1
|
Becker AP, Becker V, McElroy J, Webb A, Han C, Guo Y, Bell EH, Fleming J, Popp I, Staszewski O, Prinz M, Otero JJ, Haque SJ, Grosu AL, Chakravarti A. Proteomic Analysis of Spatial Heterogeneity Identifies HMGB2 as Putative Biomarker of Tumor Progression in Adult-Type Diffuse Astrocytomas. Cancers (Basel) 2024; 16:1516. [PMID: 38672598 PMCID: PMC11049315 DOI: 10.3390/cancers16081516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Although grading is defined by the highest histological grade observed in a glioma, most high-grade gliomas retain areas with histology reminiscent of their low-grade counterparts. We sought to achieve the following: (i) identify proteins and molecular pathways involved in glioma evolution; and (ii) validate the high mobility group protein B2 (HMGB2) as a key player in tumor progression and as a prognostic/predictive biomarker for diffuse astrocytomas. We performed liquid chromatography tandem mass spectrometry (LC-MS/MS) in multiple areas of adult-type astrocytomas and validated our finding in multiplatform-omics studies and high-throughput IHC analysis. LC-MS/MSdetected proteomic signatures characterizing glioma evolution towards higher grades associated with, but not completely dependent, on IDH status. Spatial heterogeneity of diffuse astrocytomas was associated with dysregulation of specific molecular pathways, and HMGB2 was identified as a putative driver of tumor progression, and an early marker of worse overall survival in grades 2 and 3 diffuse gliomas, at least in part regulated by DNA methylation. In grade 4 astrocytomas, HMGB2 expression was strongly associated with proliferative activity and microvascular proliferation. Grounded in proteomic findings, our results showed that HMGB2 expression assessed by IHC detected early signs of tumor progression in grades 2 and 3 astrocytomas, as well as identified GBMs that had a better response to the standard chemoradiation with temozolomide.
Collapse
Affiliation(s)
- Aline P. Becker
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA; (A.P.B.); (V.B.); (C.H.); (Y.G.); (J.F.); (S.J.H.)
| | - Valesio Becker
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA; (A.P.B.); (V.B.); (C.H.); (Y.G.); (J.F.); (S.J.H.)
| | - Joseph McElroy
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA;
| | - Amy Webb
- School of Biomedical Science-Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA;
| | - Chunhua Han
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA; (A.P.B.); (V.B.); (C.H.); (Y.G.); (J.F.); (S.J.H.)
| | - Yingshi Guo
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA; (A.P.B.); (V.B.); (C.H.); (Y.G.); (J.F.); (S.J.H.)
| | - Erica H. Bell
- Department of Neurology, The Ohio State University, Columbus, OH 43210, USA;
| | - Jessica Fleming
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA; (A.P.B.); (V.B.); (C.H.); (Y.G.); (J.F.); (S.J.H.)
| | - Ilinca Popp
- Department of Radiation Oncology, University of Freiburg, 79110 Freiburg, Germany; (I.P.); (A.-L.G.)
| | - Ori Staszewski
- Institute of Neuropathology, Medical Faculty of the Saarland University, 66421 Homburg, Germany;
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- Signalling Research Centres BIOSS & CIBSS, University of Freiburg, 79098 Freiburg, Germany
| | - Jose J. Otero
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA;
| | - Saikh Jaharul Haque
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA; (A.P.B.); (V.B.); (C.H.); (Y.G.); (J.F.); (S.J.H.)
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, University of Freiburg, 79110 Freiburg, Germany; (I.P.); (A.-L.G.)
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA; (A.P.B.); (V.B.); (C.H.); (Y.G.); (J.F.); (S.J.H.)
| |
Collapse
|
2
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
3
|
Liu H, Wei Z, Shi K, Zhang Y, Li J. miRNA-130a-3p/CPEB4 Axis Modulates Glioblastoma Growth and Progression. Technol Cancer Res Treat 2023; 22:15330338231218218. [PMID: 38130149 DOI: 10.1177/15330338231218218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Glioblastoma is the most frequent form of malignant brain tumor. Cytoplasmic polyadenylation element binding protein 4 (CPEB4) is overexpressed and involved in the tumorigenesis and metastasis of glioblastoma. miR-130a-3p has been revealed to be aberrantly expressed in tumors and has aroused wide attention. In present study, we would like to investigate the effect and potential mechanism of miR-130a-3p on the proliferation and migration in glioblastoma. The relative expression levels of miR-130a-3p and CPEB4 in glioblastoma cell lines were detected by real-time quantitative polymerase chain reaction. Cell viability and migration were detected by methylthiazolyl tetrazolium assay and transwell assay, and cell cycle analysis was detected by flow cytometry. The expression of CPEB4 protein and epithelial-mesenchymal transition associated markers were detected by western blot. Bioinformatics and luciferase activity analysis were used to verify the targeting relationship between miR-130a-3p and CPEB4. We observed that the expression of CPEB4 was upregulated while that of miR-130a-3p was downregulated in glioblastoma cell lines. CPEB4 was validated as a target of miR-130a-3p by luciferase activity assay. Increased levels of miR-130a-3p inhibited the proliferation and migration of the glioblastoma cells and the overexpression of miR-130a-3p inhibited epithelial-mesenchymal transition. However, CPEB4 overexpression resisted the inhibitory effects of miR-130a-3p. Our study elucidates CPEB4 is upregulated because of the downregulated miR-130a-3p in glioblastoma, which enhances the glioblastoma growth and migration, suggesting a potential therapeutic target for the disease.
