1
|
Zhang CY, Gu K, Chi MY, Gao XY, Gao L, Zhang NN, Liu YX, Li TZ. The application progress of PAMAM dendrimer in cancer imaging and treatment. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-38. [PMID: 40293953 DOI: 10.1080/09205063.2025.2497623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/03/2024] [Indexed: 04/30/2025]
Abstract
Polyamidoamine dendrimer (PAMAM) are effective carriers that transport diagnostic imaging reagents and drugs to the tumor site. Their excellent bio-compatibility and bio-degradability reduce damage to healthy tissues, resulting in improved treatment efficacy. Dendrimer molecules are particularly useful in targeted drug delivery within malignant cells. This article reviews recent progress of PAMAM in imaging and treating breast cancer, lung cancer, hepatocellular cancer, colorectal cancer, gastric cancer, prostate cancer, and glioblastoma. This review aims to provide new and feasible ideas for cancer diagnosis imaging and treatment while also serving as a significant reference point for personalized tumor therapy based on PAMAM materials.
Collapse
Affiliation(s)
- Cong-Ying Zhang
- Key Laboratory of Research on Human Genetic Diseases at Universities of Inner Mongolia Autonomous Region, Chifeng University, Inner Mongolia, China
- Basic Medical College, Chifeng University, Inner Mongolia, China
- Key Laboratory of Mechanism and Evaluation of Traditional Chinese & Mongolian Medicine, Chifeng University, Inner Mongolia, China
| | - Kai Gu
- Basic Medical College, Chifeng University, Inner Mongolia, China
- Key Laboratory of Mechanism and Evaluation of Traditional Chinese & Mongolian Medicine, Chifeng University, Inner Mongolia, China
| | - Meng-Yi Chi
- Key Laboratory of Mechanism and Evaluation of Traditional Chinese & Mongolian Medicine, Chifeng University, Inner Mongolia, China
| | - Xiao-Yan Gao
- Key Laboratory of Research on Human Genetic Diseases at Universities of Inner Mongolia Autonomous Region, Chifeng University, Inner Mongolia, China
- Basic Medical College, Chifeng University, Inner Mongolia, China
- Key Laboratory of Mechanism and Evaluation of Traditional Chinese & Mongolian Medicine, Chifeng University, Inner Mongolia, China
| | - Ling Gao
- Basic Medical College, Chifeng University, Inner Mongolia, China
- Key Laboratory of Mechanism and Evaluation of Traditional Chinese & Mongolian Medicine, Chifeng University, Inner Mongolia, China
| | - Nan-Nan Zhang
- Key Laboratory of Research on Human Genetic Diseases at Universities of Inner Mongolia Autonomous Region, Chifeng University, Inner Mongolia, China
- Basic Medical College, Chifeng University, Inner Mongolia, China
- Key Laboratory of Mechanism and Evaluation of Traditional Chinese & Mongolian Medicine, Chifeng University, Inner Mongolia, China
| | - Yu-Xi Liu
- Shaanxi Academy of Traditional Chinese Medicine, Shaanxi, China
| | - Tian-Zhu Li
- Key Laboratory of Research on Human Genetic Diseases at Universities of Inner Mongolia Autonomous Region, Chifeng University, Inner Mongolia, China
- Basic Medical College, Chifeng University, Inner Mongolia, China
- Key Laboratory of Mechanism and Evaluation of Traditional Chinese & Mongolian Medicine, Chifeng University, Inner Mongolia, China
| |
Collapse
|
2
|
Hou J, Xue Z, Chen Y, Li J, Yue X, Zhang Y, Gao J, Hao Y, Shen J. Development of Stimuli-Responsive Polymeric Nanomedicines in Hypoxic Tumors and Their Therapeutic Promise in Oral Cancer. Polymers (Basel) 2025; 17:1010. [PMID: 40284275 PMCID: PMC12030766 DOI: 10.3390/polym17081010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Hypoxic tumors pose considerable obstacles to cancer treatment, as diminished oxygen levels can impair drug effectiveness and heighten therapeutic resistance. Oral cancer, a prevalent malignancy, encounters specific challenges owing to its intricate anatomical structure and the technical difficulties in achieving complete resection, thereby often restricting treatment efficacy. The impact of hypoxia is particularly critical in influencing both the treatment response and prognosis of oral cancers. This article summarizes and examines the potential of polymer nanomedicines to address these challenges. By engineering nanomedicines that specifically react to the hypoxic tumor microenvironment, these pharmaceuticals can markedly enhance targeting precision and therapeutic effectiveness. Polymer nanomedicines enhance therapeutic efficacy while reducing side effects by hypoxia-targeted accumulation. The article emphasizes that these nanomedicines can overcome the drug resistance frequently observed in hypoxic tumors by improving the delivery and bioavailability of anticancer agents. Furthermore, this review elucidates the design and application of polymer nanomedicines for treating hypoxic tumors, highlighting their transformative potential in cancer therapy. Finally, this article gives an outlook on stimuli-responsive polymeric nanomedicines in the treatment of oral cancer.
Collapse
Affiliation(s)
- Jialong Hou
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China; (J.H.); (Z.X.)
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Zhijun Xue
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China; (J.H.); (Z.X.)
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Yao Chen
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China; (J.H.); (Z.X.)
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Jisen Li
- Tianjin Key Laboratory for Disaster Medicine Technology, Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China;
| | - Xin Yue
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Ying Zhang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Jing Gao
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Yonghong Hao
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- The Second Clinical Division, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Jing Shen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| |
Collapse
|
3
|
Gil‐Martínez A, Galiana‐Roselló C, Lázaro‐Gómez A, Mulet‐Rivero L, González‐García J. Deciphering the Interplay Between G-Quadruplexes and Natural/Synthetic Polyamines. Chembiochem 2025; 26:e202400873. [PMID: 39656761 PMCID: PMC12002122 DOI: 10.1002/cbic.202400873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
The interplay between polyamines and G-quadruplexes has been largely overlooked in the literature, even though polyamines are ubiquitous metabolites in living cells and G-quadruplexes are transient regulatory elements, being both of them key regulators of biological processes. Herein, we compile the investigations connecting G-quadruplexes and biogenic polyamines to understand the biological interplay between them. Moreover, we overview the main works focused on synthetic ligands containing polyamines designed to target G-quadruplexes, aiming to unravel the structural motifs for designing potent and selective G4 ligands.
Collapse
Affiliation(s)
- Ariadna Gil‐Martínez
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| | - Cristina Galiana‐Roselló
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
- Príncipe Felipe Research CenterEduardo Primo Yúfera, 346012ValenciaSpain
| | - Andrea Lázaro‐Gómez
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| | - Laura Mulet‐Rivero
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| | - Jorge González‐García
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| |
Collapse
|
4
|
Zeng X, Nie D, Liu Z, Peng X, Wang X, Qiu K, Zhong S, Liao Z, Zha X, Li Y, Zeng C. Aptamer sgc8-Modified PAMAM Nanoparticles for Targeted siRNA Delivery to Inhibit BCL11B in T-Cell Acute Lymphoblastic Leukemia. Int J Nanomedicine 2024; 19:12297-12309. [PMID: 39583320 PMCID: PMC11585994 DOI: 10.2147/ijn.s477597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction T-cell acute lymphoblastic leukemia (T-ALL) is a malignant hematological disease with limited targeted therapy options. Overexpression of B-cell lymphoma/leukemia 11B is frequently observed in T-ALL and contributes to leukemogenesis. Knockdown of BCL11B inhibits T-ALL cell proliferation and induces apoptosis, making it a potential therapeutic target. However, the clinical application of siRNA therapies is hindered by challenges such as poor delivery efficiency and limited clinical outcomes. Methods We developed a targeted delivery system for BCL11B siRNA (siBCL11B) using generation 5 polyamidoamine (G5-PAMAM) dendrimers conjugated with the sgc8 aptamer, which specifically binds to the T-ALL cell membrane protein PTK7. This nanoparticle, designated G5-sgc8-siBCL11B, was designed to selectively deliver siRNA to T-ALL cells. In vitro and in vivo experiments were conducted to evaluate its therapeutic efficacy and safety. Results We demonstrate that sgc8-conjugated siBCL11B nanoparticles selectively and efficiently target BCL11B-overexpressing T-ALL cells, significantly inhibiting cell viability and promoting apoptosis while exhibiting minimal impact on the viability of normal T cells. In T-ALL mouse model studies, G5-sgc8-siBCL11B and G5-siBCL11B significantly inhibited the progression of T-ALL in vivo, extending the survival of mice compared to the control (CTR), G5, and G5-sgc8 groups. Although there was no significant difference in survival between the G5-sgc8-siBCL11B and G5-siBCL11B groups, a trend towards improved survival was observed (p = 0.0993). Conclusion The G5-sgc8-siBCL11B nanoparticle system demonstrated efficient delivery and significant therapeutic efficacy, highlighting its potential as a promising novel approach for the treatment of T-ALL.
