1
|
Zong YJ, Liu XZ, Shi XY, Zhao ZD, Sun Y. Promotion of Cx26 mutants located in TM4 region for membrane translocation successfully rescued hearing loss. Theranostics 2025; 15:5801-5825. [PMID: 40365300 PMCID: PMC12068290 DOI: 10.7150/thno.112225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Rationale: The GJB2 gene, which encodes connexin 26 (Cx26), is recognized as the leading cause of non-syndromic hereditary hearing loss. In clinical settings, a total of 131 Cx26 mutations have been identified in association with hearing loss. Certain Cx26 mutants display normal structural and functional properties but fail to translocate to the plasma membrane. Enhancing the membrane localization of these mutants may provide a promising strategy for rescuing hearing loss and hair cell degeneration. Methods: This study investigated the membrane localization of Cx26 using in vitro cell lines, cultured cochlear explants, and in vivo murine models. Key proteins involved in the membrane localization of Cx26 were identified and validated through immunoprecipitation-mass spectrometry (IP-MS) and co-immunoprecipitation (Co-IP). Additionally, cell lines and murine models harboring Cx26 mutants were developed to evaluate the effects of Narciclasine on enhancing the membrane localization of these mutants, as well as its potential to rescue hearing loss. Results: The membrane localization of Cx26 was dependent on the integrity of the intracellular transport network consisting of microtubules, actin microfilaments, and the Golgi apparatus. Additionally, SPTBN1 played a significant role in this process. The transmembrane domain 4 (TM4) region exhibited a strong association with the membrane localization of Cx26, and Cx26 mutants located in TM4 region retained in the cytoplasm. Narciclasine promoted cytoskeletal development, thereby enhancing the membrane localization of Cx26 mutants retained in the cytoplasm. This process helped to reconstruct the inner ear gap junction network and rescue hearing loss and hair cell degeneration. Conclusion: These findings present that enhancing the membrane localization of Cx26 mutants can significantly improve auditory function. This strategy offers a potential therapeutic approach for addressing hereditary sensorineural hearing loss associated with GJB2 mutations.
Collapse
Affiliation(s)
- Yan-Jun Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao-Zhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin-Yu Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng-Dong Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinic Research Center for Deafness and Vertigo, Wuhan 430022, China
| |
Collapse
|
2
|
Medica S, Crawford LB, Denton M, Min CK, Jones TA, Alexander T, Parkins CJ, Diggins NL, Streblow GJ, Mayo AT, Kreklywich CN, Smith P, Jeng S, McWeeney S, Hancock MH, Yurochko A, Cohen MS, Caposio P, Streblow DN. Proximity-dependent mapping of the HCMV US28 interactome identifies RhoGEF signaling as a requirement for efficient viral reactivation. PLoS Pathog 2023; 19:e1011682. [PMID: 37782657 PMCID: PMC10569644 DOI: 10.1371/journal.ppat.1011682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 10/12/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023] Open
Abstract
Human cytomegalovirus (HCMV) encodes multiple putative G protein-coupled receptors (GPCRs). US28 functions as a viral chemokine receptor and is expressed during both latent and lytic phases of virus infection. US28 actively promotes cellular migration, transformation, and plays a major role in mediating viral latency and reactivation; however, knowledge about the interaction partners involved in these processes is still incomplete. Herein, we utilized a proximity-dependent biotinylating enzyme (TurboID) to characterize the US28 interactome when expressed in isolation, and during both latent (CD34+ hematopoietic progenitor cells) and lytic (fibroblasts) HCMV infection. Our analyses indicate that the US28 signalosome converges with RhoA and EGFR signal transduction pathways, sharing multiple mediators that are major actors in processes such as cellular proliferation and differentiation. Integral members of the US28 signaling complex were validated in functional assays by immunoblot and small-molecule inhibitors. Importantly, we identified RhoGEFs as key US28 signaling intermediaries. In vitro latency and reactivation assays utilizing primary CD34+ hematopoietic progenitor cells (HPCs) treated with the small-molecule inhibitors Rhosin or Y16 indicated that US28 -RhoGEF interactions are required for efficient viral reactivation. These findings were recapitulated in vivo using a humanized mouse model where inhibition of RhoGEFs resulted in a failure of the virus to reactivate. Together, our data identifies multiple new proteins in the US28 interactome that play major roles in viral latency and reactivation, highlights the utility of proximity-sensor labeling to characterize protein interactomes, and provides insight into targets for the development of novel anti-HCMV therapeutics.
