1
|
Ikeda S, Ando S, Kishida N, Tanaka K, Sakurai M, Sakai Y, Ayabe S, Mizuno-Iijima S, Yoshiki A, Nakashima K, Tsuji S, Asagiri M, Baba T, Takeda K, Sato K, Ohama T. Two Distinct Mechanisms of PP2A Regulation by Methylesterase PME-1 Are Both Essential for Mouse Development. FASEB J 2025; 39:e70554. [PMID: 40326231 DOI: 10.1096/fj.202402617rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 05/07/2025]
Abstract
Protein methylesterase-1 (PME-1) is an essential enzyme that catalyzes the demethylation of protein phosphatases 2A (PP2A) and PP4 catalytic subunits to alter the composition of holoenzymes. Elevated PME-1 protein levels are observed in neurodegenerative diseases and cancer, suggesting the involvement of dysregulation of PP2A/PP4 methylation. However, PME-1 also forms stable complexes with the catalytic subunit of PP2A to interfere with phosphatase activity, and it remains unclear what roles the functions as a methylesterase and as a PP2A inhibitory protein each play in vivo. This study generated PME-1 S156A and M335D knock-in mice deficient in methylesterase and PP2A inhibitory activity, respectively. Each loss of function mutation compromised development in vivo differently, with phenotypes distinct from the perinatal lethality of PME-1 null mice. The loss of methylesterase activity due to the S156A mutation resulted in systemic apoptosis characterized by brain atrophy: the layers of the cerebellum collapsed with fewer Purkinje cells and more microglia. Histological and gene expression analyses indicated increased inflammation and apoptosis. Primary embryonic fibroblasts isolated from S156A KI mice exhibited increased mitochondrial number, enhanced oxygen consumption rate, and elevated levels of reactive oxygen species. In contrast, M335D mutant pups did not appear deformed and had intact brains but died about two days after birth with a demonstrated loss of olfaction and apoptosis in the olfactory epithelium. Our data indicate that the action of PP2A-type phosphatases is controlled in multiple ways by PME-1 and differentially contributes to mouse development.
Collapse
Affiliation(s)
- Shunta Ikeda
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Sana Ando
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Nana Kishida
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Keiko Tanaka
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masashi Sakurai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinya Ayabe
- Experimental Animal Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Saori Mizuno-Iijima
- Experimental Animal Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Kenichi Nakashima
- Gene Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Shunya Tsuji
- Department of Pharmacology, Yamaguchi University Graduate of Medicine, Yamaguchi, Japan
| | - Masataka Asagiri
- Department of Pharmacology, Yamaguchi University Graduate of Medicine, Yamaguchi, Japan
| | - Taiki Baba
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kohsuke Takeda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
2
|
Ji W, Zheng B, Zhang A. Research progress of the relationship between phosphoprotein phosphatases (PPPs) and neurodevelopmental disorders. Clin Genet 2024; 106:679-692. [PMID: 39300798 DOI: 10.1111/cge.14617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024]
Abstract
Reversible protein phosphorylation is a ubiquitous phenomenon essential for eukaryotic cellular processes. Recent advancements in research about neurodevelopmental disorders have prompted investigations into the intricate relationship between protein phosphatases, particularly phosphoprotein phosphatases (PPPs), and neurodevelopment. Notably, variants in 10 coding genes spanning four PPP family members have been implicated in neurodevelopmental disorders. Here, we provide a comprehensive overview of the clinical phenotypes, genotypes, and pathogenic mechanisms observed in affected patients. Our analysis reveals challenges in subsequent statistical analyses due to inconsistent clinical phenotypic descriptions and a lack of large multicenter studies, hampering analysis about genotype-phenotype correlations. The scarcity of follow-up data poses a significant obstacle to prognostic counseling for nearly all rare diseases. Presently, symptomatic treatment strategies are employed for patients with variants, as definitive cures remain elusive. Future research may explore protein phosphatase regulators as potential therapeutic targets. Furthermore, it is imperative not to overlook other members of the protein phosphatase family or coding genes with undiscovered variants. Insights gleaned from the temporal and spatial distribution of proteins, along with observations from animal model phenotypes, may provide valuable directions for uncovering novel pathogenic genes.
Collapse
Affiliation(s)
- Wenya Ji
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Zhao J, Luo J, Deng C, Fan Y, Liu N, Cao J, Chen D, Diao Y. Volatile oil of Angelica sinensis Radix improves cognitive function by inhibiting miR-301a-3p targeting Ppp2ca in cerebral ischemia mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117621. [PMID: 38154524 DOI: 10.1016/j.jep.2023.117621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica Sinensis Radix (ASR) is a commonly used Chinese medicine known for its effects on tonifying blood, promoting blood circulation, and alleviating pain associated with menstrual regulation. Additionally, it has been used in the treatment of vascular cognitive impairment (VCI). The primary pharmacodynamic agent within ASR is volatile oil of Angelica Sinensis Radix (VOASR), which has demonstrated efficacy in combating cognitive impairment, although its mechanism remains unclear. OBJECTIVE This study aimed to elucidate the potential molecular mechanisms underlying VOASR's improvement of cognitive function in cerebral ischemic mice. METHODS A model of cerebral ischemic mice was established through unilateral common carotid artery occlusion (UCCAO) surgery, followed by intervention with VOASR. Cognitive function was assessed using the Morris water maze (MWM) test, while RT-qPCR was utilized to measure the differential expression of miR-301a-3p in the hippocampus. To evaluate cognitive function and hippocampal protein differences, wild-type mice and miR-301a-3p knockout mice were subjected to the MWM test and iTRAQ protein profiling. The relationship between miR-301a-3p and potential target genes was validated through a Dual-Luciferase Reporter experiment. RT-qPCR and Western blot were employed to determine the differential expression of Ppp2ca and synaptic plasticity-related proteins in the mouse hippocampus. RESULTS Intervention with VOASR significantly improved cognitive impairment in cerebral ischemic mice and reduced the expression of miR-301a-3p in the hippocampus. Our findings suggest that miR-301a-3p may regulate cognitive function by targeting Ppp2ca. Furthermore, VOASR intervention led to an increase in the expression of Ppp2ca and synaptic plasticity-related proteins. CONCLUSION Our study indicates that VOASR may be involved in regulating cognitive function by inhibiting miR-301a-3p, consequently increasing the expression of Ppp2ca and synaptic plasticity proteins. These results provide a new target and direction for the treatment of cognitive dysfunction.