Collapse
Affiliation(s)
- Xiangbo Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, People’s Republic of China
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Dingrui Nie
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, People’s Republic of China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Zhen Liu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xueting Peng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xianfeng Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Kangjie Qiu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Shuxin Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Ziwei Liao
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
| | - Xianfeng Zha
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, People’s Republic of China
- Department of Clinical Laboratory, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, People’s Republic of China
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
5
|
Singh D. Beyond the membrane: Exploring non-viral methods for mitochondrial gene delivery. Mitochondrion 2024; 78:101922. [PMID: 38897397 DOI: 10.1016/j.mito.2024.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Mitochondrial disorders, stemming from mutations in mitochondrial DNA (mtDNA), present a significant therapeutic challenge due to their complex pathophysiology and broad spectrum of clinical manifestations. Traditional gene therapy approaches, primarily reliant on viral vectors, face obstacles such as potential immunogenicity, insertional mutagenesis, and the specificity of targeting mtDNA. This review delves into non-viral methods for mitochondrial gene delivery, emerging as a promising alternative to overcome these limitations. Focusing on lipid-based nanoparticles, polymer-based vectors, and mitochondrial-targeted peptides, the mechanisms of action, advantages, and current applications in treating mitochondrial diseases was well elucidated. Non-viral vectors offer several benefits, including reduced immunogenicity, enhanced safety profiles, and the flexibility to carry a wide range of genetic material. We examine case studies where these methods have been applied, highlighting their potential in correcting pathogenic mtDNA mutations and mitigating disease phenotypes. Despite their promise, challenges such as delivery efficiency, specificity, and long-term expression stability persist. The review underscores the need for ongoing research to refine these delivery systems carry a wide range of genetic material. We examine case studies where these methods settings. As we advance our understanding of mitochondrial biology and gene delivery technologies, non-viral methods hold the potential to revolutionize the treatment of mitochondrial disorders, offering hope for therapies that can precisely target and correct the underlying genetic defects.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali 140413, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India.
| |
Collapse
|
6
|
Mili M, Bachu V, Kuri PR, Singh NK, Goswami P. Improving synthesis and binding affinities of nucleic acid aptamers and their therapeutics and diagnostic applications. Biophys Chem 2024; 309:107218. [PMID: 38547671 DOI: 10.1016/j.bpc.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 03/17/2024] [Indexed: 04/22/2024]
Abstract
Nucleic acid aptamers have captivated the attention of analytical and medicinal scientists globally due to their several advantages as recognition molecules over conventional antibodies because of their small size, simple and inexpensive synthesis, broad target range, and high stability in varied environmental conditions. These recognition molecules can be chemically modified to make them resistant to nuclease action in blood serum, reduce rapid renel clearance, improve the target affinity and selectivity, and make them amenable to chemically conjugate with a support system that facilitates their selective applications. This review focuses on the development of efficient aptamer candidates and their application in clinical diagnosis and therapeutic applications. Significant advances have been made in aptamer-based diagnosis of infectious and non-infectious diseases. Collaterally, the progress made in therapeutic applications of aptamers is encouraging, as evident from their use in diagnosing cancer, neurodegenerative diseases, microbial infection, and in imaging. This review also updates the progress on clinical trials of many aptamer-based products of commercial interests. The key development and critical issues on the subject have been summarized in the concluding remarks.
Collapse
Affiliation(s)
- Malaya Mili
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Vinay Bachu
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Pooja Rani Kuri
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | | | - Pranab Goswami
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India.
| |
Collapse
|
7
|
Friesen JJ, Blakney AK. Trends in the synthetic polymer delivery of RNA. J Gene Med 2024; 26:e3672. [PMID: 38380796 DOI: 10.1002/jgm.3672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/27/2023] [Accepted: 01/27/2024] [Indexed: 02/22/2024] Open
Abstract
Ribonucleic acid (RNA) has emerged as one of the most promising therapeutic payloads in the field of gene therapy. There are many unique types of RNA that allow for a range of applications including vaccination, protein replacement therapy, autoimmune disease treatment, gene knockdown and gene editing. However, RNA triggers the host immune system, is vulnerable to degradation and has a low proclivity to enter cells spontaneously. Therefore, a delivery vehicle is required to facilitate the protection and uptake of RNA therapeutics into the desired host cells. Lipid nanoparticles have emerged as one of the only clinically approved vehicles for genetic payloads, including in the COVID-19 messenger RNA vaccines. While lipid nanoparticles have distinct advantages, they also have drawbacks, including strong immune stimulation, complex manufacturing and formulation heterogeneity. In contrast, synthetic polymers are a widely studied group of gene delivery vehicles and boast distinct advantages, including biocompatibility, tunability, inexpensiveness, simple formulation and ease of modification. Some classes of polymers enhance efficient transfection efficiency, and lead to lower stimulation of the host immune system, making them more viable candidates for non-vaccine-related applications of RNA medicines. This review aims to identify the most promising classes of synthetic polymers, summarize recent research aimed at moving them into the clinic and postulate the future steps required for unlocking their full potential.
Collapse
Affiliation(s)
- Josh J Friesen
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Anna K Blakney
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
8
|
Verma R, Rao L, Nagpal D, Yadav M, Kumar V, Kumar V, Kumar H, Parashar J, Bansal N, Kumar M, Pandey P, Mittal V, Kaushik D. Emerging Nanotechnology-based Therapeutics: A New Insight into Promising Drug Delivery System for Lung Cancer Therapy. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:395-414. [PMID: 37537775 DOI: 10.2174/1872210517666230613154847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Lung cancer is a foremost global health issue due to its poor diagnosis. The advancement of novel drug delivery systems and medical devices will aid its therapy. OBJECTIVE In this review, the authors thoroughly introduce the ideas and methods for improving nanomedicine- based approaches for lung cancer therapy. This article provides mechanistic insight into various novel drug delivery systems (DDSs) including nanoparticles, solid lipid nanoparticles, liposomes, dendrimers, niosomes, and nanoemulsions for lung cancer therapy with recent research work. This review provides insights into various patents published for lung cancer therapy based on nanomedicine. This review also highlights the current status of approved and clinically tested nanoformulations for their treatment. METHODOLOGY For finding scholarly related data for the literature search, many search engines were employed including PubMed, Science Direct, Google, Scihub, Google Scholar, Research Gate, Web of Sciences, and several others. Various keywords and phrases were used for the search such as "nanoparticles", "solid lipid nanoparticles", "liposomes", "dendrimers", "niosomes", "nanoemulsions", "lung cancer", "nanomedicine", "nanomaterial", "nanotechnology", "in vivo" and "in vitro". The most innovative and cutting-edge nanotechnology-based approaches that are employed in pre-clinical and clinical studies to address problems associated with lung cancer therapies are also mentioned in future prospects. A variety of problems encountered with current lung cancer therapy techniques that frequently led to inadequate therapeutic success are also discussed in the end. CONCLUSION The development of nanoformulations at the pilot scale still faces some difficulties, but their prospects for treating lung cancer appear to be promising in the future. Future developments and trends are anticipated as the evaluation comes to a close.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - Lakshita Rao
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, India
| | - Diksha Nagpal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Manish Yadav
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram, 122103, India
| | - Vivek Kumar
- Department of Pharmacy, Shri Ram College of Pharmacy, Karnal, India
| | - Vikram Kumar
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak, 124001, India
| | - Harish Kumar
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - Jatin Parashar
- B.S. Anangpuria Institute of Pharmacy, Faridabad-121004, India
| | - Nitin Bansal
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana- 142024 Punjab, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| |
Collapse
|
9
|
Thongchot S, Aksonnam K, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Nucleolin‑based targeting strategies in cancer treatment: Focus on cancer immunotherapy (Review). Int J Mol Med 2023; 52:81. [PMID: 37477132 PMCID: PMC10555485 DOI: 10.3892/ijmm.2023.5284] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
The benefits of treating several types of cancers using immunotherapy have recently been established. The overexpression of nucleolin (NCL) in a number of types of cancer provides an attractive antigen target for the development of novel anticancer immunotherapeutic treatments. NCL is a multifunctional protein abundantly distributed in the nucleus, cytoplasm and cell membrane. It influences carcinogenesis, and the proliferation, survival and metastasis of cancer cells, leading to cancer progression. Additionally, the meta‑analysis of total and cytoplasmic NCL overexpression indicates a poor prognosis of patients with breast cancer. The AS1411 aptamers currently appear to have therapeutic action in the phase II clinical trial. The authors' research group has recently explored the anticancer function of NCL through the activation of T cells by dendritic cell‑based immunotherapy. The present review describes and discusses the mechanisms through which the multiple functions of NCL can participate in the progression of cancer. In addition, the studies that define the utility of NCL‑dependent anticancer therapies are summarized, with specific focus being paid to cancer immunotherapeutic approaches.