Collapse
Affiliation(s)
- Samuel Medica
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Lindsey B. Crawford
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael Denton
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Chan-Ki Min
- Department of Microbiology & Immunology, Center for Molecular & Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Taylor A. Jones
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Timothy Alexander
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Christopher J. Parkins
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Nicole L. Diggins
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Gabriel J. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Adam T. Mayo
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Patricia Smith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Sophia Jeng
- Department of Bioinformatics and Computational Biology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Shannon McWeeney
- Department of Bioinformatics and Computational Biology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Andrew Yurochko
- Department of Microbiology & Immunology, Center for Molecular & Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Michael S. Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| |
Collapse
|
3
|
Comparative transcriptome profile of mouse macrophages treated with the RhoA/Rock pathway inhibitors Y27632, Fingolimod (Gilenya), and Rezurock (Belumosudil, SLx-2119). Int Immunopharmacol 2023; 118:110017. [PMID: 36931169 DOI: 10.1016/j.intimp.2023.110017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Macrophages play a crucial role in, the currently uncurable, chronic rejection of transplants. In rodent transplantation models, inhibition of the RhoA/Rock pathway disrupts actin-related functions of macrophages, preventing them from entering the graft, and reducing vessel occlusion, fibrosis, and chronic rejection. Among RhoA/Rock inhibitors that inhibit chronic rejection in mouse transplantation are Y27632, Fingolimod, and Rezurock. In a mouse model, Rezurok is more effective in preventing fibrosis and less effective in preventing vessel occlusion than Y27632 or Fingolimod. Fingolimod is FDA-approved for treating multiple sclerosis (MS) and Rezurock for chronic graft versus host disease (GVHD). Still, none had been tested for chronic rejection in humans. To explain the differences in the anti-chronic rejection properties of Y27632, Fingolimod, and Rezurock, we compared the transcriptome profile of mouse macrophages treated with these compounds separately. Treatment with Y27632 or Fingolimod downregulated GTPase and actin pathways involved in cell migration. Rezurock downregulated genes related to fibrosis, such as PTX3, CCR2, CCL2, cell cycle, DNA replication, adaptive immune response, and organelle assembly, while Fingolimod also specifically downregulated NOTCH1 at mRNA . The result of this study not only uncovers which pathways are shared or specific for these drugs but will help in the development of macrophage pathway-targeted therapies in human transplantation, MS, and GVHD. Because macrophages are the major players in immune response, tissue regeneration, renewal, and homeostasis, and development of many diseases, including cancer, the data compiled here will help in designing novel or improved therapies in many clinical applications.
Collapse
|
4
|
Santos JC, Profitós-Pelejà N, Sánchez-Vinces S, Roué G. RHOA Therapeutic Targeting in Hematological Cancers. Cells 2023; 12:cells12030433. [PMID: 36766776 PMCID: PMC9914237 DOI: 10.3390/cells12030433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Primarily identified as an important regulator of cytoskeletal dynamics, the small GTPase Ras homolog gene family member A (RHOA) has been implicated in the transduction of signals regulating a broad range of cellular functions such as cell survival, migration, adhesion and proliferation. Deregulated activity of RHOA has been linked to the growth, progression and metastasis of various cancer types. Recent cancer genome-wide sequencing studies have unveiled both RHOA gain and loss-of-function mutations in primary leukemia/lymphoma, suggesting that this GTPase may exert tumor-promoting or tumor-suppressive functions depending on the cellular context. Based on these observations, RHOA signaling represents an attractive therapeutic target for the development of selective anticancer strategies. In this review, we will summarize the molecular mechanisms underlying RHOA GTPase functions in immune regulation and in the development of hematological neoplasms and will discuss the current strategies aimed at modulating RHOA functions in these diseases.
Collapse
Affiliation(s)
- Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Núria Profitós-Pelejà
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Salvador Sánchez-Vinces
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 01246-100, São Paulo, Brazil
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- Correspondence: ; Tel.: +34-935572835
| |
Collapse
|
5
|
Yao H, Jiang X, Fu H, Yang Y, Jin Q, Zhang W, Cao W, Gao W, Wang S, Zhu Y, Ying J, Tian L, Chen G, Tong Z, Qi J, Zhou S. Exploration of the Immune-Related Long Noncoding RNA Prognostic Signature and Inflammatory Microenvironment for Cervical Cancer. Front Pharmacol 2022; 13:870221. [PMID: 35662687 PMCID: PMC9161697 DOI: 10.3389/fphar.2022.870221] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/22/2022] [Indexed: 12/18/2022] Open
Abstract
Purpose: Our research developed immune-related long noncoding RNAs (lncRNAs) for risk stratification in cervical cancer (CC) and explored factors of prognosis, inflammatory microenvironment infiltrates, and chemotherapeutic therapies. Methods: The RNA-seq data and clinical information of CC were collected from the TCGA TARGET GTEx database and the TCGA database. lncRNAs and immune-related signatures were obtained from the GENCODE database and the ImPort database, respectively. We screened out immune-related lncRNA signatures through univariate Cox, LASSO, and multivariate Cox regression methods. We established an immune-related risk model of hub immune-related lncRNAs to evaluate whether the risk score was an independent prognostic predictor. The xCell and CIBERSORTx algorithms were employed to appraise the value of risk scores which are in competition with tumor-infiltrating immune cell abundances. The estimation of tumor immunotherapy response through the TIDE algorithm and prediction of innovative recommended medications on the target to immune-related risk model were also performed on the basis of the IC50 predictor. Results: We successfully established six immune-related lncRNAs (AC006126.4, EGFR-AS1, RP4-647J21.1, LINC00925, EMX2OS, and BZRAP1-AS1) to carry out prognostic prediction of CC. The immune-related risk model was constructed in which we observed that high-risk groups were strongly linked with poor survival outcomes. Risk scores varied with clinicopathological parameters and the tumor stage and were an independent hazard factor that affect prognosis of CC. The xCell algorithm revealed that hub immune-related signatures were relevant to immune cells, especially mast cells, DCs, megakaryocytes, memory B cells, NK cells, and Th1 cells. The CIBERSORTx algorithm revealed an inflammatory microenvironment where naive B cells (p < 0.01), activated dendritic cells (p < 0.05), activated mast cells (p < 0.0001), CD8+ T cells (p < 0.001), and regulatory T cells (p < 0.01) were significantly lower in the high-risk group, while macrophages M0 (p < 0.001), macrophages M2 (p < 0.05), resting mast cells (p < 0.0001), and neutrophils (p < 0.01) were highly conferred. The result of TIDE indicated that the number of immunotherapy responders in the low-risk group (124/137) increased significantly (p = 0.00000022) compared to the high-risk group (94/137), suggesting that the immunotherapy response of CC patients was completely negatively correlated with the risk scores. Last, we compared differential IC50 predictive values in high- and low-risk groups, and 12 compounds were identified as future treatments for CC patients. Conclusion: In this study, six immune-related lncRNAs were suggested to predict the outcome of CC, which is beneficial to the formulation of immunotherapy.