Collapse
Affiliation(s)
- Jie Zhao
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jing Luo
- Shenzhen Hospital of Integrated Traditional and Western Medicine, ShenZhen, 518000, China.
| | - Cuili Deng
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yueying Fan
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Na Liu
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jiahui Cao
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Dongfeng Chen
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuanming Diao
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Brewer A, Sathe G, Pflug BE, Clarke RG, Macartney TJ, Sapkota GP. Mapping the substrate landscape of protein phosphatase 2A catalytic subunit PPP2CA. iScience 2024; 27:109302. [PMID: 38450154 PMCID: PMC10915630 DOI: 10.1016/j.isci.2024.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/18/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Protein phosphatase 2A (PP2A) is an essential Ser/Thr phosphatase. The PP2A holoenzyme complex comprises a scaffolding (A), regulatory (B), and catalytic (C) subunit, with PPP2CA being the principal catalytic subunit. The full scope of PP2A substrates in cells remains to be defined. To address this, we employed dTAG proteolysis-targeting chimeras to efficiently and selectively degrade dTAG-PPP2CA in homozygous knock-in HEK293 cells. Unbiased global phospho-proteomics identified 2,204 proteins with significantly increased phosphorylation upon dTAG-PPP2CA degradation, implicating them as potential PPP2CA substrates. A vast majority of these are novel. Bioinformatic analyses revealed involvement of the potential PPP2CA substrates in spliceosome function, cell cycle, RNA transport, and ubiquitin-mediated proteolysis. We identify a pSP/pTP motif as a predominant target for PPP2CA and confirm some of our phospho-proteomic data with immunoblotting. We provide an in-depth atlas of potential PPP2CA substrates and establish targeted degradation as a robust tool to unveil phosphatase substrates in cells.
Collapse
Affiliation(s)
- Abigail Brewer
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gajanan Sathe
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Billie E. Pflug
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rosemary G. Clarke
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thomas J. Macartney
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gopal P. Sapkota
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
5
|
Matsuoka M, Sakai D, Shima H, Watanabe T. Neuron-specific loss of Ppp6c induces neonatal death and decreases the number of cortical neurons and interneurons. Biochem Biophys Res Commun 2024; 693:149353. [PMID: 38101002 DOI: 10.1016/j.bbrc.2023.149353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Protein phosphatase 6 (PP6) is a Ser/Thr protein phosphatase with the catalytic subunit Ppp6c. Recent cell-level studies have revealed that Ppp6c knockdown suppresses neurite outgrowth, suggesting that Ppp6c is involved in the development of the nervous system. We found that the function of PP6 in neurons is essential for mouse survival after birth, as all neural-stem-cell-specific KO (Ppp6cNKO) and neuron-specific KO mice died within 2 days of birth. By contrast, approximately 40 % of oligodendrocyte-specific KO mice died within 2 days of birth, whereas others survived until weaning or later, suggesting that the lethality of PP6 loss differs between neurons and oligodendrocytes. Furthermore, the fetal brain of Ppp6cNKO mice exhibited decreased numbers of neurons in layers V-VI and interneurons in layer I of the neocortex. These results suggest for the first time that Ppp6c is essential for neonatal survival and proper development of neurons and interneurons in the neocortex.
Collapse
Affiliation(s)
- Miki Matsuoka
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, 630-8506, Japan
| | - Daisuke Sakai
- Department of Biology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, 981-1293, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, 630-8506, Japan.
| |
Collapse
|
6
|
Hsieh MC, Lai CY, Lin LT, Chou D, Yeh CM, Cheng JK, Wang HH, Lin KH, Lin TB, Peng HY. Melatonin Relieves Paclitaxel-Induced Neuropathic Pain by Regulating pNEK2-Dependent Epigenetic Pathways in DRG Neurons. ACS Chem Neurosci 2023; 14:4227-4239. [PMID: 37978917 DOI: 10.1021/acschemneuro.3c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
The neurohormone melatonin (MLT) demonstrates promising potential in ameliorating neuropathic pain induced by paclitaxel (PTX) chemotherapy. However, little is known about its protective effect on dorsal root ganglion (DRG) neurons in neuropathic pain resulting from the chemotherapeutic drug PTX. Here, PTX-treated rats revealed that intrathecal administration of MLT dose-dependently elevated hind paw withdrawal thresholds and latency, indicating that MLT significantly reversed PTX-induced neuropathic pain. Mechanistically, the analgesic effects of MLT were found to be mediated via melatonin receptor 2 (MT2), as pretreatment with an MT2 receptor antagonist inhibited these effects. Moreover, intrathecal MLT injection reversed the pNEK2-dependent epigenetic program induced by PTX. All of the effects caused by MLT were blocked by pretreatment with an MT2 receptor-selective antagonist, 4P-PDOT. Remarkably, multiple MLT administered during PTX treatment (PTX+MLTs) exhibited not only rapid but also lasting reversal of allodynia/hyperalgesia compared to single-bolus MLT administered after PTX treatment (PTX+MLT). In addition, PTX+MLTs exhibited greater efficacy in reversing PTX-induced alterations in pRSK2, pNEK2, JMJD3, H3K27me3, and TRPV1 expression and interaction in DRG neurons than PTX+MLT. These results indicated that MLT administered during PTX treatment reduced the incidence and/or severity of neuropathy and had a better inhibitory effect on the pNEK2-dependent epigenetic program compared to MLT administered after PTX treatment. In conclusion, MLT/MT2 is a promising therapy for the treatment of pNEK2-dependent painful neuropathy resulting from PTX treatment. MLT administered during PTX chemotherapy may be more effective in the prevention or reduction of PTX-induced neuropathy and maintaining quality.