Collapse
Affiliation(s)
- Hongchao Liu
- Department of Pathology, The Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, China
| | - Zhihao Wei
- Department of Pathology, The Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, China
| | - Kangke Shi
- Department of Pathology, The Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, China
| | - Yu Zhang
- Department of Pathology, The Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, China
| | - Jiaqiong Li
- Department of Pathology, The Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
4
|
Jo HR, Jeong JH. MicroRNA-Mediated Downregulation of HMGB2 Contributes to Cellular Senescence in Microvascular Endothelial Cells. Cells 2022; 11:cells11030584. [PMID: 35159393 PMCID: PMC8834370 DOI: 10.3390/cells11030584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
High mobility group box 2 (HMGB2) is a non-histone chromosomal protein involved in various biological processes, including cellular senescence. However, its role in cellular senescence has not been evaluated extensively. To determine the regulatory role and mechanism of HMGB2 in cellular senescence, we performed gene expression analysis, senescence staining, and tube formation assays using young and senescent microvascular endothelial cells (MVECs) after small RNA treatment or HMGB2 overexpression. HMGB2 expression decreased with age and was regulated at the transcriptional level. siRNA-mediated downregulation inhibited cell proliferation and accelerated cellular senescence. In contrast, ectopic overexpression delayed senescence and maintained relatively higher tube-forming activity. To determine the HMGB2 downregulation mechanism, we screened miRNAs that were significantly upregulated in senescent MVECs and selected HMGB2-targeting miRNAs. Six miRNAs, miR-23a-3p, 23b-3p, -181a-5p, -181b-5p, -221-3p, and -222-3p, were overexpressed in senescent MVECs. Ectopic introduction of miR-23a-3p, -23b-3p, -181a-5p, -181b-5p, and -221-3p, with the exception of miR-222-3p, led to the downregulation of HMGB2, upregulation of senescence-associated markers, and decreased tube formation activity. Inhibition of miR-23a-3p, -181a-5p, -181b-5p, and -221-3p delayed cellular senescence. Restoration of HMGB2 expression using miRNA inhibitors represents a potential strategy to overcome the detrimental effects of cellular senescence in endothelial cells.
Collapse
Affiliation(s)
- Hye-Ram Jo
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Science, Seoul 01812, Korea;
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Korea
| | - Jae-Hoon Jeong
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Science, Seoul 01812, Korea;
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-2970-1386
| |
Collapse
|
5
|
Ma W, Zhao X, Gao Y, Yao X, Zhang J, Xu Q. Circular RNA circ_UBAP2 facilitates the progression of osteosarcoma by regulating microRNA miR-637/high-mobility group box (HMGB) 2 axis. Bioengineered 2022; 13:4411-4427. [PMID: 35114890 PMCID: PMC8974191 DOI: 10.1080/21655979.2022.2033447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Circular RNA circ_UBAP2 has been reported to be closely associated with various tumors. The present work focused on exploring the roles of circ_UBAP2 and its molecular mechanism in osteosarcoma (OS). Circ_UBAP2, miR-637, and high-mobility group box (HMGB) 2 levels in OS cells and tissues were detected by quantitative real-time polymerase chain reaction. The relationship between miR-637 and circ_UBAP2, as well as between miR-637 and HMGB2, was predicted and examined through bioinformatics analysis and luciferase reporter gene experiments. Moreover, OS cell growth, invasion, migration, and apoptosis were detected using the cell counting kit-8 (CCK-8), Transwell and flow cytometry assays, respectively. HMGB2 protein levels were measured using Western blotting. Xenograft tumor formation assay was also performed. Circ_UBAP2 showed high expression levels in OS tissues and cells, which was directly proportional to metastasis and clinical stage of OS. The overexpression of circ_UBAP2 enhanced the growth, invasion, and migration of OS cells, but suppressed their apoptosis. In contrast, circ_UBAP2 silencing had opposite effects. Furthermore, miR-637 served as a downstream target of circ_UBAP2, which played opposite roles to circ_UBAP2 in OS. More importantly, HMGB2 served as miR-637's downstream target. The xenograft experiments in nude mice also proved that knockdown of circ_UBAP2 could increase miR-637 expression, but decrease HMGB2 expression, thus alleviating OS progression. Mechanistically, circ_UBAP2 exerts a cancer-promoting effect on OS by downregulating miR-637 and upregulating the expression of HMGB2. Circ_UBAP2 plays a promoting role in OS, and the circ_UBAP2/miR-637/HMGB2 axis is involved in OS progression.