Collapse
Affiliation(s)
- Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Krittaya Aksonnam
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| |
Collapse
|
10
|
Garaiová Z, Gašperová M, Šubjaková V, Hianik T. Interaction of G-quadruplex Forming DNA Aptamers with PAMAM Dendrimers Studied by Dynamic Light Scattering and UV-VIS Spectrophotometry. Chemphyschem 2023; 24:e202300264. [PMID: 37318900 DOI: 10.1002/cphc.202300264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
The complexes of G-quadruplex forming DNA thrombin binding aptamers (TBA) and polyamidoamine dendrimers (PAMAM) were studied with the aim to form a model targeted drug delivery system. Hydrodynamic diameter, zeta potential and melting temperature (Tm ) were investigated by dynamic light scattering and UV-VIS spectrophotometry. Non-covalent adsorption by means of electrostatic interaction between positively charged amino groups of dendrimers (+) and negatively charged phosphate groups of aptamers (-) has driven the formation of aggregates. The size of complexes was in the range of 0.2-2 μm and depended on the type of dispersant, charge ratio (+/-) and temperature. Raising the temperature increased the polydispersity, new smaller size distributions were observed indicating the G-quadruplex unfolding. The melting transition temperature of TBA aptamer was affected by the presence of amino-terminated PAMAM rather than carboxylated succinic acid PAMAM-SAH dendrimer, thus supporting the electrostatic nature of interaction that disturbed denaturation of target-specific quadruplex aptamer structure.
Collapse
Affiliation(s)
- Zuzana Garaiová
- Department of Nuclear Physics and Biophysics Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F1, 842 48, Bratislava, Slovakia
| | - Martina Gašperová
- Department of Nuclear Physics and Biophysics Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F1, 842 48, Bratislava, Slovakia
| | - Veronika Šubjaková
- Department of Nuclear Physics and Biophysics Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F1, 842 48, Bratislava, Slovakia
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F1, 842 48, Bratislava, Slovakia
| |
Collapse
|
11
|
Yadav K, Sahu KK, Sucheta, Gnanakani SPE, Sure P, Vijayalakshmi R, Sundar VD, Sharma V, Antil R, Jha M, Minz S, Bagchi A, Pradhan M. Biomedical applications of nanomaterials in the advancement of nucleic acid therapy: Mechanistic challenges, delivery strategies, and therapeutic applications. Int J Biol Macromol 2023; 241:124582. [PMID: 37116843 DOI: 10.1016/j.ijbiomac.2023.124582] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023]
Abstract
In the past few decades, substantial advancement has been made in nucleic acid (NA)-based therapies. Promising treatments include mRNA, siRNA, miRNA, and anti-sense DNA for treating various clinical disorders by modifying the expression of DNA or RNA. However, their effectiveness is limited due to their concentrated negative charge, instability, large size, and host barriers, which make widespread application difficult. The effective delivery of these medicines requires safe vectors that are efficient & selective while having non-pathogenic qualities; thus, nanomaterials have become an attractive option with promising possibilities despite some potential setbacks. Nanomaterials possess ideal characteristics, allowing them to be tuned into functional bio-entity capable of targeted delivery. In this review, current breakthroughs in the non-viral strategy of delivering NAs are discussed with the goal of overcoming challenges that would otherwise be experienced by therapeutics. It offers insight into a wide variety of existing NA-based therapeutic modalities and techniques. In addition to this, it provides a rationale for the use of non-viral vectors and a variety of nanomaterials to accomplish efficient gene therapy. Further, it discusses the potential for biomedical application of nanomaterials-based gene therapy in various conditions, such as cancer therapy, tissue engineering, neurological disorders, and infections.
Collapse
Affiliation(s)
- Krishna Yadav
- Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh 492010, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | | | - Pavani Sure
- Department of Pharmaceutics, Vignan Institute of Pharmaceutical Sciences, Hyderabad, Telangana, India
| | - R Vijayalakshmi
- Department of Pharmaceutical Analysis, GIET School of Pharmacy, Chaitanya Knowledge City, Rajahmundry, AP 533296, India
| | - V D Sundar
- Department of Pharmaceutical Technology, GIET School of Pharmacy, Chaitanya Knowledge City, Rajahmundry, AP 533296, India
| | - Versha Sharma
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P. 470003, India
| | - Ruchita Antil
- Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, England, United Kingdom of Great Britain and Northern Ireland
| | - Megha Jha
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P. 470003, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, M.P., 484887, India
| | - Anindya Bagchi
- Tumor Initiation & Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road La Jolla, CA 92037, USA
| | | |
Collapse
|
12
|
Shishparenok AN, Furman VV, Zhdanov DD. DNA-Based Nanomaterials as Drug Delivery Platforms for Increasing the Effect of Drugs in Tumors. Cancers (Basel) 2023; 15:2151. [PMID: 37046816 PMCID: PMC10093432 DOI: 10.3390/cancers15072151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
DNA nanotechnology has significantly advanced and might be used in biomedical applications, drug delivery, and cancer treatment during the past few decades. DNA nanomaterials are widely used in biomedical research involving biosensing, bioimaging, and drug delivery since they are remarkably addressable and biocompatible. Gradually, modified nucleic acids have begun to be employed to construct multifunctional DNA nanostructures with a variety of architectural designs. Aptamers are single-stranded nucleic acids (both DNAs and RNAs) capable of self-pairing to acquire secondary structure and of specifically binding with the target. Diagnosis and tumor therapy are prospective fields in which aptamers can be applied. Many DNA nanomaterials with three-dimensional structures have been studied as drug delivery systems for different anticancer medications or gene therapy agents. Different chemical alterations can be employed to construct a wide range of modified DNA nanostructures. Chemically altered DNA-based nanomaterials are useful for drug delivery because of their improved stability and inclusion of functional groups. In this work, the most common oligonucleotide nanomaterials were reviewed as modern drug delivery systems in tumor cells.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Vitalina V. Furman
- Center of Chemical Engineering, ITMO University, Kronverkskiy Prospekt 49A, 197101 St. Petersburg, Russia
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
13
|
Shi W, Sethi G. Long noncoding RNAs induced control of ferroptosis: Implications in cancer progression and treatment. J Cell Physiol 2023; 238:880-895. [PMID: 36924057 DOI: 10.1002/jcp.30992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
A novel kind of nonapoptotic, iron-dependent cell death brought on by lipid peroxidation is known as ferroptosis. Numerous pathological processes, including neurotoxicity, neurological disorders, ischemia-reperfusion damage, and particularly cancer, have been demonstrated to be influenced by changes in the ferroptosis-regulating network. Recent studies have established the critical roles that ferroptosis can play in cancer development and the evolution of resistance to standard chemoradiotherapy, thus suggesting that ferroptosis may be a feasible therapeutic strategy for cancer management. Gene expression may be regulated at the transcriptional and posttranscriptional levels by long noncoding RNAs (lncRNAs). They have been implicated in tumorigenesis. Some lncRNAs participate in the biological process of ferroptosis, which represents an exciting alternative to regulate ferroptosis as a means of cancer therapy. Even though there is evidence that lncRNAs have a mechanistic role in the ferroptosis of cancer cells, research on the mechanism and potential treatments for these lncRNAs is still lacking. We elucidate the potential mechanisms by which lncRNAs modulate ferroptosis in cancer and examine the promise and challenges of employing lncRNAs as novel therapeutic targets in cancer.
Collapse
Affiliation(s)
- Wei Shi
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Wong KH, Guo Z, Law MK, Chen M. Functionalized PAMAM constructed nanosystems for biomacromolecule delivery. Biomater Sci 2023; 11:1589-1606. [PMID: 36692071 DOI: 10.1039/d2bm01677j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyamidoamines (PAMAMs) are a class of dendrimer with monodispersity and controlled topology, which can deliver biologically active macromolecules (e.g., genes and proteins) to specific regions with high efficiency and minimum side effects. In detail, PAMAMs can be functionalized easily by core modification or surface amendment to encapsulate a wide range of biomacromolecules. Besides, self-assembled, cross-linked and hybrid PAMAMs with customized therapeutic purposes are developed as delivery vehicles, which makes PAMAMs promising for biomacromolecule therapy. In this review, we comprehensively summarize the application of PAMAMs in biomacromolecule delivery from the synthesis of functionalized PAMAM carriers to the development of PAMAM-based drug delivery systems. The underlying strategies for PAMAM functionalization and assembly are first systematically discussed, and then the current applications of PAMAMs for biomacromolecule delivery are reviewed. Finally, a brief perspective on the further applications of PAMAMs concludes, aiming to provide insights into developing PAMAM-based biomacromolecule delivery systems.