Collapse
Affiliation(s)
- Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
| | - Cheng-Yuan Lai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan
| | - Li-Ting Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan
| | - Dylan Chou
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
| | - Chou-Ming Yeh
- Division of Thoracic Surgery, Department of Health, Taichung Hospital, Executive Yuan, Taichung 40343, Taiwan
- Central Taiwan University of Science and Technology, Taichung 40343, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei104, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei110, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 252, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei City 110, Taiwan
- Institute of New Drug Development, College of Medicine, China Medical University, Taichung 40604, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan
| |
Collapse
|
7
|
Qian Y, Jiang Y, Wang J, Li G, Wu B, Zhou Y, Xu X, Wang H. Novel Variants of PPP2R1A in Catalytic Subunit Binding Domain and Genotype-Phenotype Analysis in Neurodevelopmentally Delayed Patients. Genes (Basel) 2023; 14:1750. [PMID: 37761890 PMCID: PMC10531206 DOI: 10.3390/genes14091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of high-incidence rare diseases with genetic heterogeneity. PPP2R1A, the regulatory subunit of protein phosphatase 2A, is a recently discovered gene associated with NDDs. Whole/clinical exome sequencing was performed in five patients with a family with NDDs. In vitro experiments were performed to evaluate the mutants' expression and interactions with the complex. The genotype-phenotype correlations of reported cases as well as our patients with PPP2R1A variants were reviewed. We reported five unrelated individuals with PPP2R1A variants, including two novel missense variants and one frameshift variant. The protein expression of the Arg498Leu variant was less than that of the wild-type protein, the frameshift variant Asn282Argfs*14 was not decreased but truncated, and these two variants impaired the interactions with endogenous PPP25RD and PPP2CA. Furthermore, we found that pathogenic variants clustered in HEAT repeats V, VI and VII, and patients with the Met180Val/Thr variants had macrocephaly, severe ID and hypotonia, but no epilepsy, whereas those with Arg258 amino acid changes had microcephaly, while a few had epilepsy or feeding problems. In this study, we reported five NDD patients with PPP2R1A gene variants and expanded PPP2R1A pathogenic variant spectrum. The genotype and phenotype association findings provide reminders regarding the prognostication and evidence for genetic counseling.
Collapse
Affiliation(s)
- Yanyan Qian
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (Y.Q.); (Y.J.); (G.L.); (B.W.)
| | - Yinmo Jiang
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (Y.Q.); (Y.J.); (G.L.); (B.W.)
| | - Ji Wang
- Neurology Department, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.W.); (Y.Z.)
| | - Gang Li
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (Y.Q.); (Y.J.); (G.L.); (B.W.)
| | - Bingbing Wu
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (Y.Q.); (Y.J.); (G.L.); (B.W.)
| | - Yuanfeng Zhou
- Neurology Department, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.W.); (Y.Z.)
| | - Xiu Xu
- Department of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Huijun Wang
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (Y.Q.); (Y.J.); (G.L.); (B.W.)
| |
Collapse
|
8
|
Wang J, Chen H, Hou W, Han Q, Wang Z. Hippo Pathway in Schwann Cells and Regeneration of Peripheral Nervous System. Dev Neurosci 2023; 45:276-289. [PMID: 37080186 DOI: 10.1159/000530621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Hippo pathway is an evolutionarily conserved signaling pathway comprising a series of MST/LATS kinase complexes. Its key transcriptional coactivators YAP and TAZ regulate transcription factors such as TEAD family to direct gene expression. The regulation of Hippo pathway, especially the nuclear level change of YAP and TAZ, significantly influences the cell fate switching from proliferation to differentiation, regeneration, and postinjury repair. This review outlines the main findings of Hippo pathway in peripheral nerve development, regeneration, and tumorigenesis, especially the studies in Schwann cells. We also summarize other roles of Hippo pathway in damage repair of the peripheral nerve system and discuss the potential future research which probably contributes to novel therapeutic strategies.
Collapse
Affiliation(s)
- Jingyuan Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haofeng Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wulei Hou
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingjian Han
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Huashan Hospital, Fudan University, Shanghai, China
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Li S, Chen X, Sun Q, Ren X, Zhong J, Zhou L, Zhang H, Li G, Liu Y, Liu J, Huang H. Long term exposure of saxitoxin induced cognitive deficits and YAP1 cytoplasmic retention. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114645. [PMID: 36791486 DOI: 10.1016/j.ecoenv.2023.114645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
While most studies assessed the acute toxicity of saxitoxin (STX), fewer studies focus on the long-term degenerative effects of STX on the central nervous system. We investigated the cognitive impairment and hippocampal damages of 6 months' exposure of low-dose STX to C57BL/6NJ mice with behavioral tests, H&E staining, and Western blots, and the possible mechanism (Ppp1C, YAP1, tau-phosphorylation) underlies the pathological changes. Furthermore, we discussed the specific localization of YAP1 in N2a cells induced by STX and the effect of inactivated Ppp1C on its downstream protein YAP1 in the Hippo signal pathway. We found STX intoxicated mice showed declined cognitive performance in both NOR test and MWM test, degenerations in the CA1 area of hippocampi. STX induced up-regulation expression of Ppp1C and YAP1 in hippocampus and N2a cells. Meanwhile, STX treatment induced cell apoptosis and Tau protein hyperphosphorylation. In addition, STX treatment promoted YAP1 cytoplasmic retention that indicates the activation of Hippo pathway, while depletion of Ppp1C inactivate YAP1 during the treatment of STX. Our results highlight the role of Ppp1C and YAP1 cytoplasmic retention in chronic low-dose STX intoxication.