Collapse
Affiliation(s)
- Weiguo Ma
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Zhengzhou Key Laboratory of Digestive Tumor Markers, Cancer Hospital of Zhengzhou University, Zhengzhou China
| | - Xin Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yun Gao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Zhengzhou Key Laboratory of Digestive Tumor Markers, Cancer Hospital of Zhengzhou University, Zhengzhou China
| | - Xiaobin Yao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Zhengzhou Key Laboratory of Digestive Tumor Markers, Cancer Hospital of Zhengzhou University, Zhengzhou China
| | - Junhua Zhang
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Zhengzhou Key Laboratory of Digestive Tumor Markers, Cancer Hospital of Zhengzhou University, Zhengzhou China
| | - Qingxia Xu
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Zhengzhou Key Laboratory of Digestive Tumor Markers, Cancer Hospital of Zhengzhou University, Zhengzhou China
| |
Collapse
|
6
|
Jia L, Lei B, Gao H, Jia L, Luo D, Han J, Jia B. miR-130b suppresses the invasion and migration of prostate cancer via inhibiting DLL1 and regulating the PI3K/Akt pathways. Exp Ther Med 2022; 23:98. [PMID: 34976140 PMCID: PMC8674980 DOI: 10.3892/etm.2021.11021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer occurs in the prostatic epithelium and poses a threat to the health of middle-aged and older males. The objective of the present study was to explore the roles of microRNA (miRNA/miR)-130b in prostate cancer and potential molecular mechanisms in order to control the migration and invasion of prostate cancer. For this purpose, reverse transcription-PCR was performed to evaluate the mRNA levels of DLL1, phosphoinositide-3 kinase (PI3K), protein kinase B (Akt) and matrix metalloproteinase (MMP)9, and western blot analysis was carried out to detect the protein expression levels of DLL1, phosphorylated (p)-PI3K, p-Akt and MMP9. A Transwell assay was conducted to examine the invasion rate of prostate cancer cells. Furthermore, a scratch wound assay was performed to examine the migration rate of prostate cancer cells. A luciferase assay was performed to examine the interaction between miRNA and its target mRNA. The results revealed that miR-130b had abnormal (low) expression in tumor tissues compared with that in the adjacent normal tissue. An miR-130b mimic suppressed the expression of DLL1. The expression of p-PI3K, p-Akt and MMP9 in prostate cancer cells transfected with the miR-130b mimic was decreased in comparison to the negative control and control groups. Furthermore, migration and invasion were significantly suppressed in the miR-130b mimic group. In conclusion, a novel pathway interlinking miR-130b and MMP9, p-Akt and p-PI3K, which regulates the migration and invasion of prostate cancer cells, was identified. These findings provide an intriguing biomarker and treatment strategy for patients with prostate cancer.
Collapse
Affiliation(s)
- Li Jia
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan 621000, P.R. China
| | - Bin Lei
- Department of General Surgery, Yulin Traditional Chinese Medicine Hospital, Yulin, Shaanxi 719000, P.R. China
| | - Huaijun Gao
- Department of General Surgery, Yulin Traditional Chinese Medicine Hospital, Yulin, Shaanxi 719000, P.R. China
| | - Lin Jia
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan 621000, P.R. China
| | - Dan Luo
- Department of General Surgery, Yulin Traditional Chinese Medicine Hospital, Yulin, Shaanxi 719000, P.R. China
| | - Jianjun Han
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan 621000, P.R. China
| | - Bingxin Jia
- Department of Urology Surgery, Yulin Traditional Chinese Medicine Hospital, Yulin, Shaanxi 719000, P.R. China
| |
Collapse
|
7
|
Wu W, Liu Z, Ma X. jSRC: a flexible and accurate joint learning algorithm for clustering of single-cell RNA-sequencing data. Brief Bioinform 2021; 22:bbaa433. [PMID: 33535230 PMCID: PMC7953970 DOI: 10.1093/bib/bbaa433] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 02/01/2023] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) explores the transcriptome of genes at cell level, which sheds light on revealing the heterogeneity and dynamics of cell populations. Advances in biotechnologies make it possible to generate scRNA-seq profiles for large-scale cells, requiring effective and efficient clustering algorithms to identify cell types and informative genes. Although great efforts have been devoted to clustering of scRNA-seq, the accuracy, scalability and interpretability of available algorithms are not desirable. In this study, we solve these problems by developing a joint learning algorithm [a.k.a. joints sparse representation and clustering (jSRC)], where the dimension reduction (DR) and clustering are integrated. Specifically, DR is employed for the scalability and joint learning improves accuracy. To increase the interpretability of patterns, we assume that cells within the same type have similar expression patterns, where the sparse representation is imposed on features. We transform clustering of scRNA-seq into an optimization problem and then derive the update rules to optimize the objective of jSRC. Fifteen scRNA-seq datasets from various tissues and organisms are adopted to validate the performance of jSRC, where the number of single cells varies from 49 to 110 824. The experimental results demonstrate that jSRC significantly outperforms 12 state-of-the-art methods in terms of various measurements (on average 20.29% by improvement) with fewer running time. Furthermore, jSRC is efficient and robust across different scRNA-seq datasets from various tissues. Finally, jSRC also accurately identifies dynamic cell types associated with progression of COVID-19. The proposed model and methods provide an effective strategy to analyze scRNA-seq data (the software is coded using MATLAB and is free for academic purposes; https://github.com/xkmaxidian/jSRC).