Collapse
Affiliation(s)
- Hui Yao
- Department of Gynecology, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Hefei, China.,Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Xiya Jiang
- Department of Gynecology, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Hefei, China.,Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Hengtao Fu
- Department of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Yinting Yang
- Department of Gynecology, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Hefei, China.,Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Qinqin Jin
- Department of Gynecology, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Hefei, China.,Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Weiyu Zhang
- Department of Gynecology, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Hefei, China.,Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Wujun Cao
- Department of Clinical Laboratory, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Wei Gao
- Department of Gynecology, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Hefei, China.,Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Senlin Wang
- Department of Clinical Laboratory, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Yuting Zhu
- Department of Gynecology, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Hefei, China.,Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Jie Ying
- Department of Gynecology, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Hefei, China.,Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Lu Tian
- Department of Gynecology, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Hefei, China.,Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Guo Chen
- Department of Gynecology, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Hefei, China.,Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| | - Zhuting Tong
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian Qi
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Shuguang Zhou
- Department of Gynecology, Anhui Medical University Affiliated Maternity and Child Healthcare Hospital, Hefei, China.,Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, China
| |
Collapse
|
6
|
The Effect of Magnetic Field Gradient and Gadolinium-Based MRI Contrast Agent Dotarem on Mouse Macrophages. Cells 2022; 11:cells11050757. [PMID: 35269379 PMCID: PMC8909262 DOI: 10.3390/cells11050757] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Magnetic resonance imaging (MRI) is widely used in diagnostic medicine. MRI uses the static magnetic field to polarize nuclei spins, fast-switching magnetic field gradients to generate temporal and spatial resolution, and radiofrequency (RF) electromagnetic waves to control the spin orientation. All these forms of magnetic static and electromagnetic RF fields interact with human tissue and cells. However, reports on the MRI technique's effects on the cells and human body are often inconsistent or contradictory. In both research and clinical MRI, recent progress in improving sensitivity and resolution is associated with the increased magnetic field strength of MRI magnets. Additionally, to improve the contrast of the images, the MRI technique often employs contrast agents, such as gadolinium-based Dotarem, with effects on cells and organs that are still disputable and not fully understood. Application of higher magnetic fields requires revisiting previously observed or potentially possible bio-effects. This article focuses on the influence of a static magnetic field gradient with and without a gadolinium-based MRI contrast agent (Dotarem) and the cellular and molecular effects of Dotarem on macrophages.
Collapse
|
7
|
Li M, Jiao Q, Xin W, Niu S, Liu M, Song Y, Wang Z, Yang X, Liang D. The Emerging Role of Rho Guanine Nucleotide Exchange Factors in Cardiovascular Disorders: Insights Into Atherosclerosis: A Mini Review. Front Cardiovasc Med 2022; 8:782098. [PMID: 35047576 PMCID: PMC8761945 DOI: 10.3389/fcvm.2021.782098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease, and atherosclerotic cardiovascular disease accounts for one-third of global deaths. However, the mechanism of atherosclerosis is not fully understood. It is well-known that the Rho GTPase family, especially Rho A, plays a vital role in the development and progression of arteriosclerosis. Rho guanine nucleotide exchange factors (Rho GEFs), which act upstream of Rho GTPases, are also involved in the atheromatous pathological process. Despite some research on the role of Rho GEFS in the regulation of atherosclerosis, the number of studies is small relative to studies on the essential function of Rho GEFs. Some studies have preliminarily revealed Rho GEF regulation of atherosclerosis by experiments in vivo and in vitro. Herein, we review the advances in research on the relationship and interaction between Rho GEFs and atheroma to provide a potential reference for further study of atherosclerosis.
Collapse
Affiliation(s)
- Mengqi Li
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingzheng Jiao
- Second Department of Internal Medicine, Gucheng County Hospital, Hengshui Gucheng, Hebei, China
| | - Wenqiang Xin
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shulin Niu
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mingming Liu
- Department of Neurology and Immunology, Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanxin Song
- Department of Nursing, Tianjin Medical University, Tianjin, China
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Zengguang Wang
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Xinyu Yang
| | - Degang Liang
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Degang Liang
| |
Collapse
|
8
|
Barhoumi T, Alghanem B, Shaibah H, Mansour FA, Alamri HS, Akiel MA, Alroqi F, Boudjelal M. SARS-CoV-2 Coronavirus Spike Protein-Induced Apoptosis, Inflammatory, and Oxidative Stress Responses in THP-1-Like-Macrophages: Potential Role of Angiotensin-Converting Enzyme Inhibitor (Perindopril). Front Immunol 2021; 12:728896. [PMID: 34616396 PMCID: PMC8488399 DOI: 10.3389/fimmu.2021.728896] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022] Open
Abstract
A purified spike (S) glycoprotein of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) coronavirus was used to study its effects on THP-1 macrophages, peripheral blood mononuclear cells (PBMCs), and HUVEC cells. The S protein mediates the entry of SARS-CoV-2 into cells through binding to the angiotensin-converting enzyme 2 (ACE2) receptors. We measured the viability, intracellular cytokine release, oxidative stress, proinflammatory markers, and THP-1-like macrophage polarization. We observed an increase in apoptosis, ROS generation, MCP-1, and intracellular calcium expression in the THP-1 macrophages. Stimulation with the S protein polarizes the THP-1 macrophages towards proinflammatory futures with an increase in the TNFα and MHC-II M1-like phenotype markers. Treating the cells with an ACE inhibitor, perindopril, at 100 µM reduced apoptosis, ROS, and MHC-II expression induced by S protein. We analyzed the sensitivity of the HUVEC cells after the exposure to a conditioned media (CM) of THP-1 macrophages stimulated with the S protein. The CM induced endothelial cell apoptosis and MCP-1 expression. Treatment with perindopril reduced these effects. However, the direct stimulation of the HUVEC cells with the S protein, slightly increased HIF1α and MCP-1 expression, which was significantly increased by the ACE inhibitor treatment. The S protein stimulation induced ROS generation and changed the mitogenic responses of the PBMCs through the upregulation of TNFα and interleukin (IL)-17 cytokine expression. These effects were reduced by the perindopril (100 µM) treatment. Proteomic analysis of the S protein stimulated THP-1 macrophages with or without perindopril (100 µM) exposed more than 400 differentially regulated proteins. Our results provide a mechanistic analysis suggesting that the blood and vascular components could be activated directly through S protein systemically present in the circulation and that the activation of the local renin angiotensin system may be partially involved in this process. Graphical Suggested pathways that might be involved at least in part in S protein inducing activation of inflammatory markers (red narrow) and angiotensin-converting enzyme inhibitor (ACEi) modulation of this process (green narrow).