Collapse
Affiliation(s)
- Shenpan Li
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, China
| | - Xiao Chen
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Qian Sun
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523109, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jiacheng Zhong
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Li Zhou
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Hongyu Zhang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Guowei Li
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Haiyan Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| |
Collapse
|
10
|
Vaneynde P, Verbinnen I, Janssens V. The role of serine/threonine phosphatases in human development: Evidence from congenital disorders. Front Cell Dev Biol 2022; 10:1030119. [PMID: 36313552 PMCID: PMC9608770 DOI: 10.3389/fcell.2022.1030119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Reversible protein phosphorylation is a fundamental regulation mechanism in eukaryotic cell and organismal physiology, and in human health and disease. Until recently, and unlike protein kinases, mutations in serine/threonine protein phosphatases (PSP) had not been commonly associated with disorders of human development. Here, we have summarized the current knowledge on congenital diseases caused by mutations, inherited or de novo, in one of 38 human PSP genes, encoding a monomeric phosphatase or a catalytic subunit of a multimeric phosphatase. In addition, we highlight similar pathogenic mutations in genes encoding a specific regulatory subunit of a multimeric PSP. Overall, we describe 19 affected genes, and find that most pathogenic variants are loss-of-function, with just a few examples of gain-of-function alterations. Moreover, despite their widespread tissue expression, the large majority of congenital PSP disorders are characterised by brain-specific abnormalities, suggesting a generalized, major role for PSPs in brain development and function. However, even if the pathogenic mechanisms are relatively well understood for a small number of PSP disorders, this knowledge is still incomplete for most of them, and the further identification of downstream targets and effectors of the affected PSPs is eagerly awaited through studies in appropriate in vitro and in vivo disease models. Such lacking studies could elucidate the exact mechanisms through which these diseases act, and possibly open up new therapeutic avenues.
Collapse
Affiliation(s)
- Pieter Vaneynde
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| | - Iris Verbinnen
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
- *Correspondence: Veerle Janssens,
| |
Collapse
|
11
|
Comfort N, Wu H, De Hoff P, Vuppala A, Vokonas PS, Spiro A, Weisskopf M, Coull BA, Laurent LC, Baccarelli AA, Schwartz J. Extracellular microRNA and cognitive function in a prospective cohort of older men: The Veterans Affairs Normative Aging Study. Aging (Albany NY) 2022; 14:6859-6886. [PMID: 36069796 PMCID: PMC9512498 DOI: 10.18632/aging.204268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Aging-related cognitive decline is an early symptom of Alzheimer's disease and other dementias, and on its own can have substantial consequences on an individual's ability to perform important everyday functions. Despite increasing interest in the potential roles of extracellular microRNAs (miRNAs) in central nervous system (CNS) pathologies, there has been little research on extracellular miRNAs in early stages of cognitive decline. We leverage the longitudinal Normative Aging Study (NAS) cohort to investigate associations between plasma miRNAs and cognitive function among cognitively normal men. METHODS This study includes data from up to 530 NAS participants (median age: 71.0 years) collected from 1996 to 2013, with a total of 1,331 person-visits (equal to 2,471 years of follow up). Global cognitive function was assessed using the Mini-Mental State Examination (MMSE). Plasma miRNAs were profiled using small RNA sequencing. Associations of expression of 381 miRNAs with current cognitive function and rate of change in cognitive function were assessed using linear regression (N = 457) and linear mixed models (N = 530), respectively. RESULTS In adjusted models, levels of 2 plasma miRNAs were associated with higher MMSE scores (p < 0.05). Expression of 33 plasma miRNAs was associated with rate of change in MMSE scores over time (p < 0.05). Enriched KEGG pathways for miRNAs associated with concurrent MMSE and MMSE trajectory included Hippo signaling and extracellular matrix-receptor interactions. Gene targets of miRNAs associated with MMSE trajectory were additionally associated with prion diseases and fatty acid biosynthesis. CONCLUSIONS Circulating miRNAs were associated with both cross-sectional cognitive function and rate of change in cognitive function among cognitively normal men. Further research is needed to elucidate the potential functions of these miRNAs in the CNS and investigate relationships with other neurological outcomes.
Collapse
Affiliation(s)
- Nicole Comfort
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Peter De Hoff
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Aishwarya Vuppala
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Pantel S. Vokonas
- VA Normative Aging Study, VA Boston Healthcare System, Boston, MA 02130, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Avron Spiro
- Massachusetts Veterans Epidemiology and Research Information Center, VA Boston Healthcare System, Boston, MA 02130, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Marc Weisskopf
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Brent A. Coull
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Louise C. Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
12
|
Liu T, Zhu X, Huang C, Chen J, Shu S, Chen G, Xu Y, Hu Y. ERK inhibition reduces neuronal death and ameliorates inflammatory responses in forebrain-specific Ppp2cα knockout mice. FASEB J 2022; 36:e22515. [PMID: 35997299 DOI: 10.1096/fj.202200293r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/24/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022]
Abstract
It has been shown that PP2A is critical for apoptosis in neural progenitor cells. However, it remains unknown whether PP2A is required for neuronal survival. To address this question, we generated forebrain-specific Ppp2cα knockout (KO) mice. We show that Ppp2cα KO mice display robust neuronal apoptosis and inflammatory responses in the postnatal cortex. Previous evidence has revealed that PD98059 is a potent ERK inhibitor and may protect the brain against cell death after cardiac arrest. To study whether PD98059 may have any effects on Ppp2cα KO mice, the latter was treated with this inhibitor. We demonstrated that the total number of cleaved caspase3 positive (+) cells in the cortex was significantly reduced in Ppp2cα KO mice treated with PD98059 compared with those without PD98059 treatment. We observed that the total number of IBA1+ cells in the cortex was significantly decreased in Ppp2cα KO mice treated with PD98059. Mechanistic analysis reveals that deletion of PP2Aca causes DNA damage, which may be attenuated by PD98059. Together, this study suggests that inhibition of ERK may be an effective strategy to reduce cell death in brain diseases with abnormal neuronal apoptosis.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Chaoli Huang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Jiang Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Shu Shu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Guiquan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yimin Hu
- Department of Anesthesiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
13
|
Protein Phosphatase 2A (PP2A) mutations in brain function, development, and neurologic disease. Biochem Soc Trans 2021; 49:1567-1588. [PMID: 34241636 DOI: 10.1042/bst20201313] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
By removing Ser/Thr-specific phosphorylations in a multitude of protein substrates in diverse tissues, Protein Phosphatase type 2A (PP2A) enzymes play essential regulatory roles in cellular signalling and physiology, including in brain function and development. Here, we review current knowledge on PP2A gene mutations causally involved in neurodevelopmental disorders and intellectual disability, focusing on PPP2CA, PPP2R1A and PPP2R5D. We provide insights into the impact of these mutations on PP2A structure, substrate specificity and potential function in neurobiology and brain development.