Collapse
Affiliation(s)
- Ka Hong Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| | - Zhaopei Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| | - Man-Kay Law
- State Key Laboratory of Analog and Mixed-Signal VLSI, IME and FST-ECE, University of Macau, Macau SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
15
|
Vinh Nguyen P, Hervé-Aubert K, Lajoie L, Misericordia Y, Chourpa I, David S, Allard-Vannier E. WITHDRAWN: In vitro synergistic activity of cisplatin and EGFR-targeted nanomedicine of anti-Bcl-xL siRNA in a non-small lung cancer cell line model. Int J Pharm 2023; 632:122335. [PMID: 36283640 DOI: 10.1016/j.ijpharm.2022.122335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022]
Abstract
This article was withdrawn from International Journal of Pharmaceutics in order to be published in International Journal of Pharmaceutics: X. The Publisher apologizes for any inconvenience this may cause.
Collapse
Affiliation(s)
- Phuoc Vinh Nguyen
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France; School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Katel Hervé-Aubert
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Laurie Lajoie
- ISP UMR1282, INRAE, équipe BioMAP, Université de Tours, Tours, France
| | - Yoann Misericordia
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Igor Chourpa
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Stéphanie David
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | | |
Collapse
|
16
|
Investigating Efficacy of Three DNA-Aptamers in Targeted Plasmid Delivery to Human Prostate Cancer Cell Lines. Mol Biotechnol 2023; 65:97-107. [PMID: 35834121 DOI: 10.1007/s12033-022-00528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/23/2022] [Indexed: 01/11/2023]
Abstract
Selection of targeted and efficient carriers to deliver drugs and genes to cells and tissues is still a major challenge and to overcome this obstacle, aptamers conjugated to nanoparticles have been broadly examined. To assess whether polycation of aptamers can improve plasmid delivery efficacy, we investigated the effect of three DNA-aptamers (AS1411, WY-5a, and Sgs-8) conjugated to branched polyethylenimine (b-PEI; MW ∼25 kDa) with different combinations of gene (plasmid) for delivery to prostate cancer cell lines (DU145 and PC3). According to transfection assessments, the dual conjugation of aptamers (AS:WY) with b-PEI produced the best results and increased the efficiency of plasmid delivery to up to three folds compared to unmodified PEI. Surprisingly, triple aptamer arrangement not only reduced transfection ability but also showed cytotoxicity. While our results demonstrated potential synergistic effects of AS1411 and WY-5a aptamers for gene delivery, it is important to note that the present evidence relies on the aptamer and cell types.
Collapse
|
17
|
Gholami L, Ivari JR, Nasab NK, Oskuee RK, Sathyapalan T, Sahebkar A. Recent Advances in Lung Cancer Therapy Based on Nanomaterials: A Review. Curr Med Chem 2023; 30:335-355. [PMID: 34375182 DOI: 10.2174/0929867328666210810160901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 11/22/2022]
Abstract
Lung cancer is one of the commonest cancers with a significant mortality rate for both genders, particularly in men. Lung cancer is recognized as one of the leading causes of death worldwide, which threatens the lives of over 1.6 million people every day. Although cancer is the leading cause of death in industrialized countries, conventional anticancer medications are unlikely to increase patients' life expectancy and quality of life significantly. In recent years, there are significant advances in the development and applications of nanotechnology in cancer treatment. The superiority of nanostructured approaches is that they act more selectively than traditional agents. This progress led to the development of a novel field of cancer treatment known as nanomedicine. Various formulations based on nanocarriers, including lipids, polymers, liposomes, nanoparticles and dendrimers have opened new horizons in lung cancer therapy. The application and expansion of nano-agents lead to an exciting and challenging research era in pharmaceutical science, especially for the delivery of emerging anti-cancer agents. The objective of this review is to discuss the recent advances in three types of nanoparticle formulations for lung cancer treatments modalities, including liposomes, polymeric micelles, and dendrimers for efficient drug delivery. Afterward, we have summarized the promising clinical data on nanomaterials based therapeutic approaches in ongoing clinical studies.
Collapse
Affiliation(s)
- Leila Gholami
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Rouhani Ivari
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Khandan Nasab
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, United Kingdom of Great Britain and Northern Ireland
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Nguyen PV, Hervé-Aubert K, Lajoie L, Misericordia Y, Chourpa I, David S, Allard-Vannier E. In vitro synergistic activity of cisplatin and EGFR-targeted nanomedicine of anti-Bcl-xL siRNA in a non-small lung cancer cell line model. Int J Pharm X 2022; 4:100139. [PMID: 36420371 PMCID: PMC9676141 DOI: 10.1016/j.ijpx.2022.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Apoptosis is an important process that directly affects the response of cancer cells to anticancer drugs. Among different factors involved in this process, the BcL-xL protein plays a critical role in inhibiting apoptosis induced by chemotherapy agents. Henceforth, its downregulation may have a synergistic activity that lowers the necessary dose of anticancer agents. In this study, anti-Bcl-xL siRNA were formulated within an EGFR-targeted nanomedicine with scFv ligands (NM-scFv) and its activity was tested in the non-small cell lung cancer (NSCLC) cell line H460. The obtained NMs-scFv anti-Bcl-xL were suitable for intravenous injection with sizes around 100 nm, a high monodispersity level and good siRNA complexation capacity. The nanocomplex's functionalization with anti-EGFR scFv ligands was shown to allow an active gene delivery into H460 cells and led to approximately 63% of gene silencing at both mRNA and protein levels. The NM-scFv anti-Bcl-xL improved the apoptotic activity of cisplatin and reduced the cisplatin IC50 value in H460 cells by a factor of around three from 0.68 ± 0.12 μM to 2.21 ± 0.18 μM (p < 0.01), respectively, in comparison to that of NM-scFv formulated with control siRNA (p > 0.05).
Collapse
Affiliation(s)
- Phuoc Vinh Nguyen
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
- School of Medicine, Vietnam National University Ho Chi Minh city, Ho Chi Minh city, Viet Nam
| | - Katel Hervé-Aubert
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Laurie Lajoie
- ISP UMR1282, INRAE, équipe BioMAP, Université de Tours, Tours, France
| | - Yoann Misericordia
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Igor Chourpa
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Stéphanie David
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | | |
Collapse
|
19
|
Nucleolin; A tumor associated antigen as a potential lung cancer biomarker. Pathol Res Pract 2022; 240:154160. [DOI: 10.1016/j.prp.2022.154160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/11/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
|
20
|
Arora V, Abourehab MA, Modi G, Kesharwani P. Dendrimers as prospective nanocarrier for targeted delivery against lung cancer. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Mirón-Barroso S, Correia JS, Frampton AE, Lythgoe MP, Clark J, Tookman L, Ottaviani S, Castellano L, Porter AE, Georgiou TK, Krell J. Polymeric Carriers for Delivery of RNA Cancer Therapeutics. Noncoding RNA 2022; 8:ncrna8040058. [PMID: 36005826 PMCID: PMC9412371 DOI: 10.3390/ncrna8040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
As research uncovers the underpinnings of cancer biology, new targeted therapies have been developed. Many of these therapies are small molecules, such as kinase inhibitors, that target specific proteins; however, only 1% of the genome encodes for proteins and only a subset of these proteins has ‘druggable’ active binding sites. In recent decades, RNA therapeutics have gained popularity due to their ability to affect targets that small molecules cannot. Additionally, they can be manufactured more rapidly and cost-effectively than small molecules or recombinant proteins. RNA therapeutics can be synthesised chemically and altered quickly, which can enable a more personalised approach to cancer treatment. Even though a wide range of RNA therapeutics are being developed for various indications in the oncology setting, none has reached the clinic to date. One of the main reasons for this is attributed to the lack of safe and effective delivery systems for this type of therapeutic. This review focuses on current strategies to overcome these challenges and enable the clinical utility of these novel therapeutic agents in the cancer clinic.
Collapse
Affiliation(s)
- Sofía Mirón-Barroso
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
- Correspondence:
| | - Joana S. Correia
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (J.S.C.); (A.E.P.); (T.K.G.)
| | - Adam E. Frampton
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Mark P. Lythgoe
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| | - James Clark
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| | - Laura Tookman
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| | - Silvia Ottaviani
- Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK;
| | | | - Alexandra E. Porter
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (J.S.C.); (A.E.P.); (T.K.G.)
| | - Theoni K. Georgiou
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (J.S.C.); (A.E.P.); (T.K.G.)
| | - Jonathan Krell
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| |
Collapse
|
22
|
A comprehensive review on different approaches for tumor targeting using nanocarriers and recent developments with special focus on multifunctional approaches. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
23
|
Salmasi Z, Rouhi N, Safarpour H, Zebardast N, Zare H. The Recent Progress in DNAzymes-Based Aptasensors for Thrombin Detection. Crit Rev Anal Chem 2022; 54:818-839. [PMID: 35867568 DOI: 10.1080/10408347.2022.2098671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Thrombin (TB) is classified among human blood coagulation proteins with key functions in hemostasis of blood vessels, wound healing, atherosclerosis, tissue adhesion, etc. Moreover, TB is involved as the main enzyme in the conversion of the fibrinogen to fibrin. Given the importance of TB detection in the clinical area, the development of innovative methods can considerably improve TB detection. Newly, aptasensors or aptamer-based biosensors have received special attention for sensitive and facile TB detection. In addition, the aptamer/nanomaterial conjugates have presented new prospects in accurate TB detection as nanoaptasensors. DNA-based enzymes or DNAzymes, as new biocatalysts, have many advantages over protein enzymes and can be used in analytical tools. This article reviews a brief overview of significant progresses regarding the various types of DNAzymes-based aptasensors and nano aptasensors developed for thrombin detection. In the following, challenges and prospects of TB detection by DNAzymes-based aptasensors are discussed.