Collapse
Affiliation(s)
- Tlili Barhoumi
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Bandar Alghanem
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hayat Shaibah
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Fatmah A Mansour
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hassan S Alamri
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Maaged A Akiel
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Fayhan Alroqi
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
| | - Mohammad Boudjelal
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Li M, Sun X, Yao H, Chen W, Zhang F, Gao S, Zou X, Chen J, Qiu S, Wei H, Hu Z, Chen W. Genomic methylation variations predict the susceptibility of six chemotherapy related adverse effects and cancer development for Chinese colorectal cancer patients. Toxicol Appl Pharmacol 2021; 427:115657. [PMID: 34332992 DOI: 10.1016/j.taap.2021.115657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/08/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) remains a major concern with high morbidity and mortality worldwide. Despite the positive influence of chemotherapy on the decline in CRC mortality, the negative influence of chemotherapy-related adverse effects (CRAEs) caused by capecitabine (Cap) remains a challenging problem. DNA methylation alteration plays a pivotal role in gene expression regulation. Here, we aimed to screen reliable and novel biomarkers for CRC diagnosis and CRAE prediction using the advanced Illumina Infinium MethylationEPIC (850 K) BeadChip. Paired tumor and normal tissues from 21 Chinese CRC patients who received Cap-based adjuvant chemotherapy were analyzed. CRC-related methylation was characterized by hypermethylated promoter islands and hypomethylated intragenic openseas; CRAE-related methylation was characterized by hyper- (or hypo-) methylated intragenic (or intergenic) regions. Based on three types of methylation profiles (differentially methylated probes, differentially methylated regions, and gene-function-differentially methylated regions), pathway enrichment analyses revealed that CRC-related genes were significantly enriched in the neuronal system, metabolism of RNA, and extracellular matrix organization; CRAE-related genes were abundantly enriched in pathways controlling regeneration functions and immune response. Finally, based on genes within the mostly related pathways and LASSO logistic regression selection, the integrated-methylation-marker systems developed here demonstrated high discriminative accuracy in both CRC diagnosis (AUROC = 1) and CRAE prediction (AUROC = 0.817-1). In conclusion, we conducted a comprehensive DNA methylation analysis of CRC patients with chemotherapy, which provided new insights into the formation of CRC and CRAEs. Most importantly, our findings identified potentially CRAE-related metabolic pathways and markers, providing a valuable reference for personalized medicine promising better safety. Trail registration:ClinicalTrials.gov,NCT03030508, Registered 25 January 2017,https://www.clinicaltrials.gov/ct2/show/NCT03030508?term=NCT03030508&draw=2&rank=1.
Collapse
Affiliation(s)
- Mingming Li
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Xiaomeng Sun
- Research Institute, GloriousMed Clinical Laboratory Co., Ltd., Shanghai 201318, China
| | - Houshan Yao
- Department of General Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Wei Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Feng Zhang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Shouhong Gao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Xun Zou
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Jiani Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Shi Qiu
- Traditional Chinese Medicine Resource and Technology Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hua Wei
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; Department of Pharmacy, 905th Hospital of PLA Navy, Naval Medical University, Shanghai 200052, China.
| | - Zhiqian Hu
- Department of General Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; Department of Gastrointestinal Surgery, Tongji Hospital, Medical College of Tongji University, Shanghai 200065, China.