Collapse
|
14
|
Sandal P, Jong CJ, Merrill RA, Song J, Strack S. Protein phosphatase 2A - structure, function and role in neurodevelopmental disorders. J Cell Sci 2021; 134:270819. [PMID: 34228795 DOI: 10.1242/jcs.248187] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID), autism and schizophrenia, have high socioeconomic impact, yet poorly understood etiologies. A recent surge of large-scale genome or exome sequencing studies has identified a multitude of mostly de novo mutations in subunits of the protein phosphatase 2A (PP2A) holoenzyme that are strongly associated with NDDs. PP2A is responsible for at least 50% of total Ser/Thr dephosphorylation in most cell types and is predominantly found as trimeric holoenzymes composed of catalytic (C), scaffolding (A) and variable regulatory (B) subunits. PP2A can exist in nearly 100 different subunit combinations in mammalian cells, dictating distinct localizations, substrates and regulatory mechanisms. PP2A is well established as a regulator of cell division, growth, and differentiation, and the roles of PP2A in cancer and various neurodegenerative disorders, such as Alzheimer's disease, have been reviewed in detail. This Review summarizes and discusses recent reports on NDDs associated with mutations of PP2A subunits and PP2A-associated proteins. We also discuss the potential impact of these mutations on the structure and function of the PP2A holoenzymes and the etiology of NDDs.
Collapse
Affiliation(s)
- Priyanka Sandal
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Chian Ju Jong
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Ronald A Merrill
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jianing Song
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
15
|
Bryant JP, Levy A, Heiss J, Banasavadi-Siddegowda YK. Review of PP2A Tumor Biology and Antitumor Effects of PP2A Inhibitor LB100 in the Nervous System. Cancers (Basel) 2021; 13:cancers13123087. [PMID: 34205611 PMCID: PMC8235527 DOI: 10.3390/cancers13123087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Central and peripheral nervous system tumors represent a heterogenous group of neoplasms which often demonstrate resistance to treatment. Given that these tumors are often refractory to conventional therapy, novel pharmaceutical regimens are needed for successfully treating this pathology. One such therapeutic is the serine/threonine phosphatase inhibitor, LB100. LB100 is a water-soluble competitive protein phosphtase inhibitor that has demonstrated antitumor effects in preclinical and clinical trials. In this review, we aim to summarize current evidence demonstrating the efficacy of LB100 as an inhibitor of nervous system tumors. Furthermore, we review the involvement of the well-studied phosphatase, protein phosphatase 2A, in oncogenic cell signaling pathways, neurophysiology, and neurodevelopment. Abstract Protein phosphatase 2A (PP2A) is a ubiquitous serine/threonine phosphatase implicated in a wide variety of regulatory cellular functions. PP2A is abundant in the mammalian nervous system, and dysregulation of its cellular functions is associated with myriad neurodegenerative disorders. Additionally, PP2A has oncologic implications, recently garnering attention and emerging as a therapeutic target because of the antitumor effects of a potent PP2A inhibitor, LB100. LB100 abrogation of PP2A is believed to exert its inhibitory effects on tumor progression through cellular chemo- and radiosensitization to adjuvant agents. An updated and unifying review of PP2A biology and inhibition with LB100 as a therapeutic strategy for targeting cancers of the nervous system is needed, as other reviews have mainly covered broader applications of LB100. In this review, we discuss the role of PP2A in normal cells and tumor cells of the nervous system. Furthermore, we summarize current evidence regarding the therapeutic potential of LB100 for treating solid tumors of the nervous system.
Collapse
Affiliation(s)
- Jean-Paul Bryant
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (J.-P.B.); (J.H.)
| | - Adam Levy
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - John Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (J.-P.B.); (J.H.)
| | - Yeshavanth Kumar Banasavadi-Siddegowda
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (J.-P.B.); (J.H.)
- Correspondence: ; Tel.: +1-301-451-0970
| |
Collapse
|
16
|
Antón IM, Wandosell F. WIP, YAP/TAZ and Actin Connections Orchestrate Development and Transformation in the Central Nervous System. Front Cell Dev Biol 2021; 9:673986. [PMID: 34195190 PMCID: PMC8237755 DOI: 10.3389/fcell.2021.673986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/12/2021] [Indexed: 01/01/2023] Open
Abstract
YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif) are transcription co-regulators that make up the terminal components of the Hippo signaling pathway, which plays a role in organ size control and derived tissue homeostasis through regulation of the proliferation, differentiation and apoptosis of a wide variety of differentiated and stem cells. Hippo/YAP signaling contributes to normal development of the nervous system, as it participates in self-renewal of neural stem cells, proliferation of neural progenitor cells and differentiation, activation and myelination of glial cells. Not surprisingly, alterations in this pathway underlie the development of severe neurological diseases. In glioblastomas, YAP and TAZ levels directly correlate with the amount of the actin-binding molecule WIP (WASP interacting protein), which regulates stemness and invasiveness. In neurons, WIP modulates cytoskeleton dynamics through actin polymerization/depolymerization and acts as a negative regulator of neuritogenesis, dendrite branching and dendritic spine formation. Our working hypothesis is that WIP regulates the YAP/TAZ pools using a Hippo-independent pathway. Thus, in this review we will present some of the data that links WIP, YAP and TAZ, with a focus on their function in cells from the central and peripheral nervous systems. It is hoped that a better understanding of the mechanisms involved in brain and nervous development and the pathologies that arise due to their alteration will reveal novel therapeutic targets for neurologic diseases.
