1
|
Bohorquez LC, de Sousa J, Garcia-Garcia T, Dugar G, Wang B, Jonker MJ, Noirot-Gros MF, Lalk M, Hamoen LW. Metabolic and chromosomal changes in a Bacillus subtilis whiA mutant. Microbiol Spectr 2023; 11:e0179523. [PMID: 37916812 PMCID: PMC10714963 DOI: 10.1128/spectrum.01795-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE WhiA is a conserved DNA-binding protein that influences cell division in many Gram-positive bacteria and, in B. subtilis, also chromosome segregation. How WhiA works in Bacillus subtilis is unknown. Here, we tested three hypothetical mechanisms using metabolomics, fatty acid analysis, and chromosome confirmation capture experiments. This revealed that WhiA does not influence cell division and chromosome segregation by modulating either central carbon metabolism or fatty acid composition. However, the inactivation of WhiA reduces short-range chromosome interactions. These findings provide new avenues to study the molecular mechanism of WhiA in the future.
Collapse
Affiliation(s)
- Laura C. Bohorquez
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Joana de Sousa
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Transito Garcia-Garcia
- Laboratoire de Genetique Microbienne, Domaine de Vilvert, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Gaurav Dugar
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Biwen Wang
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Martijs J. Jonker
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Marie-Françoise Noirot-Gros
- Laboratoire de Genetique Microbienne, Domaine de Vilvert, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Leendert W. Hamoen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Kaur C, Gupta M, Garai S, Mishra SK, Chauhan PS, Sopory S, Singla-Pareek SL, Adlakha N, Pareek A. Microbial methylglyoxal metabolism contributes towards growth promotion and stress tolerance in plants. Environ Microbiol 2021; 24:2817-2836. [PMID: 34435423 DOI: 10.1111/1462-2920.15743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
Plant growth promotion by microbes is a cumulative phenomenon involving multiple traits, many of which are not explored yet. Hence, to unravel microbial mechanisms underlying growth promotion, we have analysed the genomes of two potential growth-promoting microbes, viz., Pseudomonas sp. CK-NBRI-02 (P2) and Bacillus marisflavi CK-NBRI-03 (P3) for the presence of plant-beneficial traits. Besides known traits, we found that microbes differ in their ability to metabolize methylglyoxal (MG), a ubiquitous cytotoxin regarded as general consequence of stress in plants. P2 exhibited greater tolerance to MG and possessed better ability to sustain plant growth under dicarbonyl stress. However, under salinity, only P3 showed a dose-dependent induction in MG detoxification activity in accordance with concomitant increase in MG levels, contributing to enhanced salt tolerance. Furthermore, salt-stressed transcriptomes of both the strains showed differences with respect to MG, ion and osmolyte homeostasis, with P3 being more responsive to stress. Importantly, application of either strain altered MG levels and subsequently MG detoxification machinery in Arabidopsis, probably to strengthen plant defence response and growth. We therefore, suggest a crucial role of microbial MG resistance in plant growth promotion and that it should be considered as a beneficial trait while screening microbes for stress mitigation in plants.
Collapse
Affiliation(s)
- Charanpreet Kaur
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mayank Gupta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shashank K Mishra
- Microbial Technologies Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Sudhir Sopory
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sneh L Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Adlakha
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Ashwani Pareek
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
3
|
Kang SO, Kwak MK. Alcohol dehydrogenase 1 and NAD(H)-linked methylglyoxal oxidoreductase reciprocally regulate glutathione-dependent enzyme activities in Candida albicans. J Microbiol 2020; 59:76-91. [PMID: 33355888 DOI: 10.1007/s12275-021-0552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 11/27/2022]
Abstract
Glutathione reductase (Glr1) activity controls cellular glutathione and reactive oxygen species (ROS). We previously demonstrated two predominant methylglyoxal scavengers-NAD(H)-linked methylglyoxal oxidoreductase (Mgd1) and alcohol dehydrogenase 1 (Adh1)-in glutathione-depleted γ-glutamyl cysteinyl synthetase-disrupted Candida albicans. However, experimental evidence for Candida pathophysiology lacking the enzyme activities of Mgd1 and Adh1 on glutathione-dependent redox regulation remains unclear. Herein, we have aimed to demonstrate that glutathione-dependent enzyme activities coupled with cellular ROS changes is regulated by methylglyoxal accumulation in Δmgd1/Δadh1 double disruptants. Δmgd1/Δadh1 showed severe growth defects and G1-phase cell cycle arrest. The observed complementary and reciprocal methylglyoxal-oxidizing and methylglyoxalreducing activities between Δmgd1 and Δadh1 were not always exhibited in Δmgd1/Δadh1. Although intracellular accumulation of methylglyoxal and pyruvate was shown in all disruptants, to a greater or lesser degree, methylglyoxal was particularly accumulated in the Δmgd1/Δadh1 double disruptant. While cellular ROS significantly increased in Δmgd1 and Δadh1 as compared to the wild-type, Δmgd1/Δadh1 underwent a decrease in ROS in contrast to Δadh1. Despite the experimental findings underlining the importance of the undergoing unbalanced redox state of Δmgd1/Δadh1, glutathione-independent antioxidative enzyme activities did not change during proliferation and filamentation. Contrary to the significantly lowered glutathione content and Glr1 enzyme activity, the activity staining-based glutathione peroxidase activities concomitantly increased in this mutant. Additionally, the enhanced GLR1 transcript supported our results in Δmgd1/Δadh1, indicating that deficiencies of both Adh1 and Mgd1 activities stimulate specific glutathione-dependent enzyme activities. This suggests that glutathione-dependent redox regulation is evidently linked to C. albicans pathogenicity under the control of methylglyoxal-scavenging activities.