Collapse
Affiliation(s)
- Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nadiyeh Rouhi
- Seafood Processing Department, Marine Science Faculty, Tarbiat Modares University, Tehran, Iran
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nozhat Zebardast
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamed Zare
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
24
|
Dey AD, Bigham A, Esmaeili Y, Ashrafizadeh M, Moghaddam FD, Tan SC, Yousefiasl S, Sharma S, Maleki A, Rabiee N, Kumar AP, Thakur VK, Orive G, Sharifi E, Kumar A, Makvandi P. Dendrimers as nanoscale vectors: Unlocking the bars of cancer therapy. Semin Cancer Biol 2022; 86:396-419. [PMID: 35700939 DOI: 10.1016/j.semcancer.2022.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/06/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
Chemotherapy is the first choice in the treatment of cancer and is always preferred to other approaches such as radiation and surgery, but it has never met the need of patients for a safe and effective drug. Therefore, new advances in cancer treatment are now needed to reduce the side effects and burdens associated with chemotherapy for cancer patients. Targeted treatment using nanotechnology are now being actively explored as they could effectively deliver therapeutic agents to tumor cells without affecting normal cells. Dendrimers are promising nanocarriers with distinct physiochemical properties that have received considerable attention in cancer therapy studies, which is partly due to the numerous functional groups on their surface. In this review, we discuss the progress of different types of dendrimers as delivery systems in cancer therapy, focusing on the challenges, opportunities, and functionalities of the polymeric molecules. The paper also reviews the various role of dendrimers in their entry into cells via endocytosis, as well as the molecular and inflammatory pathways in cancer. In addition, various dendrimers-based drug delivery (e.g., pH-responsive, enzyme-responsive, redox-responsive, thermo-responsive, etc.) and lipid-, amino acid-, polymer- and nanoparticle-based modifications for gene delivery, as well as co-delivery of drugs and genes in cancer therapy with dendrimers, are presented. Finally, biosafety concerns and issues hindering the transition of dendrimers from research to the clinic are discussed to shed light on their clinical applications.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J.F. Kennedy 54-Mostra d'Oltremare pad. 20, 80125 Naples, Italy
| | - Yasaman Esmaeili
- Biosensor Research Center (BRC), School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satar Yousefiasl
- School of Dentistry, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Saurav Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Cancer Research Centre, Shahid Beheshti University of Medical Sciences, 1989934148 Tehran, Iran
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India; Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125 Italy.
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Pontedera, 56025 Pisa, Italy.
| |
Collapse
|
25
|
Recent development of aptamer conjugated chitosan nanoparticles as cancer therapeutics. Int J Pharm 2022; 620:121751. [DOI: 10.1016/j.ijpharm.2022.121751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/26/2022] [Accepted: 04/11/2022] [Indexed: 12/18/2022]
|
26
|
Radhakrishnan N, Kaul SC, Wadhwa R, Sundar D. Phosphatidylserine Exposed Lipid Bilayer Models for Understanding Cancer Cell Selectivity of Natural Compounds: A Molecular Dynamics Simulation Study. MEMBRANES 2022; 12:64. [PMID: 35054590 PMCID: PMC8780679 DOI: 10.3390/membranes12010064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
Abstract
Development of drugs that are selectively toxic to cancer cells and safe to normal cells is crucial in cancer treatment. Evaluation of membrane permeability is a key metric for successful drug development. In this study, we have used in silico molecular models of lipid bilayers to explore the effect of phosphatidylserine (PS) exposure in cancer cells on membrane permeation of natural compounds Withaferin A (Wi-A), Withanone (Wi-N), Caffeic Acid Phenethyl Ester (CAPE) and Artepillin C (ARC). Molecular dynamics simulations were performed to compute permeability coefficients. The results indicated that the exposure of PS in cancer cell membranes facilitated the permeation of Wi-A, Wi-N and CAPE through a cancer cell membrane when compared to a normal cell membrane. In the case of ARC, PS exposure did not have a notable influence on its permeability coefficient. The presented data demonstrated the potential of PS exposure-based models for studying cancer cell selectivity of drugs.
Collapse
Affiliation(s)
- Navaneethan Radhakrishnan
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India;
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan;
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan;
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India;
- School of Artificial Intelligence, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India
| |
Collapse
|
27
|
Yang C, Jiang Y, Hao SH, Yan XY, Hong DF, Naranmandura H. Aptamers: an emerging navigation tool of therapeutic agents for targeted cancer therapy. J Mater Chem B 2021; 10:20-33. [PMID: 34881767 DOI: 10.1039/d1tb02098f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemotherapeutic agents have been used for the treatment of numerous cancers, but due to poor selectivity and severe systemic side effects, their clinical application is limited. Single-stranded DNA (ssDNA) or RNA aptamers could conjugate with highly toxic chemotherapy drugs, toxins, therapeutic RNAs or other molecules as novel aptamer-drug conjugates (ApDCs), which are capable of significantly improving the therapeutic efficacy and reducing the systemic toxicity of drugs and have great potential in clinics for targeted cancer therapy. In this review, we have comprehensively discussed and summarized the current advances in the screening approaches of aptamers for specific cancer biomarker targeting and development of the aptamer-drug conjugate strategy for targeted drug delivery. Moreover, considering the huge progress in artificial intelligence (AI) for protein and RNA structure predictions, automatic design of aptamers using deep/machine learning techniques could be a powerful approach for rapid and precise construction of biopharmaceutics (i.e., ApDCs) for application in cancer targeted therapy.
Collapse
Affiliation(s)
- Chang Yang
- Department of Hematology, the First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China. .,Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
| | - Yu Jiang
- Department of Hematology, the First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China. .,Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sai Heng Hao
- College of Pharmaceutical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Xing Yi Yan
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China.,Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - De Fei Hong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hua Naranmandura
- Department of Hematology, the First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China. .,Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China.,Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
28
|
Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomed Pharmacother 2021; 146:112530. [PMID: 34915416 DOI: 10.1016/j.biopha.2021.112530] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Breast carcinomas repeat their number and grow exponentially making it extremely frequent malignancy among women. Approximately, 70-80% of early diagnosed or non-metastatic conditions are treatable while the metastatic cases are considered ineffective to treat with current ample amount of therapy. Target based anti-cancer treatment has been in the limelight for decades and is perceived significant consideration of scientists. Aptamers are the 'coming of age' therapeutic approach, selected using an appropriate tool from the library of sequences. Aptamers are non-immunogenic, stable, and high-affinity ligand which are poised to reach the clinical benchmark. With the heed in nanoparticle application, the delivery of aptamer to the specific site could be enhanced which also protects them from nuclease degradation. Moreover, nanoparticles due to robust structure, high drug entrapment, and modifiable release of cargo could serve as a successful candidate in the treatment of breast carcinoma. This review would showcase the method and modified method of selection of aptamers, aptamers that were able to make its way towards clinical trial and their targetability and selectivity towards breast cancers. The appropriate usage of aptamer-based biosensor in breast cancer diagnosis have also been discussed.
Collapse
|
29
|
Kubczak M, Michlewska S, Bryszewska M, Aigner A, Ionov M. Nanoparticles for local delivery of siRNA in lung therapy. Adv Drug Deliv Rev 2021; 179:114038. [PMID: 34742826 DOI: 10.1016/j.addr.2021.114038] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
An overview of the application of natural and synthetic, non-viral vectors for oligonucleotide delivery into the lung is presented in this review, with a special focus on lung cancer. Due to the specificity of the respiratory tract, its structure and natural barriers, the administration of drugs (especially those based on nucleic acids) is a particular challenge. Among widely tested non-viral drug and oligonucleotides carriers, synthetic polymers seem to be most promising. Unique properties of these nanoparticles allow for essentially unlimited possibilities regarding their design and modification. This gives hope that optimal nanoparticles with ideal nucleic acid carrier properties for lung cancer therapy will eventually emanate.