Collapse
Affiliation(s)
- Inés M Antón
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Francisco Wandosell
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento de Neuropatología Molecular, Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
17
|
Sahu MR, Mondal AC. Neuronal Hippo signaling: From development to diseases. Dev Neurobiol 2020; 81:92-109. [PMID: 33275833 DOI: 10.1002/dneu.22796] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/18/2020] [Accepted: 11/27/2020] [Indexed: 01/12/2023]
Abstract
Hippo signaling pathway is a highly conserved and familiar tissue growth regulator, primarily dealing with cell survival, cell proliferation, and apoptosis. The Yes-associated protein (YAP) is the key transcriptional effector molecule, which is under negative regulation of the Hippo pathway. Wealth of studies have identified crucial roles of Hippo/YAP signaling pathway during the process of development, including the development of neuronal system. We provide here, an overview of the contributions of this signaling pathway at multiple stages of neuronal development including, proliferation of neural stem cells (NSCs), migration of NSCs toward their destined niche, maintaining NSCs in the quiescent state, differentiation of NSCs into neurons, neuritogenesis, synaptogenesis, brain development, and in neuronal apoptosis. Hyperactivation of the neuronal Hippo pathway can also lead to a variety of devastating neurodegenerative diseases. Instances of aberrant Hippo pathway leading to neurodegenerative diseases along with the approaches utilizing this pathway as molecular targets for therapeutics has been highlighted in this review. Recent evidences suggesting neuronal repair and regenerative potential of this pathway has also been pointed out, that will shed light on a novel aspect of Hippo pathway in regenerative medicine. Our review provides a better understanding of the significance of Hippo pathway in the journey of neuronal system from development to diseases as a whole.
Collapse
Affiliation(s)
- Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
18
|
Lenaerts L, Reynhout S, Verbinnen I, Laumonnier F, Toutain A, Bonnet-Brilhault F, Hoorne Y, Joss S, Chassevent AK, Smith-Hicks C, Loeys B, Joset P, Steindl K, Rauch A, Mehta SG, Chung WK, Devriendt K, Holder SE, Jewett T, Baldwin LM, Wilson WG, Towner S, Srivastava S, Johnson HF, Daumer-Haas C, Baethmann M, Ruiz A, Gabau E, Jain V, Varghese V, Al-Beshri A, Fulton S, Wechsberg O, Orenstein N, Prescott K, Childs AM, Faivre L, Moutton S, Sullivan JA, Shashi V, Koudijs SM, Heijligers M, Kivuva E, McTague A, Male A, van Ierland Y, Plecko B, Maystadt I, Hamid R, Hannig VL, Houge G, Janssens V. The broad phenotypic spectrum of PPP2R1A-related neurodevelopmental disorders correlates with the degree of biochemical dysfunction. Genet Med 2020; 23:352-362. [PMID: 33106617 PMCID: PMC7862067 DOI: 10.1038/s41436-020-00981-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose Neurodevelopmental disorders (NDD) caused by protein phosphatase 2A (PP2A) dysfunction have mainly been associated with de novo variants in PPP2R5D and PPP2CA, and more rarely in PPP2R1A. Here, we aimed to better understand the latter by characterizing 30 individuals with de novo and often recurrent variants in this PP2A scaffolding Aα subunit. Methods Most cases were identified through routine clinical diagnostics. Variants were biochemically characterized for phosphatase activity and interaction with other PP2A subunits. Results We describe 30 individuals with 16 different variants in PPP2R1A, 21 of whom had variants not previously reported. The severity of developmental delay ranged from mild learning problems to severe intellectual disability (ID) with or without epilepsy. Common features were language delay, hypotonia, and hypermobile joints. Macrocephaly was only seen in individuals without B55α subunit-binding deficit, and these patients had less severe ID and no seizures. Biochemically more disruptive variants with impaired B55α but increased striatin binding were associated with profound ID, epilepsy, corpus callosum hypoplasia, and sometimes microcephaly. Conclusion We significantly expand the phenotypic spectrum of PPP2R1A-related NDD, revealing a broader clinical presentation of the patients and that the functional consequences of the variants are more diverse than previously reported.
Collapse
Affiliation(s)
- Lisa Lenaerts
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
| | - Sara Reynhout
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium.,KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Iris Verbinnen
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
| | - Frédéric Laumonnier
- UMR1253, iBrain, University of Tours, INSERM, Tours, France.,Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France
| | - Annick Toutain
- UMR1253, iBrain, University of Tours, INSERM, Tours, France.,Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France
| | - Frédérique Bonnet-Brilhault
- UMR1253, iBrain, University of Tours, INSERM, Tours, France.,Excellence Center in Autism and Neurodevelopmental Disorders, Centre Hospitalier Régional Universitaire, Tours, France
| | - Yana Hoorne
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
| | - Shelagh Joss
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow, UK
| | | | | | - Bart Loeys
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Sarju G Mehta
- East Anglian Regional Medical Genetics Service, Addenbrookes Hospital, Cambridge, UK
| | - Wendy K Chung
- Columbia University Medical Center, New York, NY, USA
| | - Koenraad Devriendt
- Department of Human Genetics, University of Leuven (KU Leuven), Leuven, Belgium
| | - Susan E Holder
- North West Thames Regional Genetics Service, Harrow, London, UK
| | - Tamison Jewett
- Wake Forest School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Lauren M Baldwin
- Wake Forest School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - William G Wilson
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Shelley Towner
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | | | - Hannah F Johnson
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | | | - Martina Baethmann
- Pediatric Neurology, Sozialpädiatrisches Zentrum, Klinikum Dritter Orden München, Munich, Germany
| | - Anna Ruiz
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Elisabeth Gabau
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Vani Jain
- All Wales Medical Genomics Service, University Hospital of Wales, Cardiff, UK
| | - Vinod Varghese
- All Wales Medical Genomics Service, University Hospital of Wales, Cardiff, UK
| | - Ali Al-Beshri
- Internal Medicine & Medical Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Oded Wechsberg
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Maccabi Healthcare Services, Tel Aviv, Israel
| | - Naama Orenstein
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Katrina Prescott
- Yorkshire Regional Genetics Department, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Anne-Marie Childs
- Department of Neurology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Laurence Faivre
- Centre de référence Anomalies du Développement et Syndromes malformatifs, FHU TRANSLAD, UMR1231 GAD, CHU Dijon et Université de Bourgogne, Dijon, France
| | - Sébastien Moutton
- CPDPN, Pôle mère enfant, Maison de Santé Bordeaux Bagatelle, Talence, France
| | - Jennifer A Sullivan
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC, USA
| | - Vandana Shashi
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC, USA
| | | | - Malou Heijligers
- Department of Clinical Genetics, Maastricht UMC+, Maastricht, The Netherlands
| | - Emma Kivuva
- Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Alison Male
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Neurology, Great Ormond Street Hospital, London, UK
| | | | - Barbara Plecko
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Rizwan Hamid
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium. .,KU Leuven Brain Institute (LBI), Leuven, Belgium.