Collapse
Affiliation(s)
- Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.
- Present address: Irwee Institute, B-503, Seongnam, 13510, Republic of Korea.
| | - Min-Kyu Kwak
- Department of Food and Nutrition, Institute of Food and Nutrition Science, Eulji University, Seongnam, 13135, Republic of Korea.
| |
Collapse
|
4
|
Eymard-Vernain E, Luche S, Rabilloud T, Lelong C. ZnO and TiO2 nanoparticles alter the ability of Bacillus subtilis to fight against a stress. PLoS One 2020; 15:e0240510. [PMID: 33045025 PMCID: PMC7549824 DOI: 10.1371/journal.pone.0240510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Due to the physicochemical properties of nanoparticles, the use of nanomaterials increases over time in industrial and medical processes. We herein report the negative impact of nanoparticles, using solid growth conditions mimicking a biofilm, on the ability of Bacillus subtilis to fight against a stress. Bacteria have been exposed to sublethal doses of nanoparticles corresponding to conditions that bacteria may meet in their natural biotopes, the upper layer of soil or the gut microbiome. The analysis of the proteomic data obtained by shotgun mass spectrometry have shown that several metabolic pathways are affected in response to nanoparticles, n-ZnO or n-TiO2, or zinc salt: the methyglyoxal and thiol metabolisms, the oxidative stress and the stringent responses. Nanoparticles being embedded in the agar medium, these impacts are the consequence of a physiological adaptation rather than a physical cell injury. Overall, these results show that nanoparticles, by altering bacterial physiology and especially the ability to resist to a stress, may have profound influences on a “good bacteria”, Bacillus subtilis, in its natural biotope and moreover, on the global equilibrium of this biotope.
Collapse
Affiliation(s)
| | - Sylvie Luche
- Université Grenoble Alpes, CNRS, CEA, IRIG, CBM UMR CNRS5249, Grenoble, France
| | - Thierry Rabilloud
- Université Grenoble Alpes, CNRS, CEA, IRIG, CBM UMR CNRS5249, Grenoble, France
| | - Cécile Lelong
- Université Grenoble Alpes, CNRS, CEA, IRIG, CBM UMR CNRS5249, Grenoble, France
- * E-mail:
| |
Collapse
|
5
|
|
6
|
Shumilina J, Kusnetsova A, Tsarev A, Janse van Rensburg HC, Medvedev S, Demidchik V, Van den Ende W, Frolov A. Glycation of Plant Proteins: Regulatory Roles and Interplay with Sugar Signalling? Int J Mol Sci 2019; 20:E2366. [PMID: 31086058 PMCID: PMC6539852 DOI: 10.3390/ijms20092366] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Glycation can be defined as an array of non-enzymatic post-translational modifications of proteins formed by their interaction with reducing carbohydrates and carbonyl products of their degradation. Initial steps of this process rely on reducing sugars and result in the formation of early glycation products-Amadori and Heyns compounds via Schiff base intermediates, whereas their oxidative degradation or reactions of proteins with α-dicarbonyl compounds yield a heterogeneous group of advanced glycation end products (AGEs). These compounds accompany thermal processing of protein-containing foods and are known to impact on ageing, pathogenesis of diabetes mellitus and Alzheimer's disease in mammals. Surprisingly, despite high tissue carbohydrate contents, glycation of plant proteins was addressed only recently and its physiological role in plants is still not understood. Therefore, here we summarize and critically discuss the first steps done in the field of plant protein glycation during the last decade. We consider the main features of plant glycated proteome and discuss them in the context of characteristic metabolic background. Further, we address the possible role of protein glycation in plants and consider its probable contribution to protein degradation, methylglyoxal and sugar signalling, as well as interplay with antioxidant defense.
Collapse
Affiliation(s)
- Julia Shumilina
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
| | - Alena Kusnetsova
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Biotechnology, St. Petersburg Chemical Pharmaceutical University, Saint Petersburg 197022, Russia.