Collapse
Affiliation(s)
- Wenming Wu
- School of Computer Science and Technology, Xidian University, Xi’an, 710071, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Zhongshan Road, Guangzhou, 510080, China
| | - Xiaoke Ma
- School of Computer Science and Technology, Xidian University, Xi’an, 710071, China
| |
Collapse
|
8
|
Chen Z, Pei L, Zhang D, Xu F, Zhou E, Chen X. HDAC3 increases HMGB3 expression to facilitate the immune escape of breast cancer cells via down-regulating microRNA-130a-3p. Int J Biochem Cell Biol 2021; 135:105967. [PMID: 33727043 DOI: 10.1016/j.biocel.2021.105967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/22/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Histone deacetylase 3 (HDAC3) has been reported to repress the expression of various genes by eliminating acetyl group from histone. The objective of this study was to discuss the effect of HDAC3/microRNA-130a-3p (miR-130a-3p)/high-mobility group box 3 (HMGB3) on immune escape of breast cancer. METHODS HDAC3, miR-130a-3p and HMGB3 expression in breast cancer tissues and cells were tested, and the correlation between HDAC3, miR-130a-3p and HMGB3 was analyzed. CD8, CD69 and programmed cell death protein 1 (PD-1) expression was detected. MDA-MB-231 cells were treated with relative plasmid of HDAC3 or miR-130a-3p to test cell viability, migration, epithelial-mesenchymal transition (EMT) and apoptosis in MDA-MB-231 cells. The cytotoxicity of CD8+/CD69+/PD-1+T cells in MDA-MB-231 cells was tested, and CD8+/CD69+/PD-1+T cell proliferation and apoptosis before and after co-culture with MDA-MB-231 cells were detected. RESULTS HDAC3 and HMGB3 expression were raised and miR-130a-3p expression was diminished in breast cancer tissues and cells. HDAC3 was negatively correlated with miR-130a-3p while miR-130a-3p was negatively correlated with HMGB3. Down-regulating HDAC3 or up-regulating miR-130a-3p restrained cell viability, migration, EMT and anti-CD8+/CD69+/PD-1+T cytotoxicity and facilitated apoptosis of breast cancer cells. HDAC3 regulated HMGB3 by mediating miR-130a-3p expression. Down-regulating miR-130a-3p reversed the role of HDAC3 reduction on breast cancer cells. HDAC3 regulated CD8+/CD69+/PD-1+T cell proliferation and apoptosis by mediating miR-130a-3p. CONCLUSION This study provides evidence that HDAC3 increases HMGB3 expression to promote the immune escape of breast cancer cells via down-regulating miR-130a-3p.
Collapse
Affiliation(s)
- Zonglin Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lei Pei
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Danhua Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Feng Xu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Enxiang Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xianyu Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
9
|
Wang G, Zhou H, Tian L, Yan T, Han X, Chen P, Li H, Wang W, Xiao Z, Hou L, Xue X. A Prognostic DNA Damage Repair Genes Signature and Its Impact on Immune Cell Infiltration in Glioma. Front Oncol 2021; 11:682932. [PMID: 34123852 PMCID: PMC8193723 DOI: 10.3389/fonc.2021.682932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
Objective Glioma is the most frequent type of malignant cerebral tumors. DNA damage repair genes (DDRGs) play a crucial role in the development of cancer. In this study, we constructed a DDRGs signature and investigated the potential mechanisms involved in this disease. Methods RNA sequence data, microarray data, and corresponding clinical information of gliomas were downloaded from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene Expression Omnibus (GEO). Subsequently, we identified candidate genes by differential analysis and Cox regression analysis. The least absolute shrinkage and selection operator Cox regression model was utilized to construct a DDRGs signature using TCGA training dataset. According to this signature, patients with glioma were divided into low- and high-risk groups. The predictive ability of the signature was validated by prognostic analysis, receiver operating characteristic curves, principal component analysis, and stratification analysis in TCGA testing and CGGA verification datasets. CIBERSORT and single-sample gene set enrichment analysis (ssGSEA) were used to evaluate the immune microenvironment of glioma. Moreover, we conducted GSEA to determine the functions and pathways in the low- and high-risk groups. Finally, a nomogram was constructed by combining the signature and other clinical features. Results A total of 1,431 samples of glioma (592 from TCGA, 686 from the CGGA, and 153 from the GEO) and 23 samples of normal brain tissue from the GEO were analyzed in this study. There were 51 prognostic differentially expressed DDRGs. Additionally, five DDRGs (CDK4、HMGB2、WEE1、SMC3 and GADD45G) were selected to construct a DDRGs signature for glioma, stratifying patients into low- and high-risk groups. The survival analysis showed that the DDRGs signature could differentiate the outcome of the low- and high-risk groups, showing that high-risk gliomas were associated with shorter overall survival. The immune microenvironment analysis revealed that more immunosuppressive cells, such as tumor associated macrophages and regulatory T cells, were recruited in the high-risk group. GSEA also showed that high-risk glioma was correlated with the immune and extracellular matrix pathways. Conclusion The five DDRGs signature and its impact on the infiltration of immunosuppressive cells could precisely predict the prognosis and provide guidance on the treatment of glioma.