| |
Collapse
|
19
|
Huang C, Liu T, Wang Q, Hou W, Zhou C, Song Z, Shi YS, Gao X, Chen G, Yin Z, Hu Y. Loss of PP2A Disrupts the Retention of Radial Glial Progenitors in the Telencephalic Niche to Impair the Generation for Late-Born Neurons During Cortical Development†. Cereb Cortex 2020; 30:4183-4196. [PMID: 32186707 DOI: 10.1093/cercor/bhaa042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Telencephalic radial glial progenitors (RGPs) are retained in the ventricular zone (VZ), the niche for neural stem cells during cortical development. However, the underlying mechanism is not well understood. To study whether protein phosphatase 2A (PP2A) may regulate the above process, we generate Ppp2cα conditional knockout (cKO) mice, in which PP2A catalytic subunit α (PP2Acα) is inactivated in neural progenitor cells in the dorsal telencephalon. We show that RGPs are ectopically distributed in cortical areas outside of the VZ in Ppp2cα cKO embryos. Whereas deletion of PP2Acα does not affect the proliferation of RGPs, it significantly impairs the generation of late-born neurons. We find complete loss of apical adherens junctions (AJs) in the ventricular membrane in Ppp2cα cKO cortices. We observe abundant colocalization for N-cadherin and PP2Acα in control AJs. Moreover, in vitro analysis reveals direct interactions of N-cadherin to PP2Acα and to β-catenin. Overall, this study not only uncovers a novel function of PP2Acα in retaining RGPs into the VZ but also demonstrates the impact of PP2A-dependent retention of RGPs on the generation for late-born neurons.
Collapse
Affiliation(s)
- Chaoli Huang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, Nanjing 210061, China
| | - Tingting Liu
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, Nanjing 210061, China
| | - Qihui Wang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, Nanjing 210061, China
| | - Weikang Hou
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, Nanjing 210061, China
| | - Cuihua Zhou
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Zeyuan Song
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, Nanjing 210061, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, Nanjing 210061, China
| | - Guiquan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, Nanjing 210061, China
| | - Zhenyu Yin
- Department of Geriatric, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Yimin Hu
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou 213000, China
| |
Collapse
|
20
|
Irwin M, Tare M, Singh A, Puli OR, Gogia N, Riccetti M, Deshpande P, Kango-Singh M, Singh A. A Positive Feedback Loop of Hippo- and c-Jun-Amino-Terminal Kinase Signaling Pathways Regulates Amyloid-Beta-Mediated Neurodegeneration. Front Cell Dev Biol 2020; 8:117. [PMID: 32232042 PMCID: PMC7082232 DOI: 10.3389/fcell.2020.00117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD, OMIM: 104300) is an age-related disorder that affects millions of people. One of the underlying causes of AD is generation of hydrophobic amyloid-beta 42 (Aβ42) peptides that accumulate to form amyloid plaques. These plaques induce oxidative stress and aberrant signaling, which result in the death of neurons and other pathologies linked to neurodegeneration. We have developed a Drosophila eye model of AD by targeted misexpression of human Aβ42 in the differentiating retinal neurons, where an accumulation of Aβ42 triggers a characteristic neurodegenerative phenotype. In a forward deficiency screen to look for genetic modifiers, we identified a molecularly defined deficiency, which suppresses Aβ42-mediated neurodegeneration. This deficiency uncovers hippo (hpo) gene, a member of evolutionarily conserved Hippo signaling pathway that regulates growth. Activation of Hippo signaling causes cell death, whereas downregulation of Hippo signaling triggers cell proliferation. We found that Hippo signaling is activated in Aβ42-mediated neurodegeneration. Downregulation of Hippo signaling rescues the Aβ42-mediated neurodegeneration, whereas upregulation of Hippo signaling enhances the Aβ42-mediated neurodegeneration phenotypes. It is known that c-Jun-amino-terminal kinase (JNK) signaling pathway is upregulated in AD. We found that activation of JNK signaling enhances the Aβ42-mediated neurodegeneration, whereas downregulation of JNK signaling rescues the Aβ42-mediated neurodegeneration. We tested the nature of interactions between Hippo signaling and JNK signaling in Aβ42-mediated neurodegeneration using genetic epistasis approach. Our data suggest that Hippo signaling and JNK signaling, two independent signaling pathways, act synergistically upon accumulation of Aβ42 plaques to trigger cell death. Our studies demonstrate a novel role of Hippo signaling pathway in Aβ42-mediated neurodegeneration.
Collapse
Affiliation(s)
- Madison Irwin
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Meghana Tare
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Aditi Singh
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Oorvashi Roy Puli
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Neha Gogia
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Matthew Riccetti
- Department of Biology, University of Dayton, Dayton, OH, United States
| | | | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH, United States
- Premedical Program, University of Dayton, Dayton, OH, United States
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, United States
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, United States
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, United States
- Premedical Program, University of Dayton, Dayton, OH, United States
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, United States
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, United States
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, United States
| |
Collapse
|
21
|
Sahu MR, Mondal AC. The emerging role of Hippo signaling in neurodegeneration. J Neurosci Res 2019; 98:796-814. [PMID: 31705587 DOI: 10.1002/jnr.24551] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/05/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
Neurodegeneration refers to the complex process of progressive degeneration or neuronal apoptosis leading to a set of incurable and debilitating conditions. Physiologically, apoptosis is important in proper growth and development. However, aberrant and unrestricted apoptosis can lead to a variety of degenerative conditions including neurodegenerative diseases. Although dysregulated apoptosis has been implicated in various neurodegenerative disorders, the triggers and molecular mechanisms underlying such untimely and faulty apoptosis are still unknown. Hippo signaling pathway is one such apoptosis-regulating mechanism that has remained evolutionarily conserved from Drosophila to mammals. This pathway has gained a lot of attention for its tumor-suppressing task, but recent studies have emphasized the soaring role of this pathway in inflaming neurodegeneration. In addition, strategies promoting inactivation of this pathway have aided in the rescue of neurons from anomalous apoptosis. So, a thorough understanding of the relationship between the Hippo pathway and neurodegeneration may serve as a guide for the development of therapy for various degenerative diseases. The current review focuses on the mechanism of the Hippo signaling pathway, its upstream and downstream regulatory molecules, and its role in the genesis of numerous neurodegenerative diseases. The recent efforts employing the Hippo pathway components as targets for checking neurodegeneration have also been highlighted.