| | - Wansheng Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; Traditional Chinese Medicine Resource and Technology Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
10
|
Zhang Q, Wang J, Yao X, Wu S, Tian W, Gan C, Wan X, You C, Hu F, Zhang S, Zhang H, Zhao K, Shu K, Lei T. Programmed Cell Death 10 Mediated CXCL2-CXCR2 Signaling in Regulating Tumor-Associated Microglia/Macrophages Recruitment in Glioblastoma. Front Immunol 2021; 12:637053. [PMID: 34108959 PMCID: PMC8182060 DOI: 10.3389/fimmu.2021.637053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/06/2021] [Indexed: 12/03/2022] Open
Abstract
Background Programmed cell death 10 (PDCD10) plays a crucial role in regulating tumor phenotyping, especially in glioblastoma (GBM). Glioma-associated microglia/macrophages (GAMs) in tumor pathological microenvironment contribute to GBM progression. We previously found that the infiltration of GAMs was associated with PDCD10 expression in GBM patients. The present study aims to further explore the regulation of PDCD10 on GAMs in GBM. Methods Overexpression of PDCD10 in human- and murine-GBM cells was established by lentiviral transduction. Cell behaviors and polarization of primary microglia, microglia- and macrophage-like cells were investigated through indirect co-culture with GBM cells in vitro respectively. The PDCD10-induced release of chemokines was identified by a chemokine protein array. The cross-talk between GBM and microglia as well as macrophages was further studied using selective antagonist SB225002. Finally, an orthotopic homograft mouse model was employed to verify the results of in vitro experiments. Results Indirect co-culture with PDCD10-overexpressed GBM cells promoted proliferation and migration of microglia- and macrophage-like cells, and stimulated pro-tumorigenic polarization of primary microglia, microglia- and macrophage-like cells. Pdcd10-upregulated GBM cells triggered a nearly 6-fold increase of CXC motif chemokine ligand 2 (CXCL2) release, which in turn activated CXC chemokine receptor 2 (CXCR2) and downstream Erk1/2 and Akt signaling in primary microglia, microglia- and macrophage-like cells. The blockage of CXCR2 signaling with specific inhibitor (SB225002) abolished microglia- and macrophage-like cell migration induced by PDCD10-upregulated GBM cells. Moreover, Pdcd10-upregulated GL261 cells promoted GAMs recruitment and tumor growth in vivo. Conclusion Our study demonstrates that overexpression of PDCD10 in GBM recruits and activates microglia/macrophages, which in turn promotes tumor progression. CXCL2-CXCR2 signaling mediated by PDCD10 is potentially involved in the crosstalk between GBM cells and GAMs.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junwen Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolong Yao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Neurosurgery, The Third People's Hospital of Hubei Province, Wuhan, China
| | - Sisi Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weidong Tian
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Neurosurgery, First Affiliated Hospital of Medical College, Shihezi University, Xinjiang, China
| | - Chao Gan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueyan Wan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao You
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Kloc M, Uosef A, Villagran M, Zdanowski R, Kubiak JZ, Wosik J, Ghobrial RM. RhoA- and Actin-Dependent Functions of Macrophages from the Rodent Cardiac Transplantation Model Perspective -Timing Is the Essence. BIOLOGY 2021; 10:biology10020070. [PMID: 33498417 PMCID: PMC7909416 DOI: 10.3390/biology10020070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary The functions of animal and human cells depend on the actin cytoskeleton and its regulating protein called the RhoA. The actin cytoskeleton and RhoA also regulate the response of the immune cells such as macrophages to the microbial invasion and/or the presence of a non-self, such as a transplanted organ. The immune response against transplant occurs in several steps. The early step occurring within days post-transplantation is called the acute rejection and the late step, occurring months to years post-transplantation, is called the chronic rejection. In clinical transplantation, acute rejection is easily manageable by the anti-rejection drugs. However, there is no cure for chronic rejection, which is caused by the macrophages entering the transplant and promoting blockage of its blood vessels and destruction of tissue. We discuss here how the inhibition of the RhoA and actin cytoskeleton polymerization in the macrophages, either by genetic interference or pharmacologically, prevents macrophage entry into the transplanted organ and prevents chronic rejection, and also how it affects the anti-microbial function of the macrophages. We also focus on the importance of timing of the macrophage functions in chronic rejection and how the circadian rhythm may affect the anti-chronic rejection and anti-microbial therapies. Abstract The small GTPase RhoA, and its down-stream effector ROCK kinase, and the interacting Rac1 and mTORC2 pathways, are the principal regulators of the actin cytoskeleton and actin-related functions in all eukaryotic cells, including the immune cells. As such, they also regulate the phenotypes and functions of macrophages in the immune response and beyond. Here, we review the results of our and other’s studies on the role of the actin and RhoA pathway in shaping the macrophage functions in general and macrophage immune response during the development of chronic (long term) rejection of allografts in the rodent cardiac transplantation model. We focus on the importance of timing of the macrophage functions in chronic rejection and how the circadian rhythm may affect the anti-chronic rejection therapies.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- M.D. Anderson Cancer Center, Department of Genetics, The University of Texas, Houston, TX 77030, USA
- Correspondence:
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| | - Martha Villagran
- Electrical and Computer Engineering Department, University of Houston, Houston, TX 77204, USA; (M.V.); (J.W.)
- Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine (WIM), 04-141 Warsaw, Poland;
| | - Jacek Z. Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), 01-163 Warsaw, Poland;
- Cell Cycle Group, CNRS, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, UMR, 6290 Rennes, France
| | - Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, TX 77204, USA; (M.V.); (J.W.)
- Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
| | - Rafik M. Ghobrial
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
12
|
Kloc M, Uosef A, Kubiak JZ, Ghobrial RM. Macrophage Proinflammatory Responses to Microorganisms and Transplanted Organs. Int J Mol Sci 2020; 21:ijms21249669. [PMID: 33352942 PMCID: PMC7766629 DOI: 10.3390/ijms21249669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Tissue-resident macrophages and those conscripted from the blood/bone marrow are professional phagocytes. They play a role in tissue homeostasis, replacement, and healing, and are the first-line responders to microbial (viral, bacterial, and fungi) infections. Intrinsic ameboid-type motility allows non-resident macrophages to move to the site of inflammation or injury, where, in response to the inflammatory milieu they perform the anti-microbial and/or tissue repair functions. Depending on the need and the signaling from the surrounding tissue and other immune cells, macrophages acquire morphologically and functionally different phenotypes, which allow them to play either pro-inflammatory or anti-inflammatory functions. As such, the macrophages are also the major players in the rejection of the transplanted organs making an excellent target for the novel anti-rejection therapies in clinical transplantation. In this review, we describe some of the less covered aspects of macrophage response to microbial infection and organ transplantation.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- MD Anderson Cancer Center, Department of Genetics Houston, The University of Texas, Austin, TX 77030, USA
- Correspondence:
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| | - Jacek Z. Kubiak
- Laboratory of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), 01-163 Warsaw, Poland;
- Cell Cycle Group, Faculty of Medicine, Institute of Genetics and Development of Rennes (IGDR), University Rennes, UMR 6290, CNRS, 35043 Rennes, France
| | - Rafik M. Ghobrial
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
13
|
Chen W, Chen W, Chen S, Uosef A, Ghobrial RM, Kloc M. Fingolimod (FTY720) prevents chronic rejection of rodent cardiac allografts through inhibition of the RhoA pathway. Transpl Immunol 2020; 65:101347. [PMID: 33131698 DOI: 10.1016/j.trim.2020.101347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
The Fingolimod (FTY720, Gilenya) is clinically approved for the treatment of multiple sclerosis (MS). Its therapeutic effect on MS is based on the ability to bind sphingosine 1-phosphate (S1P) receptors and block the exit of immune cells from the lymphoid organs, thus preventing immune cell-dependent injury to the central nervous system (CNS). We showed recently that, besides the S1P-related activity, the FTY720 also down-regulates RhoA, which is a master regulator of the actin cytoskeleton. Our previous studies showed that FTY720 also down-regulates Rictor, which is a signature molecule of mTORC2 complex, which regulates RhoA and dictates actin cytoskeleton specificity. Because, our previous studies showed that chronic rejection correlates with the upregulation of RhoA and mTORC2 components and that the inhibition of RhoA pathway prevents chronic rejection, here we studied the effect of FTY720 on the chronic rejection of rat and mouse cardiac allografts. We show that FTY720 in conjunction with the inhibitors of early T cell response, (CTA4-Ig in mice and Everolimus in rats) blocks macrophage infiltration into the grafts and prevents chronic rejection of rat and mouse cardiac transplants. This indicates that FTY720 may be repurposed from the MS application to the clinical transplantation as an anti-chronic rejection drug.
Collapse
Affiliation(s)
- Wei Chen
- The Houston Methodist Research Institute, Houston, TX, USA; Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Wenhao Chen
- The Houston Methodist Research Institute, Houston, TX, USA; The Methodist Hospital, Houston, TX, USA
| | - Song Chen
- The Houston Methodist Research Institute, Houston, TX, USA
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX, USA; The Methodist Hospital, Houston, TX, USA
| | - Rafik M Ghobrial
- The Houston Methodist Research Institute, Houston, TX, USA; The Methodist Hospital, Houston, TX, USA.
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA; The Methodist Hospital, Houston, TX, USA; The University of Texas, M.D. Anderson Cancer Center, Department of Genetics, Houston, TX, USA.
| |
Collapse
|
14
|
Luo J, He Y, Meng F, Yan N, Zhang Y, Song W. The Role of Autophagy in M2 Polarization of Macrophages Induced by Micro/Nano Topography. Int J Nanomedicine 2020; 15:7763-7774. [PMID: 33116499 PMCID: PMC7553265 DOI: 10.2147/ijn.s270100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022] Open
Abstract
Background The proper topography of implant surface can induce macrophages polarization, whereas the regulation mechanism has not been fully deciphered. The study aimed to examine the regulation mechanism of macrophages M2 polarization by titanium (Ti) implant surface micro/nano topography. Results Firstly, the titanium implant micropits-nanotubular surface with ~30 nm diameters (MNT) can induce the M2 polarization of RAW264.7 spontaneously, as indicated by the spindle-like cell morphological alteration and specific molecular marker arginase-1 (Arg1) expression. Next, the autophagic vacuoles (AVs) number is significantly increased on MNT surface, as confirmed by the monodansylcadaverine (MDC) and CYTO-ID staining as well as the transmission electron microscope (TEM) observation. In addition, increasing or decreasing the autophagosomes number by rapamycin or 3-methyladenine (3-MA) will result in augmentation or attenuation of Arg1. Furthermore, blocking the fusion between autophagosomes and lysosomes by bafilomycin also significantly reduces Arg1, even in the presence of rapamycin. Finally, the ERK phosphorylation is selectively upregulated on MNT surface and the AVs number and Arg1 expression are significantly suppressed by U0126 treatment. Conclusion Our findings suggest that the ERK-Beclin-1-autophagy axis may play a pivotal role in the regulation of M2 polarization induced by nanotopography.
Collapse
Affiliation(s)
- Jing Luo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China.,Department of Stomatology, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, People's Republic of China
| | - Yide He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Fanhui Meng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China.,State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Department of Dental Materials, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Ning Yan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Yumei Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| |
Collapse
|
15
|
Uosef A, Vaughn N, Chu X, Elshawwaf M, Abdelshafy AAA, Elsaid KMK, Ghobrial RM, Kloc M. Siponimod (Mayzent) Downregulates RhoA and Cell Surface Expression of the S1P1 and CX3CR1 Receptors in Mouse RAW 264.7 Macrophages. Arch Immunol Ther Exp (Warsz) 2020; 68:19. [PMID: 32488676 DOI: 10.1007/s00005-020-00584-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
The Siponimod (Mayzent) is a newly developed drug, similar to Fingolimod (FTY720) but with fewer side effects, approved by the Food and Drug Administration for the treatment of multiple sclerosis (MS). The therapeutic effect of siponimod and FTY720 in MS relies on their inhibitory effect on the sphingosine 1-phosphate (S1P) signaling. These drugs bind to the S1P receptors and block the CCL2 chemokine pathway that is responsible for the exit of the immune cells from the lymphoid organs, and circulation, thus preventing immune cell-dependent injury to the nervous system. We recently found that FTY720 beside its effect on the S1P pathway also blocks the RhoA pathway, which is involved in the actin cytoskeleton-related function of macrophages, such as expression/recycling of fractalkine (CX3CL1) receptors (CX3CR1), which direct macrophages to the transplanted organs during the development of the long-term (chronic) rejection. Here we tested the effects of siponimod on the RhoA pathway and the expression of the S1P1 and CX3CR1 receptors in mouse RAW 264.7 macrophages. We found that siponimod downregulates the expression of RhoA protein and decreases the cell surface expression of S1P1 and CX3CR1 receptors. This newly discovered crosstalk between S1P and RhoA/CX3CR1 pathways may help in the development of novel anti-chronic rejection therapies in clinical transplantation.