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| | | | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
| | - Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Belarusian State University, 220030 Minsk, Belarus.
- Department of Horticulture, Foshan University, Foshan 528231, China.
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, 3001 Leuven, Belgium.
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| |
Collapse
|
7
|
Anti-σ factor YlaD regulates transcriptional activity of σ factor YlaC and sporulation via manganese-dependent redox-sensing molecular switch in Bacillus subtilis. Biochem J 2018; 475:2127-2151. [PMID: 29760236 DOI: 10.1042/bcj20170911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/29/2018] [Accepted: 05/14/2018] [Indexed: 02/01/2023]
Abstract
YlaD, a membrane-anchored anti-sigma (σ) factor of Bacillus subtilis, contains a HX3CXXC motif that functions as a redox-sensing domain and belongs to one of the zinc (Zn)-co-ordinated anti-σ factor families. Despite previously showing that the YlaC transcription is controlled by YlaD, experimental evidence of how the YlaC-YlaD interaction is affected by active cysteines and/or metal ions is lacking. Here, we showed that the P yla promoter is autoregulated solely by YlaC. Moreover, reduced YlaD contained Zn and iron, while oxidized YlaD did not. Cysteine substitution in YlaD led to changes in its secondary structure; Cys3 had important structural functions in YlaD, and its mutation caused dissociation from YlaC, indicating the essential requirement of a HX3CXXC motif for regulating interactions of YlaC with YlaD. Analyses of the far-UV CD spectrum and metal content revealed that the addition of Mn ions to Zn-YlaD changed its secondary structure and that iron was substituted for manganese (Mn). The ylaC gene expression using βGlu activity from P yla :gusA was observed at the late-exponential and early-stationary phase, and the ylaC-overexpressing mutant constitutively expressed gene transcripts of clpP and sigH, an important alternative σ factor regulated by ClpXP. Collectively, our data demonstrated that YlaD senses redox changes and elicits increase in Mn ion concentrations and that, in turn, YlaD-mediated transcriptional activity of YlaC regulates sporulation initiation under oxidative stress and Mn-substituted conditions by regulating clpP gene transcripts. This is the first report of the involvement of oxidative stress-responsive B. subtilis extracytoplasmic function σ factors during sporulation via a Mn-dependent redox-sensing molecular switch.
Collapse
|
8
|
Dickmanns A, Zschiedrich CP, Arens J, Parfentev I, Gundlach J, Hofele R, Neumann P, Urlaub H, Görke B, Ficner R, Stülke J. Structural basis for the regulatory interaction of the methylglyoxal synthase MgsA with the carbon flux regulator Crh in Bacillus subtilis. J Biol Chem 2018. [PMID: 29514981 DOI: 10.1074/jbc.ra117.001289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Utilization of energy-rich carbon sources such as glucose is fundamental to the evolutionary success of bacteria. Glucose can be catabolized via glycolysis for feeding the intermediary metabolism. The methylglyoxal synthase MgsA produces methylglyoxal from the glycolytic intermediate dihydroxyacetone phosphate. Methylglyoxal is toxic, requiring stringent regulation of MgsA activity. In the Gram-positive bacterium Bacillus subtilis, an interaction with the phosphoprotein Crh controls MgsA activity. In the absence of preferred carbon sources, Crh is present in the nonphosphorylated state and binds to and thereby inhibits MgsA. To better understand the mechanism of regulation of MgsA, here we performed biochemical and structural analyses of B. subtilis MgsA and of its interaction with Crh. Our results indicated that MgsA forms a hexamer (i.e. a trimer of dimers) in the crystal structure, whereas it seems to exist in an equilibrium between a dimer and hexamer in solution. In the hexamer, two alternative dimers could be distinguished, but only one appeared to prevail in solution. Further analysis strongly suggested that the hexamer is the biologically active form. In vitro cross-linking studies revealed that Crh interacts with the N-terminal helices of MgsA and that the Crh-MgsA binding inactivates MgsA by distorting and thereby blocking its active site. In summary, our results indicate that dimeric and hexameric MgsA species exist in an equilibrium in solution, that the hexameric species is the active form, and that binding to Crh deforms and blocks the active site in MgsA.
Collapse
Affiliation(s)
| | | | - Johannes Arens
- From the Departments of Molecular Structural Biology and
| | - Iwan Parfentev
- the Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany, and.,the Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Jan Gundlach
- General Microbiology, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Romina Hofele
- the Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany, and.,the Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Piotr Neumann
- From the Departments of Molecular Structural Biology and
| | - Henning Urlaub
- the Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany, and.,the Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Boris Görke
- General Microbiology, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Ralf Ficner
- From the Departments of Molecular Structural Biology and
| | - Jörg Stülke
- General Microbiology, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany,
| |
Collapse
|