Collapse
Affiliation(s)
- Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
22
|
Liu B, Lin L, Riazuddin S, Zubair A, Wang L, Di LJ, Li R, Dong TT, Deng CX, Tong WM. RETRACTED: PP2ACα deficiency impairs early cortical development through inducing DNA damage in neuroprojenitor cells. Int J Biochem Cell Biol 2019; 109:40-58. [PMID: 30710753 DOI: 10.1016/j.biocel.2019.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 01/09/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor in Chief due to objections raised by persons identified as co-authors of corresponding author Bo Liu. The University of Macau states that Bo Liu is not affiliated with the University of Macau. The purported co-authors who are only affiliated with University of Macau report their names have been misappropriated for use on this paper without notice or prior permission. These co-authors deny any involvement in the study, preparation or submission of the manuscript, or review of any supporting data. The purported co-authors who are affiliated with the University of Maryland, Baltimore report their names and credentials have been misappropriated for use on this paper without notice or permission. These co-authors deny any involvement in the study, preparation or submission of the manuscript, or review of any supporting data. The National Institute of Health also states that none of the co-authors are affiliated with the institution. The University of Maryland, Baltimore states that Bo Liu is not affiliated with the university. Bo Liu has been non-responsive to approaches from the Publisher. Rui Li and Ting-Ting Dong were not reachable by the Publisher. Lin Lin confirmed the affiliation with The University of California Riverside; Chu-Xia Deng confirmed the affiliation with the University of Macau; Wei-Min Tong confirmed the affiliation with the Chinese Academy of Medical Sciences.
Collapse
Affiliation(s)
- Bo Liu
- Department of Otorhinolaryngology Head&Neck Surgery, University of Maryland School of Medicine, Baltimore, USA; University of Macau, Macau, China.
| | - Lin Lin
- University of Macau, Macau, China; Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Sciences. Beijing, China
| | - Saima Riazuddin
- Department of Otorhinolaryngology Head&Neck Surgery, University of Maryland School of Medicine, Baltimore, USA
| | - Ahmed Zubair
- Department of Otorhinolaryngology Head&Neck Surgery, University of Maryland School of Medicine, Baltimore, USA
| | - Li Wang
- Branch of Cancer Research, Jones Hopkins University, Baltimore, USA
| | - Li-Jun Di
- Branch of Cancer Research, Jones Hopkins University, Baltimore, USA
| | - Rui Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Sciences. Beijing, China.
| | - Ting-Ting Dong
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Sciences. Beijing, China; China Agricultural University, Beijing, China
| | - Chu-Xia Deng
- National Institute of Neurological Disorders and Stroke, National Institute of Heath, Bethesda, USA.
| | - Wei-Min Tong
- National Institute of Neurological Disorders and Stroke, National Institute of Heath, Bethesda, USA.
| |
Collapse
|
23
|
Reynhout S, Jansen S, Haesen D, van Belle S, de Munnik SA, Bongers EM, Schieving JH, Marcelis C, Amiel J, Rio M, Mclaughlin H, Ladda R, Sell S, Kriek M, Peeters-Scholte CM, Terhal PA, van Gassen KL, Verbeek N, Henry S, Scott Schwoerer J, Malik S, Revencu N, Ferreira CR, Macnamara E, Braakman HM, Brimble E, Ruzhnikov MR, Wagner M, Harrer P, Wieczorek D, Kuechler A, Tziperman B, Barel O, de Vries BB, Gordon CT, Janssens V, Vissers LE. De Novo Mutations Affecting the Catalytic Cα Subunit of PP2A, PPP2CA, Cause Syndromic Intellectual Disability Resembling Other PP2A-Related Neurodevelopmental Disorders. Am J Hum Genet 2019; 104:139-156. [PMID: 30595372 DOI: 10.1016/j.ajhg.2018.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022] Open
Abstract
Type 2A protein phosphatases (PP2As) are highly expressed in the brain and regulate neuronal signaling by catalyzing phospho-Ser/Thr dephosphorylations in diverse substrates. PP2A holoenzymes comprise catalytic C-, scaffolding A-, and regulatory B-type subunits, which determine substrate specificity and physiological function. Interestingly, de novo mutations in genes encoding A- and B-type subunits have recently been implicated in intellectual disability (ID) and developmental delay (DD). We now report 16 individuals with mild to profound ID and DD and a de novo mutation in PPP2CA, encoding the catalytic Cα subunit. Other frequently observed features were severe language delay (71%), hypotonia (69%), epilepsy (63%), and brain abnormalities such as ventriculomegaly and a small corpus callosum (67%). Behavioral problems, including autism spectrum disorders, were reported in 47% of individuals, and three individuals had a congenital heart defect. PPP2CA de novo mutations included a partial gene deletion, a frameshift, three nonsense mutations, a single amino acid duplication, a recurrent mutation, and eight non-recurrent missense mutations. Functional studies showed complete PP2A dysfunction in four individuals with seemingly milder ID, hinting at haploinsufficiency. Ten other individuals showed mutation-specific biochemical distortions, including poor expression, altered binding to the A subunit and specific B-type subunits, and impaired phosphatase activity and C-terminal methylation. Four were suspected to have a dominant-negative mechanism, which correlated with severe ID. Two missense variants affecting the same residue largely behaved as wild-type in our functional assays. Overall, we found that pathogenic PPP2CA variants impair PP2A-B56(δ) functionality, suggesting that PP2A-related neurodevelopmental disorders constitute functionally converging ID syndromes.
Collapse
|
24
|
Physiologic functions of PP2A: Lessons from genetically modified mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:31-50. [DOI: 10.1016/j.bbamcr.2018.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 01/03/2023]
|