Collapse
Affiliation(s)
- Guohui Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Radiation Oncology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Tian
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tianfang Yan
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Suita, Japan
| | - Xuetao Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Pengyu Chen
- Department of Neurosurgery, Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Haonan Li
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenyan Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiqing Xiao
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liubing Hou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Li Y, Zhang H, Li Z, Yan X, Li Y, Liu S. microRNA-130a-5p suppresses myocardial ischemia reperfusion injury by downregulating the HMGB2/NF-κB axis. BMC Cardiovasc Disord 2021; 21:121. [PMID: 33658008 PMCID: PMC7931544 DOI: 10.1186/s12872-020-01742-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Myocardial ischemia reperfusion injury (MIRI) is defined as tissue injury in the pathological process of progressive aggravation in ischemic myocardium after the occurrence of acute coronary artery occlusion. Research has documented the involvement of microRNAs (miRs) in MIRI. However, there is obscure information about the role of miR-130a-5p in MIRI. Herein, this study aims to investigate the effect of miR-130a-5p on MIRI. METHODS MIRI mouse models were established. Then, the cardiac function and hemodynamics were detected using ultrasonography and multiconductive physiological recorder. Functional assays in miR-130a-5p were adopted to test the degrees of oxidative stress, mitochondrial functions, inflammation and apoptosis. Hematoxylin and eosin (HE) staining was performed to validate the myocardial injury in mice. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was employed to assess the expression patterns of miR-130a-5p, high mobility group box (HMGB)2 and NF-κB. Then, dual-luciferase reporter gene assay was performed to elucidate the targeting relation between miR-130a-5p and HMGB2. RESULTS Disrupted structural arrangement in MIRI mouse models was evident from HE staining. RT-qPCR revealed that overexpressed miR-130a-5p alleviated MIRI, MIRI-induced oxidative stress and mitochondrial disorder in the mice. Next, the targeting relation between miR-130a-5p and HMGB2 was ascertained. Overexpressed HMGB2 annulled the protective effects of miR-130a-5p in MIRI mice. Additionally, miR-130a-5p targets HMGB2 to downregulate the nuclear factor kappa-B (NF-κB) axis, mitigating the inflammatory injury induced by MIRI. CONCLUSION Our study demonstrated that miR-130a-5p suppresses MIRI by down-regulating the HMGB2/NF-κB axis. This investigation may provide novel insights for development of MIRI treatments.
Collapse
Affiliation(s)
- Yong Li
- Department of Cardiology, Harrision International Peace Hospital, No. 180 Renmin East Road, Hengshui, 053000, Hebei, People's Republic of China.
| | - Hongbo Zhang
- Department of Cardiology, Harrision International Peace Hospital, No. 180 Renmin East Road, Hengshui, 053000, Hebei, People's Republic of China
| | - Zhanhu Li
- Department of Cardiology, Harrision International Peace Hospital, No. 180 Renmin East Road, Hengshui, 053000, Hebei, People's Republic of China
| | - Xiaoju Yan
- Department of Cardiology, Harrision International Peace Hospital, No. 180 Renmin East Road, Hengshui, 053000, Hebei, People's Republic of China
| | - Yuan Li
- Department of Cardiology, Harrision International Peace Hospital, No. 180 Renmin East Road, Hengshui, 053000, Hebei, People's Republic of China
| | - Shuai Liu
- Department of Cardiology, Harrision International Peace Hospital, No. 180 Renmin East Road, Hengshui, 053000, Hebei, People's Republic of China
| |
Collapse
|
11
|
High-mobility group box 2 reflects exacerbated disease characteristics and poor prognosis in non-small cell lung cancer patients. Ir J Med Sci 2021; 191:155-162. [PMID: 33635447 DOI: 10.1007/s11845-021-02549-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND High-mobility group box 2 (HMGB2) is considered as oncogene in non-small cell lung cancer (NSCLC), while its clinical implication is still unknown. This study aimed to explore the correlation of HMGB2 with clinicopathological characteristics and prognosis in NSCLC patients. METHODS A total of 133 NSCLC patients who received radical excision were enrolled. HMGB2 expression in the tumor specimens and paired adjacent tissue specimens was determined by immunohistochemical assay (for protein expression) and reverse transcription quantitative polymerase chain reaction assay (for gene expression), respectively. RESULTS HMGB2 protein expression was higher in tumor tissue compared with adjacent tissue, and it could distinguish tumor tissue from adjacent tissue (area under the curve (AUC): 0.775, 95%confidence interval (95%CI): 0.720-0.830). Meanwhile, tumor HMGB2 protein high expression correlated with lymph node (LYN) metastasis and advanced TNM stage. Additionally, tumor HMGB2 protein high expression associated with worse disease-free survival (DFS), while HMGB2 protein expression did not correlate with overall survival (OS). Besides, HMGB2 mRNA expression was raised in tumor tissue compared with adjacent tissue, and it had a good value in differentiating tumor tissue from adjacent tissue (AUC: 0.875, 95% CI: 0.834-0.915). Furthermore, tumor HMGB2 mRNA high expression correlated with higher Eastern Cooperative Oncology Group performance status score, LYN metastasis, and advanced TNM stage. Meanwhile, tumor HMGB2 mRNA high expression associated with shorter DFS and OS. CONCLUSION HMGB2 could be a biomarker that reflects disease features and prognosis of NSCLC, which is beneficial to improve clinical efficacy in NSCLC patients.
