-γ-activated macrophages. 7,8-Dihydroneopterin can protect macrophage cells from a range of oxidants through a scavenging reaction that generates either neopterin or dihydroxanthopterin, depending on the oxidant. Therefore, plasma and urinary neopterin levels are dependent on both macrophage activation to generate 7,8-dihydroneopterin and subsequent oxidation to neopterin. This relationship is clearly shown in studies of exercise and impact-induced injury during intense contact sport. Here, we argue that neopterin and total neopterin, which is the combined value of 7,8-dihydroneopterin and neopterin, could provide a more comprehensive analysis of clinical inflammation than neopterin alone.
Collapse
|
14
|
Shirai R, Sato K, Yamashita T, Yamaguchi M, Okano T, Watanabe-Kominato K, Watanabe R, Matsuyama TA, Ishibashi-Ueda H, Koba S, Kobayashi Y, Hirano T, Watanabe T. Neopterin Counters Vascular Inflammation and Atherosclerosis. J Am Heart Assoc 2018; 7:e007359. [PMID: 29420219 PMCID: PMC5850243 DOI: 10.1161/jaha.117.007359] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neopterin, a metabolite of GTP, is produced by activated macrophages and is abundantly expressed within atherosclerotic lesions in human aorta and carotid and coronary arteries. We aimed to clarify the influence of neopterin on both vascular inflammation and atherosclerosis, as neither effect had been fully assessed. METHODS AND RESULTS We investigated neopterin expression in coronary artery lesions and plasma from patients with coronary artery disease. We assessed the atheroprotective effects of neopterin in vitro using human aortic endothelial cells, human monocyte-derived macrophages, and human aortic smooth muscle cells. In vivo experiments included a study of aortic lesions in apolipoprotein E-deficient mice. Neopterin expression in coronary artery lesions and plasma was markedly increased in patients with versus without coronary artery disease. In human aortic endothelial cells, neopterin reduced proliferation and TNF-α (tumor necrosis factor α)-induced upregulation of MCP-1 (monocyte chemotactic protein 1), ICAM-1 (intercellular adhesion molecule 1), and VCAM-1 (vascular cell adhesion molecule 1). Neopterin attenuated TNF-α-induced monocyte adhesion to human aortic endothelial cells and the inflammatory macrophage phenotype via NF-κB (nuclear factor-κB) downregulation. Neopterin suppressed oxidized low-density lipoprotein-induced foam cell formation associated with CD36 downregulation and upregulation of ATP-binding cassette transporters A1 and G1 in human monocyte-derived macrophages. In human aortic smooth muscle cells, neopterin suppressed angiotensin II-induced migration and proliferation via c-Src/Raf-1/ERK1/2 downregulation without inducing apoptosis. Exogenous neopterin administration and endogenous neopterin attenuation with its neutralizing antibody for 4 weeks retarded and promoted, respectively, the development of aortic atherosclerotic lesions in apolipoprotein E-deficient mice. CONCLUSIONS Our results indicate that neopterin prevents both vascular inflammation and atherosclerosis and may be induced to counteract the progression of atherosclerotic lesions. Consequently, neopterin could be of use as a novel therapeutic target for atherosclerotic cardiovascular diseases.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Apoptosis/drug effects
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Cell Adhesion
- Cell Movement
- Cell Proliferation
- Coculture Techniques
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/pathology
- Coronary Artery Disease/prevention & control
- Cytokines/metabolism
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Female
- Foam Cells/metabolism
- Foam Cells/pathology
- Humans
- Inflammation Mediators/metabolism
- Male
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neopterin/metabolism
- Plaque, Atherosclerotic
- Signal Transduction
- THP-1 Cells
- Vasculitis/metabolism
- Vasculitis/pathology
- Vasculitis/prevention & control
Collapse
Affiliation(s)
- Remina Shirai
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kengo Sato
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Tomoyuki Yamashita
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Maho Yamaguchi
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Taisuke Okano
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kaho Watanabe-Kominato
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Rena Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Taka-Aki Matsuyama
- Department of Pathology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | | | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Youichi Kobayashi
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tsutomu Hirano
- Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Takuya Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|