Collapse
Affiliation(s)
- Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA
| | - Nicole Vaughn
- The Houston Methodist Research Institute, Houston, TX, USA
| | - Xiufeng Chu
- The Houston Methodist Research Institute, Houston, TX, USA
| | - Mahmoud Elshawwaf
- The Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA
| | - Ahmed Adel Abbas Abdelshafy
- The Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA.,Department of General Surgery, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Kamal Mamdoh Kamal Elsaid
- The Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA.,Department of General Surgery, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Rafik Mark Ghobrial
- The Houston Methodist Research Institute, Houston, TX, USA. .,Department of Surgery, Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA.
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA. .,Department of Surgery, Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA. .,Department of Genetics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
16
|
Wosik J, Suarez-Villagran M, Miller JH, Ghobrial RM, Kloc M. Macrophage phenotype bioengineered by magnetic, genetic, or pharmacologic interference. Immunol Res 2019; 67:1-11. [PMID: 30649660 DOI: 10.1007/s12026-019-9066-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In all eukaryotes, the cell shape depends on the actin filament cytoskeleton, which is regulated by the small GTPase RhoA. It is well known that the cell shape determines cell function and behavior. Inversely, any change in the cell behavior and/or function reverberates at the cell shape. In this review, we describe how mechanical/magnetic, genetic, or pharmacologic interference with the actin cytoskeleton enforces changes in cell shape and function and how such techniques can be used to control the phenotype and functions of immune cells such as macrophages and to develop novel anti-cancer and anti-rejection clinical therapies.
Collapse
Affiliation(s)
- Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, TX, 77204, USA. .,Texas Center for Superconductivity, University of Houston, HSC Bldg., Rm. 202, Houston, TX, 77204-5002, USA.
| | - Martha Suarez-Villagran
- Electrical and Computer Engineering Department, University of Houston, Houston, TX, 77204, USA.,Physics Department, University of Houston, Houston, TX, USA
| | - John H Miller
- Electrical and Computer Engineering Department, University of Houston, Houston, TX, 77204, USA.,Physics Department, University of Houston, Houston, TX, USA
| | - Rafik M Ghobrial
- The Houston Methodist Research Institute, Houston, TX, 77030, USA.,Department of Surgery, The Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, 77030, USA. .,Department of Surgery, The Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA. .,M.D. Anderson Cancer Center, Department of Genetics, The University of Texas, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Bros M, Haas K, Moll L, Grabbe S. RhoA as a Key Regulator of Innate and Adaptive Immunity. Cells 2019; 8:cells8070733. [PMID: 31319592 PMCID: PMC6678964 DOI: 10.3390/cells8070733] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
RhoA is a ubiquitously expressed cytoplasmic protein that belongs to the family of small GTPases. RhoA acts as a molecular switch that is activated in response to binding of chemokines, cytokines, and growth factors, and via mDia and the ROCK signaling cascade regulates the activation of cytoskeletal proteins, and other factors. This review aims to summarize our current knowledge on the role of RhoA as a general key regulator of immune cell differentiation and function. The contribution of RhoA for the primary functions of innate immune cell types, namely neutrophils, macrophages, and conventional dendritic cells (DC) to (i) get activated by pathogen-derived and endogenous danger signals, (ii) migrate to sites of infection and inflammation, and (iii) internalize pathogens has been fairly established. In activated DC, which constitute the most potent antigen-presenting cells of the immune system, RhoA is also important for the presentation of pathogen-derived antigen and the formation of an immunological synapse between DC and antigen-specific T cells as a prerequisite to induce adaptive T cell responses. In T cells and B cells as the effector cells of the adaptive immune system Rho signaling is pivotal for activation and migration. More recently, mutations of Rho and Rho-modulating factors have been identified to predispose for autoimmune diseases and as causative for hematopoietic malignancies.
Collapse
Affiliation(s)
- Matthias Bros
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Katharina Haas
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Lorna Moll
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stephan Grabbe
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
18
|
Yang JQ, Kalim KW, Li Y, Zheng Y, Guo F. Ablation of RhoA impairs Th17 cell differentiation and alleviates house dust mite-triggered allergic airway inflammation. J Leukoc Biol 2019; 106:1139-1151. [PMID: 31260596 DOI: 10.1002/jlb.3a0119-025rrr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/10/2023] Open
Abstract
Asthma is a heterogeneous chronic airway inflammation in which Th2 and Th17 cells are key players in its pathogenesis. We have reported that RhoA of Rho GTPases orchestrated glycolysis for Th2 cell differentiation and allergic airway inflammation by the use of a conditional RhoA-deficient mouse line. However, the role of RhoA in Th17 cells remains to be elucidated. In this study, we investigated the effects of RhoA deficiency on Th17 cells in the context of ex vivo cell culture systems and an in vivo house dust mites (HDM)-induced allergic airway inflammation. We found that RhoA deficiency inhibited Th17 differentiation and effector cytokine secretion, which was associated with the downregulations of Stat3 and Rorγt, key Th17 transcription factors. Furthermore, loss of RhoA markedly suppressed Th17 and neutrophil-involved airway inflammation induced by HDM in mice. The infiltrating inflammatory cells in the lungs and bronchoalveolar lavage (BAL) fluids were dramatically reduced in conditional RhoA-deficient mice. Th17 as well as Th2 effector cytokines were suppressed in the airways at both protein and mRNA levels. Interestingly, Y16, a specific RhoA inhibitor, was able to recapitulate the most phenotypes of RhoA genetic deletion in Th17 differentiation and allergic airway inflammation. Our data demonstrate that RhoA is a key regulator of Th17 cell differentiation and function. RhoA might serve as a potential novel therapeutic target for asthma and other inflammatory disorders.