Collapse
|
12
|
Yang S, Ye Z, Wang Z, Wang L. High mobility group box 2 modulates the progression of osteosarcoma and is related with poor prognosis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1082. [PMID: 33145301 PMCID: PMC7576003 DOI: 10.21037/atm-20-4801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Increased expression of high mobility group box 2 (HMGB2) has been reported to promote the progression of several malignancies and be related to poor outcome. However, few studies have explored the relationship between HMGB2 and osteosarcoma. In this study, we aimed to obtain a better understanding of HMGB2 and its function in osteosarcoma. Methods Utilizing osteosarcoma paraffin sections and osteosarcoma cell lines, we observed the clinico-pathological relationship of osteosarcoma with HMGB2 expression and investigated the functions of HMGB2 in vitro. The possible pathways and regulation networks in which HMGB2 is involved were further explored through analysis of miRNA, mRNA and lncRNA micro array data sets. Results Strong expression of HMGB2 was found to be related with Enneking staging (P=0.002), tumor size (P=0.006), metastasis (P<0.001), and survival (P=0.011) in osteosarcoma. Multivariate analysis revealed that HMGB2 might have independent prognostic value in osteosarcoma (P=0.022). Kaplan-Meier curves and the log-rank test showed that survival time was significantly reduced in OS patients with strong HMGB2 expression (P=0.0056). In vitro experiments showed that HMGB2 overexpression promoted cell proliferation and enhanced the migration and invasion ability of osteosarcoma cells. Gene Ontology (GO) term analysis of osteosarcoma cell lines revealed HMGB2 to have various functions and to be mainly enriched in regulation of cell proliferation, cell death, and DNA binding. A competing endogenous RNA (ceRNA) network of miR-139-5p and six candidate lncRNAs was also suggested as targeting HMGB2 in osteosarcoma. Conclusions Our findings suggest that HMGB2 might have various functions in promoting the progression of osteosarcoma and may serve as a new target for osteosarcoma research.
Collapse
Affiliation(s)
- Shicong Yang
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ziyin Ye
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhuo Wang
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liantang Wang
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Zhu J, Zheng X, Yang X. Diagnostic and mechanistic values of microRNA-130a and microRNA-203 in patients with papillary thyroid carcinoma. J Cell Biochem 2020; 121:3657-3666. [PMID: 31692045 DOI: 10.1002/jcb.29498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/10/2019] [Indexed: 01/24/2023]
Abstract
This research was determined to unearth the diagnostic values and the effects of microRNA (miR)-130a and miR-203 on cell proliferation and apoptosis of papillary thyroid carcinoma (PTC). Expression of miR-130a and miR-203 were evaluated and were subjected to correlation analysis. The diagnostic values of miR-130a and miR-203 and their associations with clinicopathological characteristics of patients with PTC were measured. The expression levels of miR-130a and miR-203 in K1, IHH4, TPC-1, and BCPAP cells together with Nthy-ori 3-1 cells were measured. Cells were transfected with miR-130a mimics, miR-203 mimics, and coordinate of miR-130a mimics and miR-203 mimics. Cell growth, colony formation, and apoptosis were detected by cell counting kit-8 (CCK-8) assay, colony formation assay, and flow cytometry. PTC tissues had decreased miR-130a and miR-203 relative to adjacent normal tissues and normal thyroid tissue (both P < .05). miR-130a was in positive correlation with miR-203 (r = 0.754, P < .01). miR-130a was related with tumor infiltration and tumor stage while miR-203 was implicated in tumor stage and lymph-node metastasis. The area under the curve (AUC), sensitivity, as well as specificity for miR-130 in predicting PTC was 0.839, 74.5%, and 85.0% and those for miR-203 were 0.818, 73.7%, and 84.0%, respectively. PTC cells had lower expression of miR-130a and miR-203 than that in Nthy-ori 3-1 cells. After transfected miR-130a and miR-203 mimics in BCPAP and TPC-1 cells, both cells had increased miR-130a and miR-203, promoted cell apoptosis rate and decreased cell growth rate, and colony formation ability. After coordinately transfected with miR-130a mimics and miR-203 mimics, the cell growth and colony formation ability of PTC cells were restrained, and apoptosis of PTC cells was elevated (all P < .05). This study highlights that miR-130a and miR-203 have satisfactory diagnostic value in PTC and upregulated miR-130a and miR-203 can inhibit PTC cell growth and promote cell apoptosis.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Endocrinology, Linyi People's Hospital, Linyi, China
| | - Xiaoyu Zheng
- Department of Health and Rehabilitation, Shandong Medical College, Linyi, China
| | - Xi Yang
- Department of Internal Medicine, Linyi Health School of Shandong, Linyi, China
| |
Collapse
|
14
|
MicroRNA-130a targeting hypoxia-inducible factor 1 alpha suppresses cell metastasis and Warburg effect of NSCLC cells under hypoxia. Life Sci 2020; 255:117826. [PMID: 32450163 DOI: 10.1016/j.lfs.2020.117826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
MicroRNAs have been demonstrated to play critical role in the development of non-small cell lung cancer (NSCLC) and hypoxia is a common hallmark of NSCLC. MiRNA-130a-3p (miR-130a) is a well-known tumor suppressor, and we intended to explore the role and mechanism of miR-130a in NSCLC cells under hypoxia. We used real-time quantitative polymerase chain reaction method to measure miR-130a expression, and found that miR-130a was downregulated in human NSCLC tumors and cell lines (A549 and H1299), accompanied with upregulation of hypoxia-inducible factor 1 alpha (HIF1A), a marker of hypoxia. Besides, miR-130a low expression was associated with tumor burden and poor overall survival. Moreover, miR-130a expression was even downregulated in hypoxia-treated A549 and H1299 cells. Ectopic expression of miR-130a suppressed Warburg effect, migration and invasion in hypoxic A549 and H1299 cells, as evidenced by decreased glucose consumption, lactate production, hexokinase 2 expression, and numbers of migration cells and invasion cells analyzed by commercial glucose and lactate assay kits, western blotting and transwell assays. Furthermore, overexpression of miR-130a restrained xenograft tumor growth of A549 cells in mice. However, recovery of HIF1A could reverse the suppressive effect of miR-130a overexpression on cell migration, invasion and Warburg effect in hypoxic A549 and H1299 cells. Mechanically, dual-luciferase reporter assay, RNA immunoprecipitation and RNA pull-down assay confirmed a target relationship between miR-130a and HIF1A. Collectively, we demonstrated an anti-tumor role of miR-130a in NSCLC cells under hypoxia through targeting HIF1A, suggesting a potential target for the interfering of NSCLC.