Collapse
|
30
|
Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, Patil T, Katari O. Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases. Mol Pharm 2021; 18:3671-3718. [PMID: 34491754 DOI: 10.1021/acs.molpharmaceut.1c00491] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic pulmonary diseases encompass different persistent and lethal diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), asthma, and lung cancers that affect millions of people globally. Traditional pharmacotherapeutic treatment approaches (i.e., bronchodilators, corticosteroids, chemotherapeutics, peptide-based agents, etc.) are not satisfactory to cure or impede diseases. With the advent of nanotechnology, drug delivery to an intended site is still difficult, but the nanoparticle's physicochemical properties can accomplish targeted therapeutic delivery. Based on their surface, size, density, and physical-chemical properties, nanoparticles have demonstrated enhanced pharmacokinetics of actives, achieving the spotlight in the drug delivery research field. In this review, the authors have highlighted different nanoparticle-based therapeutic delivery approaches to treat chronic pulmonary diseases along with the preparation techniques. The authors have remarked the nanosuspension delivery via nebulization and dry powder carrier is further effective in the lung delivery system since the particles released from these systems are innumerable to composite nanoparticles. The authors have also outlined the inhaled particle's toxicity, patented nanoparticle-based pulmonary formulations, and commercial pulmonary drug delivery devices (PDD) in other sections. Recently advanced formulations employing nanoparticles as therapeutic carriers for the efficient treatment of chronic pulmonary diseases are also canvassed.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Pharmacy, Institute of Pharmacy Jalpaiguri, Netaji Subhas Chandra Bose Road, Hospital Para, Jalpaiguri, West Bengal 735101, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Himalayan Pharmacy Institute, Majhitar, East Sikkim 737176, India.,Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya, Mangalore, Karnataka 575018, India
| | - Ravi Manne
- Quality Control and Assurance Department, Chemtex Environmental Lab, 3082 25th Street, Port Arthur, Texas 77642, United States
| | - Rahul R Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, United States
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Sijo Joy Edapully
- School of Biotechnology, National Institute of Technology Calicut, NIT campus, Kozhikode, Kerala 673601, India.,Corporate Head Office, HLL Lifecare Limited, Poojappura, Thiruvananthapuram, Kerala 695012, India
| | - Triveni Patil
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| | - Oly Katari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| |
Collapse
|
31
|
|
32
|
Abstract
Multiple myeloma is the second most common hematological malignancy in adults, accounting for 2% of all cancer-related deaths in the UK. Current chemotherapy-based regimes are insufficient, as most patients relapse and develop therapy resistance. This review focuses on current novel antibody- and aptamer-based therapies aiming to overcome current therapy limitations, as well as their respective limitations and areas of improvement. The use of computer modeling methods, as a tool to study and improve ligand-receptor alignments for the use of novel therapy development will also be discussed, as it has become a rapid, reliable and comparatively inexpensive method of investigation.
Collapse
|
33
|
Hani U, M. YB, Wahab S, Siddiqua A, Osmani RAM, Rahamathulla M. A Comprehensive Review of Current Perspectives on Novel Drug Delivery Systems and Approaches for Lung Cancer Management. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09582-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Surekha B, Kommana NS, Dubey SK, Kumar AP, Shukla R, Kesharwani P. PAMAM dendrimer as a talented multifunctional biomimetic nanocarrier for cancer diagnosis and therapy. Colloids Surf B Biointerfaces 2021; 204:111837. [DOI: 10.1016/j.colsurfb.2021.111837] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 12/15/2022]
|
35
|
Lopes-Nunes J, Oliveira PA, Cruz C. G-Quadruplex-Based Drug Delivery Systems for Cancer Therapy. Pharmaceuticals (Basel) 2021; 14:671. [PMID: 34358097 PMCID: PMC8308530 DOI: 10.3390/ph14070671] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
G-quadruplexes (G4s) are a class of nucleic acids (DNA and RNA) with single-stranded G-rich sequences. Owing to the selectivity of some G4s, they are emerging as targeting agents to overtake side effects of several potential anticancer drugs, and delivery systems of small molecules to malignant cells, through their high affinity or complementarity to specific targets. Moreover, different systems are being used to improve their potential, such as gold nano-particles or liposomes. Thus, the present review provides relevant data about the different studies with G4s as drug delivery systems and the challenges that must be overcome in the future research.
Collapse
Affiliation(s)
- Jéssica Lopes-Nunes
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Paula A. Oliveira
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Carla Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| |
Collapse
|
36
|
Amjad AM. DENDRIMERS IN ANTICANCER TARGETED DRUG DELIVERY: ACCOMPLISHMENTS, CHALLENGES AND DIRECTIONS FOR FUTURE. PHARMACY & PHARMACOLOGY 2021. [DOI: 10.19163/2307-9266-2021-9-1-4-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dendrimers are nanoparticles with unique features including globular 3D shape and nanometer size. The availability of numerous terminal functional groups and modifiable surface engineering permit modification of dendrimer surface with several therapeutic agents, diagnostic moieties and targeting substances.The aim. To enlighten the readers regarding design, development, limitations, challenges and future directions regarding anticancer bio-dendrimers.Materials and methods. The data base was represented by such systems as Medline, Cochrane Central Register of Controlled Trials, Scopus, Web of Science Core Collection, PubMed. gov, Google-Academy. A search was carried out for the following keywords and combinations: Polypropylene imine (PPI); Poly-L-lysine (PLL); polyamidoamine (PAMAM); cancer; drug delivery; dendrimers.Results. High encapsulation of drug and effective passive targeting are also among their therapeutic uses. Herein, we have described latest developments in chemotherapeutic delivery of drugs by dendrimers. For the most part, the potential and efficacy of dendrimers are anticipated to have considerable progressive effect on drug targeting and delivery.Conclusion. The newest discoveries have shown that the dendritic nanocarriers have many unique features that endorse more research and development.
Collapse
Affiliation(s)
- A. M. Amjad
- Northern Border University
Rafha, Saudi Arabia, 76322
| |
Collapse
|
37
|
Mehta M, Dhanjal DS, Satija S, Wadhwa R, Paudel KR, Chellappan DK, Mohammad S, Haghi M, Hansbro PM, Dua K. Advancing of Cellular Signaling Pathways in Respiratory Diseases Using Nanocarrier Based Drug Delivery Systems. Curr Pharm Des 2021; 26:5380-5392. [PMID: 33198611 DOI: 10.2174/1381612826999201116161143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
Cell Signaling pathways form an integral part of our existence that allows the cells to comprehend a stimulus and respond back. Such reactions to external cues from the environment are required and are essential to regulate the normal functioning of our body. Abnormalities in the system arise when there are errors developed in these signals, resulting in a complication or a disease. Presently, respiratory diseases contribute to being the third leading cause of morbidity worldwide. According to the current statistics, over 339 million people are asthmatic, 65 million are suffering from COPD, 2.3 million are lung cancer patients and 10 million are tuberculosis patients. This toll of statistics with chronic respiratory diseases leaves a heavy burden on society and the nation's annual health expenditure. Hence, a better understanding of the processes governing these cellular pathways will enable us to treat and manage these deadly respiratory diseases effectively. Moreover, it is important to comprehend the synergy and interplay of the cellular signaling pathways in respiratory diseases, which will enable us to explore and develop suitable strategies for targeted drug delivery. This review, in particular, focuses on the major respiratory diseases and further provides an in-depth discussion on the various cell signaling pathways that are involved in the pathophysiology of respiratory diseases. Moreover, the review also analyses the defining concepts about advanced nano-drug delivery systems involving various nanocarriers and propose newer prospects to minimize the current challenges faced by researchers and formulation scientists.
Collapse
Affiliation(s)
- Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Daljeet Singh Dhanjal
- School of Biosciences and Bioengineering, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Ridhima Wadhwa
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Keshav Raj Paudel
- School of Life Sciences, Faculty of Science, University of Technology Sydney (UTS), Ultimo, NSW, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Shiva Mohammad
- School of Life Sciences, Faculty of Science, University of Technology Sydney (UTS), Ultimo, NSW, 2007, Australia
| | - Mehra Haghi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Philip M Hansbro
- School of Life Sciences, Faculty of Science, University of Technology Sydney (UTS), Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| |
Collapse
|
38
|
Tarach P, Janaszewska A. Recent Advances in Preclinical Research Using PAMAM Dendrimers for Cancer Gene Therapy. Int J Mol Sci 2021; 22:2912. [PMID: 33805602 PMCID: PMC7999260 DOI: 10.3390/ijms22062912] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Carriers of genetic material are divided into vectors of viral and non-viral origin. Viral carriers are already successfully used in experimental gene therapies, but despite advantages such as their high transfection efficiency and the wide knowledge of their practical potential, the remaining disadvantages, namely, their low capacity and complex manufacturing process, based on biological systems, are major limitations prior to their broad implementation in the clinical setting. The application of non-viral carriers in gene therapy is one of the available approaches. Poly(amidoamine) (PAMAM) dendrimers are repetitively branched, three-dimensional molecules, made of amide and amine subunits, possessing unique physiochemical properties. Surface and internal modifications improve their physicochemical properties, enabling the increase in cellular specificity and transfection efficiency and a reduction in cytotoxicity toward healthy cells. During the last 10 years of research on PAMAM dendrimers, three modification strategies have commonly been used: (1) surface modification with functional groups; (2) hybrid vector formation; (3) creation of supramolecular self-assemblies. This review describes and summarizes recent studies exploring the development of PAMAM dendrimers in anticancer gene therapies, evaluating the advantages and disadvantages of the modification approaches and the nanomedicine regulatory issues preventing their translation into the clinical setting, and highlighting important areas for further development and possible steps that seem promising in terms of development of PAMAM as a carrier of genetic material.