Collapse
Affiliation(s)
- Jun-Qi Yang
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasitic and Vector Control, Jiangsu Institute of Parasitic Diseases and Public Health Research Center, Jiangnan University, Wuxi, Jiangsu, China
| | - Khalid W Kalim
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yuan Li
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
19
|
Kloc M, Uosef A, Wosik J, Kubiak JZ, Ghobrial RM. RhoA Pathway and Actin Regulation of the Golgi/Centriole Complex. Results Probl Cell Differ 2019; 67:81-93. [PMID: 31435793 DOI: 10.1007/978-3-030-23173-6_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In vertebrate cells, the Golgi apparatus is located in close proximity to the centriole. The architecture of the Golgi/centriole complex depends on a multitude of factors, including the actin filament cytoskeleton. In turn, both the Golgi and centriole act as the actin nucleation centers. Actin organization and polymerization also depend on the small GTPase RhoA pathway. In this chapter, we summarize the most current knowledge on how the genetic, magnetic, or pharmacologic interference with RhoA pathway and actin cytoskeleton directly or indirectly affects architecture, structure, and function of the Golgi/centriole complex.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA.
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA.
- Department of Genetics, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA.
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
| | - Jarek Wosik
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
- Texas Center for Superconductivity, University of Houston, Houston, TX, USA
| | - Jacek Z Kubiak
- Laboratory of Epidemiology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
- Faculty of Medicine, Cell Cycle Group, Institute of Genetics and Development of Rennes, Univ Rennes, UMR 6290, CNRS, Rennes, France
| | - Rafik Mark Ghobrial
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
20
|
Kloc M, Ghobrial RM, Wosik J, Lewicka A, Lewicki S, Kubiak JZ. Macrophage functions in wound healing. J Tissue Eng Regen Med 2018; 13:99-109. [PMID: 30445662 DOI: 10.1002/term.2772] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 12/31/2022]
Abstract
Macrophages play a crucial role in regeneration and consecutive phases of wound healing. In this review, we summarise current knowledge on the ontogeny, origin, phenotypical heterogeneity, and functional exchangeability of macrophages participating in these processes. We also describe the genetic, pharmacologic, and bioengineering methods for manipulation of macrophage phenotype and functions and their potential for development of the novel, clinically applicable therapies.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Immunobiology, The Houston Methodist Research Institute, Houston, Texas, USA.,Department of Surgery, The Houston Methodist Hospital, Houston, Texas, USA.,MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Rafik M Ghobrial
- Immunobiology, The Houston Methodist Research Institute, Houston, Texas, USA.,Department of Surgery, The Houston Methodist Hospital, Houston, Texas, USA
| | - Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, Texas, USA.,Texas Center for Superconductivity, University of Houston, Houston, Texas, USA
| | - Aneta Lewicka
- Laboratory of Epidemiology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
| | - Sławomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
| | - Jacek Z Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland.,Cell Cycle Group, Faculty of Medicine, Univ Rennes, UMR 6290, CNRS, Institute of Genetics and Development of Rennes, Rennes, France
| |
Collapse
|
21
|
Chen W, Chen S, Chen W, Li XC, Ghobrial RM, Kloc M. Screening RhoA/ROCK inhibitors for the ability to prevent chronic rejection of mouse cardiac allografts. Transpl Immunol 2018; 50:15-25. [DOI: 10.1016/j.trim.2018.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
|
22
|
Chen W, Ghobrial RM, Li XC, Kloc M. Inhibition of RhoA and mTORC2/Rictor by Fingolimod (FTY720) induces p21-activated kinase 1, PAK-1 and amplifies podosomes in mouse peritoneal macrophages. Immunobiology 2018; 223:634-647. [PMID: 30005970 DOI: 10.1016/j.imbio.2018.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 02/08/2023]
Abstract
Macrophage functions in the immune response depend on their ability to infiltrate tissues and organs. The penetration between and within the tissues requires degradation of extracellular matrix (ECM), a function performed by the specialized, endopeptidase- and actin filament- rich organelles located at the ventral surface of macrophage, called the podosomes. Podosome formation requires local inhibition of small GTPase RhoA activity, and depends on Rac 1/Rho guanine nucleotide exchange factor 7, β-PIX and its binding partner the p21-activated kinase (PAK-1). The activity of RhoA and Rac 1 is in turn regulated by mTOR/mTORC2 pathway. Here we showed that a fungus metabolite Fingolimod (FTY720, Gilenya), which is clinically approved for the treatment of multiple sclerosis, down-regulates Rictor, which is a signature molecule of mTORC2 and dictates its substrate (actin cytoskeleton) specificity, down-regulates RhoA, up-regulates PAK-1, and causes amplification of podosomes in mouse peritoneal macrophages.
Collapse
Affiliation(s)
- Wei Chen
- Houston Methodist Research Institute, Houston, TX, USA; Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Rafik M Ghobrial
- Houston Methodist Research Institute, Houston, TX, USA; Weill Cornell Medical College, 407 E 61st St, New York, USA
| | - Xian C Li
- Houston Methodist Research Institute, Houston, TX, USA; Weill Cornell Medical College, 407 E 61st St, New York, USA
| | - Malgorzata Kloc
- Houston Methodist Research Institute, Houston, TX, USA; Weill Cornell Medical College, 407 E 61st St, New York, USA; University of Texas, MD Anderson Cancer Center, Department of Genetics, Houston, TX, USA.
| |
Collapse
|