Collapse
|
15
|
MicroRNA-130a enhances the killing ability of natural killer cells against non-small cell lung cancer cells by targeting signal transducers and activators of transcription 3. Biochem Biophys Res Commun 2019; 523:481-486. [PMID: 31883616 DOI: 10.1016/j.bbrc.2019.11.099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a serious threat for human health and life. Natural killer (NK) cell-based immunotherapy is a promising anti-tumor strategy in various cancers including NSCLC. Emerging microRNA (miRNA) has been identified as vital regulators in NK cell-mediated immunosurveillance process. MicroRNA-130a (miR-130a) level and signal transducers and activators of transcription 3 (STAT3) mRNA level was measured by RT-qPCR assay. STAT3 protein level was determined by western blot assay. IFN-γ and TNF-α secretion was examined by corresponding ELISA kits. NK cell cytotoxicity was assessed by lactate dehydrogenase (LDH) assay. The interaction between miR-130a and STAT3 was explored by bioinformatics analysis, luciferase reporter assay and RNA immunoprecipitation (RIP) assay. We found that MiR-130a level was notably reduced and STAT3 expression was dramatically increased in primary NK cells isolated from NSCLC patients. But, miR-130a was highly expressed and STAT3 was low expressed in IL-2-activated NK-92 cells. Functional analysis revealed that miR-130a overexpression potentiated killing ability of NK cells against A549 cells. Further investigations unveiled that STAT3 was a target of miR-130a and STAT3 overexpression abrogated miR-130a-induced improvement in killing activity of NK cells against NSCLC cells. In conclusion, MiR-130a improved the killing capacity of NK cells against NSCLC cells by targeting STAT3, laying a foundation for future studies on the roles and molecular basis of miR-130a in NK cell-based immunotherapy against various cancers.
Collapse
|
16
|
Characterization of HMGB1/2 Interactome in Prostate Cancer by Yeast Two Hybrid Approach: Potential Pathobiological Implications. Cancers (Basel) 2019; 11:cancers11111729. [PMID: 31694235 PMCID: PMC6895793 DOI: 10.3390/cancers11111729] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/02/2019] [Indexed: 02/06/2023] Open
Abstract
High mobility group box B (HMGB) proteins are pivotal in the development of cancer. Although the proteomics of prostate cancer (PCa) cells has been reported, the involvement of HMGB proteins and their interactome in PCa is an unexplored field of considerable interest. We describe herein the results of the first HMGB1/HMGB2 interactome approach to PCa. Libraries constructed from the PCa cell line, PC-3, and from patients’ PCa primary tumor have been screened by the yeast 2-hybrid approach (Y2H) using HMGB1 and HMGB2 baits. Functional significance of this PCa HMGB interactome has been validated through expression and prognosis data available on public databases. Copy number alterations (CNA) affecting these newly described HMGB interactome components are more frequent in the most aggressive forms of PCa: those of neuroendocrine origin or castration-resistant PCa. Concordantly, adenocarcinoma PCa samples showing CNA in these genes are also associated with the worse prognosis. These findings open the way to their potential use as discriminatory biomarkers between high and low risk patients. Gene expression of a selected set of these interactome components has been analyzed by qPCR after HMGB1 and HMGB2 silencing. The data show that HMGB1 and HMGB2 control the expression of several of their interactome partners, which might contribute to the orchestrated action of these proteins in PCa
Collapse
|
17
|
Ha Thi HT, Kim HY, Kim YM, Hong S. MicroRNA-130a modulates a radiosensitivity of rectal cancer by targeting SOX4. Neoplasia 2019; 21:882-892. [PMID: 31387015 PMCID: PMC6690642 DOI: 10.1016/j.neo.2019.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Radioresistance poses a major challenge in the treatment of advanced rectal cancer. Therefore, understanding the detailed mechanisms of radioresistance may improve patient response to irradiation and the survival rate. To identify the novel targets that modulate the radiosensitivity of rectal cancer, we performed small RNA sequencing with human rectal cancer cell lines. Through bioinformatics analysis, we selected microRNA-310a (miR-130a) as a promising candidate to elucidate radioresistance. miR-130a was dramatically upregulated in radiosensitive rectal cancer cells and overexpression of miR-130a promotes rectal cancer cell radiosensitivity. Mechanically, miR-130a reversed the epithelial-mesenchymal transition phenotype of rectal cancer cells following inhibition of cell invasion upon irradiation. Moreover, miR-130a also inhibited the repair of irradiation-induced DNA damage followed by cell death. We identified that SOX4 was a direct target of miR-130a. Overexpression of SOX4 reversed the promotion activity of miR-130a on radiosensitivity. Together, our findings suggest that miR-130a functions as a radiosensitizer in rectal cancer and reveals a potential therapeutic target and preoperative prognostic marker for radiotherapy.