Collapse
MESH Headings
- Biocompatible Materials/administration & dosage
- Biocompatible Materials/chemical synthesis
- Dendrimers/administration & dosage
- Dendrimers/chemical synthesis
- Gene Expression Regulation, Neoplastic
- Gene Transfer Techniques
- Genetic Therapy/methods
- Government Regulation
- Humans
- MicroRNAs/administration & dosage
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Nanomedicine/legislation & jurisprudence
- Nanomedicine/methods
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Plasmids/administration & dosage
- Plasmids/chemistry
- Plasmids/metabolism
- RNA, Messenger/administration & dosage
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Surface Properties
Collapse
Affiliation(s)
- Piotr Tarach
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | | |
Collapse
|
39
|
Nerantzaki M, Loth C, Lutz JF. Chemical conjugation of nucleic acid aptamers and synthetic polymers. Polym Chem 2021. [DOI: 10.1039/d1py00516b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This minireview describes the synthesis, characterization and properties of aptamer–polymer conjugates. This new class of polymer bioconjugates combines the advantages of synthetic polymers and folded nucleic acids.
Collapse
Affiliation(s)
- Maria Nerantzaki
- Université de Strasbourg
- CNRS
- Institut Charles Sadron UPR22
- 67034 Strasbourg Cedex 2
- France
| | - Capucine Loth
- Université de Strasbourg
- CNRS
- Institut Charles Sadron UPR22
- 67034 Strasbourg Cedex 2
- France
| | - Jean-François Lutz
- Université de Strasbourg
- CNRS
- Institut Charles Sadron UPR22
- 67034 Strasbourg Cedex 2
- France
| |
Collapse
|
40
|
Fu Z, Xiang J. Aptamer-Functionalized Nanoparticles in Targeted Delivery and Cancer Therapy. Int J Mol Sci 2020; 21:ijms21239123. [PMID: 33266216 PMCID: PMC7730239 DOI: 10.3390/ijms21239123] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Using nanoparticles to carry and delivery anticancer drugs holds much promise in cancer therapy, but nanoparticles per se are lacking specificity. Active targeting, that is, using specific ligands to functionalize nanoparticles, is attracting much attention in recent years. Aptamers, with their several favorable features like high specificity and affinity, small size, very low immunogenicity, relatively low cost for production, and easiness to store, are one of the best candidates for the specific ligands of nanoparticle functionalization. This review discusses the benefits and challenges of using aptamers to functionalize nanoparticles for active targeting and especially presents nearly all of the published works that address the topic of using aptamers to functionalize nanoparticles for targeted drug delivery and cancer therapy.
Collapse
Affiliation(s)
- Zhaoying Fu
- Institute of Molecular Biology and Immunology, College of Medicine, Yanan University, Yanan 716000, China
- Correspondence: (Z.F.); (J.X.)
| | - Jim Xiang
- Division of Oncology, University of Saskatchewan, Saskatoon, SK S7N 4H4, Canada
- Correspondence: (Z.F.); (J.X.)
| |
Collapse
|
41
|
Hu H, Wang H, Liang S, Li X, Wang D. Synthesis and characterization of a PAMAM dendrimer nanocarrier functionalized by HA for targeted gene delivery systems and evaluation in vitro. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:205-228. [PMID: 33035113 DOI: 10.1080/09205063.2020.1827921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Poly(amido-amine) (PAMAM), one of the most widely studied dendrimers in the field of drug and gene delivery, can enhance the stability of DNA and deliver it to cell cytosol; hyaluronic acid (HA), a simple disaccharide unit, can polymerize and is considered a polymer of non-immunogenicity, which has an intrinsic targeting property for many cancer cells by interacting with CD 44. In this study, we had synthesized and characterized a series of PAMAM modified by HA. and PAMAM was conjugated by HA with different grafting density (5%, 15%, 25%) and molecular weight (HA3850, HA17200). We had investigated the particle size, zeta potential and Agarose gel electrophoresis assays of polyplexes. Besides, the cytotoxicity, transfection efficiency and the mechanisms of transfection of new polyplexes were assessed following in vitro transfection in Hela, Bel-7402 and HepG2 cells lines. In the results, modified by HA, the cytotoxicity of polymer had reduced and the size of some polymers also below 200 nm in appropriate weight ratio, and transfection efficiency had also close to the polyplexes G4 PAMAM/DNA were observed. Compared with the unmodified dendrimers compounds, the DNA delivering capacity of PAMAM G4-HA3850-5% and PAMAM G5-HA3850-5% had improved in cancer cells line. It is a potential candidate used for targeted gene delivery.
Collapse
Affiliation(s)
- Haimei Hu
- School of life sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Wang
- School of life sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuanghong Liang
- School of life sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoling Li
- School of life sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dan Wang
- School of life sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
42
|
Singh P, Singh A, Shah S, Vataliya J, Mittal A, Chitkara D. RNA Interference Nanotherapeutics for Treatment of Glioblastoma Multiforme. Mol Pharm 2020; 17:4040-4066. [PMID: 32902291 DOI: 10.1021/acs.molpharmaceut.0c00709] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleic acid therapeutics for RNA interference (RNAi) are gaining attention in the treatment and management of several kinds of the so-called "undruggable" tumors via targeting specific molecular pathways or oncogenes. Synthetic ribonucleic acid (RNAs) oligonucleotides like siRNA, miRNA, shRNA, and lncRNA have shown potential as novel therapeutics. However, the delivery of such oligonucleotides is significantly hampered by their physiochemical (such as hydrophilicity, negative charge, and instability) and biopharmaceutical features (in vivo serum stability, fast renal clearance, interaction with extracellular proteins, and hindrance in cellular internalization) that markedly reduce their biological activity. Recently, several nanocarriers have evolved as suitable non-viral vectors for oligonucleotide delivery, which are known to either complex or conjugate with these oligonucleotides efficiently and also overcome the extracellular and intracellular barriers, thereby allowing access to the tumoral micro-environment for the better and desired outcome in glioblastoma multiforme (GBM). This Review focuses on the up-to-date advancements in the field of RNAi nanotherapeutics utilized for GBM treatment.
Collapse
Affiliation(s)
- Prabhjeet Singh
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Vidya Vihar, Pilani - 333 031, Rajasthan, India
| | - Aditi Singh
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Vidya Vihar, Pilani - 333 031, Rajasthan, India
| | - Shruti Shah
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Vidya Vihar, Pilani - 333 031, Rajasthan, India
| | - Jalpa Vataliya
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Vidya Vihar, Pilani - 333 031, Rajasthan, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Vidya Vihar, Pilani - 333 031, Rajasthan, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Vidya Vihar, Pilani - 333 031, Rajasthan, India
| |
Collapse
|
43
|
Mohammadinejad R, Dehshahri A, Sagar Madamsetty V, Zahmatkeshan M, Tavakol S, Makvandi P, Khorsandi D, Pardakhty A, Ashrafizadeh M, Ghasemipour Afshar E, Zarrabi A. In vivo gene delivery mediated by non-viral vectors for cancer therapy. J Control Release 2020; 325:249-275. [PMID: 32634464 PMCID: PMC7334939 DOI: 10.1016/j.jconrel.2020.06.038] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022]
Abstract
Gene therapy by expression constructs or down-regulation of certain genes has shown great potential for the treatment of various diseases. The wide clinical application of nucleic acid materials dependents on the development of biocompatible gene carriers. There are enormous various compounds widely investigated to be used as non-viral gene carriers including lipids, polymers, carbon materials, and inorganic structures. In this review, we will discuss the recent discoveries on non-viral gene delivery systems. We will also highlight the in vivo gene delivery mediated by non-viral vectors to treat cancer in different tissue and organs including brain, breast, lung, liver, stomach, and prostate. Finally, we will delineate the state-of-the-art and promising perspective of in vivo gene editing using non-viral nano-vectors.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Masoumeh Zahmatkeshan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy; Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Danial Khorsandi
- Department of Medical Nanotechnology, Faculty of Advanced, Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran; Department of Biotechnology-Biomedicine, University of Barcelona, Barcelona 08028, Spain
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey.
| |
Collapse
|
44
|
Fathi Dizaji B. Strategies to target long non-coding RNAs in cancer treatment: progress and challenges. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00074-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Long non-coding RNAs are important regulators of gene expression and diverse biological processes. Their aberrant expression contributes to a verity of diseases including cancer development and progression, providing them with great potential to be diagnostic and prognostic biomarkers and therapeutic targets. Therefore, they can have a key role in personalized cancer medicine.