Collapse
Affiliation(s)
- Huyen Trang Ha Thi
- Laboratory of Cancer Cell Biology, Department of Biochemistry, Gachon University School of Medicine, Incheon 21999, Republic of Korea
| | - Hye-Yeon Kim
- Laboratory of Cancer Cell Biology, Department of Biochemistry, Gachon University School of Medicine, Incheon 21999, Republic of Korea
| | - Young-Mi Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Suntaek Hong
- Laboratory of Cancer Cell Biology, Department of Biochemistry, Gachon University School of Medicine, Incheon 21999, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
18
|
Zhang J, Zhou Q, Wang H, Huang M, Shi J, Han F, Cai W, Li Y, He T, Hu D. MicroRNA-130a has pro-fibroproliferative potential in hypertrophic scar by targeting CYLD. Arch Biochem Biophys 2019; 671:152-161. [PMID: 31283910 DOI: 10.1016/j.abb.2019.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/26/2019] [Accepted: 07/04/2019] [Indexed: 02/08/2023]
Abstract
Hypertrophic scars are dermal fibrosis diseases that protrude from the surface of the skin and irregularly extend to the periphery, seriously affecting the appearance and limb function of the patient. In this study, we found that microRNA-130a (miR-130a) was increased in hypertrophic scar tissues and derived primary fibroblasts, accompanied by up-regulation of collagen1/3 and α-SMA. Inhibition of miR-130a in hypertrophic scars fibroblasts suppressed the expression of collagen1/3 and α-SMA as well as the cell proliferation. Bioinformatics analysis combined with luciferase reporter gene assay results indicated that CYLD was a target gene of miR-130a, and the miR-130a mimic could reduce the level of CYLD. In contrast to miR-130a, the expression of CYLD was downregulated in hypertrophic scars and their derived fibroblasts. Overexpressing CYLD inhibited the expression of collagen 1/3 and α-SMA, slowed cell proliferation, and inhibited Akt activity. As expected, further study showed that the overexpression of CYLD could prevent the pro-fibroproliferative effects of miR-130a. Consistent with the in vitro results, the inhibitor of miR-130a effectively ameliorated excessive collagen deposition in bleomycin-induced skin fibrosis mouse model. Taken together, our results indicate that miR-130a promotes collagen secretion, myofibroblast transformation and cell proliferation by targeting CYLD and enhancing Akt activity. Therefore, the miR-130a/CYLD/Akt pathway may serve as a novel entry point for future skin fibrosis research.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Qin Zhou
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Meiling Huang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Fu Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China.
| |
Collapse
|
19
|
Mo Y, Fang RH, Wu J, Si Y, Jia SQ, Li Q, Bai JZ, She XN, Wang JQ. MicroRNA-329 upregulation impairs the HMGB2/β-catenin pathway and regulates cell biological behaviors in melanoma. J Cell Physiol 2019; 234:23518-23527. [PMID: 31219186 DOI: 10.1002/jcp.28920] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/29/2022]
Abstract
Melanoma is responsible for the majority of deaths caused by skin cancer. Antitumor activity of microRNA-329 (miR-329) has been seen in several human cancers. In this study, we identify whether miR-329 serves as a candidate regulator in melanoma. Melanoma-related differentially expressed genes were screened with its potential molecular mechanism predicted. Melanoma tissues and pigmented nevus tissues were collected, where the levels of miR-329 and high-mobility group box 2 (HMGB2) were determined. To characterize the regulatory role of miR-329 on HMGB2 and the β-catenin pathway in melanoma cell activities, miR-329 mimics, miR-329 inhibitors, and siRNA-HMGB2 were transfected into melanoma cells. Cell viability, migration, invasion, cell cycle, and apoptosis were assessed. miR-329 was predicted to influence melanoma by targeting HMGB2 via the β-catenin pathway. High level of HMGB2 and low miR-329 expression were observed in melanoma tissues. HMGB2 was targeted and negatively regulated by miR-329. In melanoma cells transfected with miR-329 mimics or siRNA-HMGB2, cell proliferation, migration, and invasion were impeded, yet cell cycle arrest and apoptosis were promoted, corresponding to decreased levels of β-catenin, cyclin D1, and vimentin and increased levels of GSK3β and E-cadherin. Collectively, our results show that miR-329 can suppress the melanoma progression by downregulating HMGB2 via the β-catenin pathway.
Collapse
Affiliation(s)
- You Mo
- Department of Dermatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Rui-Hua Fang
- Department of Dermatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Jiang Wu
- Department of Dermatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Yuan Si
- Department of Dermatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Shu-Qing Jia
- Department of Dermatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Qun Li
- Department of Dermatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Jing-Zhu Bai
- Department of Dermatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Xi-Ning She
- Department of Dermatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Jian-Qin Wang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, P.R. China.,Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, P.R. China
| |
Collapse
|