This review aims at introducing possible strategies to target long ncRNAs therapeutically in cancer. Also, chemical modification of nucleic acid-based therapeutics to improve their pharmacological properties is explained. Then, approaches for the systematic delivery of reagents into the tumor cells or organs are briefly discussed, followed by describing obstacles to the expansion of the therapeutics.
Main text
Long ncRNAs function as oncogenes or tumor suppressors, whose activity can modulate all hallmarks of cancer. They are expressed in a very restricted spatial and temporal pattern and can be easily detected in the cells or biological fluids of patients. These properties make them excellent targets for the development of anticancer drugs. Targeting methods aim to attenuate oncogenic lncRNAs or interfere with lncRNA functions to prevent carcinogenesis. Numerous strategies including suppression of oncogenic long ncRNAs, alternation of their epigenetic effects, interfering with their function, restoration of downregulated or lost long ncRNAs, and recruitment of long ncRNAs regulatory elements and expression patterns are recommended for targeting long ncRNAs therapeutically in cancer. These approaches have shown inhibitory effects on malignancy. In this regard, proliferation, migration, and invasion of tumor cells have been inhibited and apoptosis has been induced in different cancer cells in vitro and in vivo. Downregulation of oncogenic long ncRNAs and upregulation of some growth factors (e.g., neurotrophic factor) have been achieved.
Conclusions
Targeting long non-coding RNAs therapeutically in cancer and efficient and safe delivery of the reagents have been rarely addressed. Only one clinical trial involving lncRNAs has been reported. Among different technologies, RNAi is the most commonly used and effective tool to target lncRNAs. However, other technologies need to be examined and further research is essential to put lncRNAs into clinical practice.
Collapse
|
45
|
Rotoli D, Santana-Viera L, Ibba ML, Esposito CL, Catuogno S. Advances in Oligonucleotide Aptamers for NSCLC Targeting. Int J Mol Sci 2020; 21:ijms21176075. [PMID: 32842557 PMCID: PMC7504093 DOI: 10.3390/ijms21176075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the most common type of lung cancer worldwide, with the highest incidence in developed countries. NSCLC patients often face resistance to currently available therapies, accounting for frequent relapses and poor prognosis. Indeed, despite great recent advancements in the field of NSCLC diagnosis and multimodal therapy, most patients are diagnosed at advanced metastatic stage, with a very low overall survival. Thus, the identification of new effective diagnostic and therapeutic options for NSCLC patients is a crucial challenge in oncology. A promising class of targeting molecules is represented by nucleic-acid aptamers, short single-stranded oligonucleotides that upon folding in particular three dimensional (3D) structures, serve as high affinity ligands towards disease-associated proteins. They are produced in vitro by SELEX (systematic evolution of ligands by exponential enrichment), a combinatorial chemistry procedure, representing an important tool for novel targetable biomarker discovery of both diagnostic and therapeutic interest. Aptamer-based approaches are promising options for NSCLC early diagnosis and targeted therapy and may overcome the key obstacles of currently used therapeutic modalities, such as the high toxicity and patients’ resistance. In this review, we highlight the most important applications of SELEX technology and aptamers for NSCLC handling.
Collapse
Affiliation(s)
- Deborah Rotoli
- Institute Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), 80145 Naples, Italy; (D.R.); (L.S.-V.)
| | - Laura Santana-Viera
- Institute Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), 80145 Naples, Italy; (D.R.); (L.S.-V.)
| | - Maria L. Ibba
- Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, 80131 Naples, Italy;
| | - Carla L. Esposito
- Institute Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), 80145 Naples, Italy; (D.R.); (L.S.-V.)
- Correspondence: (C.L.E.); (S.C.); Tel.: +39-081-3722343 (C.L.E. & S.C.)
| | - Silvia Catuogno
- Institute Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), 80145 Naples, Italy; (D.R.); (L.S.-V.)
- Correspondence: (C.L.E.); (S.C.); Tel.: +39-081-3722343 (C.L.E. & S.C.)
| |
Collapse
|
46
|
Yazdian-Robati R, Bayat P, Oroojalian F, Zargari M, Ramezani M, Taghdisi SM, Abnous K. Therapeutic applications of AS1411 aptamer, an update review. Int J Biol Macromol 2020; 155:1420-1431. [PMID: 31734366 DOI: 10.1016/j.ijbiomac.2019.11.118] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
Nucleolin or C23, is one of the most abundant non-ribosomal phosphoproteins of nucleolus. However, in several cancers, nucleolin is highly expressed both intracellularly and on the cell surface. So, it is considered as a potential target for the diagnosis and cancer therapy. Targeting nucleolin by compounds such as AS1411 aptamer can reduce tumor cell growth. In this regard, interest has increased in nucleolin as a molecular target for overcoming cancer therapy challenges. This review paper addressed recent progresses in nucleolin targeting by the G-rich AS1411 aptamer in the field of cancer therapy mainly over the past three years.
Collapse
Affiliation(s)
- Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Payam Bayat
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehryar Zargari
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
47
|
Wieleba I, Wojas-Krawczyk K, Krawczyk P. Aptamers in Non-Small Cell Lung Cancer Treatment. Molecules 2020; 25:molecules25143138. [PMID: 32659994 PMCID: PMC7396979 DOI: 10.3390/molecules25143138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/16/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Aptamers are short, single-stranded oligonucleotides which are capable of specifically binding to single molecules and cellular structures. Aptamers are also known as “chemical antibodies”. Compared to monoclonal antibodies, they are characterized by higher reaction specificity, lower molecular weight, lower production costs, and lower variability in the production stage. Aptamer research has been extended during the past twenty years, but only Macugen® has been accepted by the Food and Drug Administration (FDA) to date, and few aptamers have been examined in clinical trials. In vitro studies with aptamers have shown that they may take part in the regulation of cancer progression, angiogenesis, and metastasis processes. In this article, we focus on the potential use of aptamers in non-small cell lung cancer treatment.
Collapse
|
48
|
Mignani S, Shi X, Ceña V, Majoral JP. Dendrimer- and polymeric nanoparticle-aptamer bioconjugates as nonviral delivery systems: a new approach in medicine. Drug Discov Today 2020; 25:1065-1073. [PMID: 32283193 PMCID: PMC7151348 DOI: 10.1016/j.drudis.2020.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/29/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
Aptamers are RNA or DNA oligonucleotides interacting to form unique 3D target conformations with high affinity and specificity, and are emerging as a powerful class of ligands for therapeutic applications. In addition, dendrimers are well-defined nano-sized symmetric polymeric molecules. In this review, we provide an analysis of the use of dendrimers modified with aptamers as nonviral vectors to specifically target tumor cells. Various anticancer agents have been encapsulated with dendrimers complexing with aptamers, including epirubicin, camptothecin, Bcl-xL short hairpin (sh)RNA, and 5-fluorouracil rhodamine-labeled dextran. Other types of polymeric nanoparticle (NP)-aptamer bioconjugates have also been developed and loaded with Pt(IV) derivatives, to target specific tumor cells.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Xangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - Valentin Ceña
- CIBERNED, ISCII, Madrid, Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Avda. Almansa, 14, 02006 Albacete, Spain
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France; Université Toulouse 118 route de Narbonne, 31077 Toulouse Cedex 4, France.
| |
Collapse
|
49
|
Guan B, Zhang X. Aptamers as Versatile Ligands for Biomedical and Pharmaceutical Applications. Int J Nanomedicine 2020; 15:1059-1071. [PMID: 32110008 PMCID: PMC7035142 DOI: 10.2147/ijn.s237544] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
Aptamers are a class of targeting ligands that bind exclusively to biomarkers of interest. Aptamers have been identified as candidates for the construction of various smart systems for therapy, diagnosis, bioimaging, and drug delivery due to their high target affinity and specificity. Aptamers are accounted as chemical antibodies that can be readily linked to drugs, sensors, signal enhancers, or nanocarriers for functionalization. Use of aptamer-guided medications, especially nanomedicines, has resulted in encouraging outcomes compared to those use of aptamer-free counterparts. This article reviews recent advances in the use of aptamers as targeting ligands for various biomedical and pharmaceutical purposes. Special interests focus on aptamer-based theranostics, biosensing, bioimaging, drug potentiation, and targeted drug delivery.
Collapse
Affiliation(s)
- Baozhang Guan
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
50
|
Pan J, Attia SA, Filipczak N, Torchilin VP. Dendrimers for drug delivery purposes. NANOENGINEERED BIOMATERIALS FOR ADVANCED DRUG DELIVERY 2020:201-242. [DOI: 10.1016/b978-0-08-102985-5.00010-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|