1
|
De Domenico S, La Banca V, D'Amico S, Nicolai S, Peschiaroli A. Defining the transcriptional routes controlling lncRNA NEAT1 expression: implications in cellular stress response, inflammation, and differentiation. Discov Oncol 2025; 16:768. [PMID: 40369379 PMCID: PMC12078918 DOI: 10.1007/s12672-025-02510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025] Open
Abstract
NEAT1 (Nuclear Enriched Abundant Transcript 1) is a long non-coding RNA playing a critical role in both physiological and pathological settings by directly modulating a variety of biological events, including transcriptional regulation, RNA processing, and chromatin remodeling. Multiple evidence demonstrated that different transcription factors and signaling pathways modulate biological processes by tightly regulating NEAT1 expression. These regulatory mechanisms act at different levels, allowing cells to rapidly modulate NEAT1 expression and dynamically respond to sudden changes in cellular conditions. In this review, we summarize and discuss the transcriptional routes controlling NEAT1 expression, emphasizing recent evidence showing the pivotal role of NEAT1 in regulating important biological processes, such as cellular stress response, inflammation, and cell differentiation.
Collapse
Affiliation(s)
- Sara De Domenico
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Veronica La Banca
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Silvia D'Amico
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Sara Nicolai
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy.
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy.
| |
Collapse
|
2
|
Yi H, Zhang S, Swinderman J, Wang Y, Kanakaveti V, Hung KL, Wong ITL, Srinivasan S, Curtis EJ, Bhargava-Shah A, Li R, Jones MG, Luebeck J, Zhao Y, Belk JA, Kraft K, Shi Q, Yan X, Pritchard SK, Liang FM, Felsher DW, Gilbert LA, Bafna V, Mischel PS, Chang HY. EcDNA-borne PVT1 fusion stabilizes oncogenic mRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646515. [PMID: 40236070 PMCID: PMC11996508 DOI: 10.1101/2025.04.01.646515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Extrachromosomal DNA (ecDNA) amplifications are prevalent drivers of human cancers. We show that ecDNAs exhibit elevated structural variants leading to gene fusions that produce oncogene fusion transcripts. The long noncoding RNA (lncRNA) gene PVT1 is the most recurrent structural variant across cancer genomes, with PVT1-MYC fusions arising most frequently on ecDNA. PVT1 exon 1 is the predominant 5' partner fused to MYC or other oncogenes on the 3' end. Mechanistic studies demonstrate that PVT1 exon 1 confers enhanced RNA stability for fusion transcripts, which requires PVT1 exon 1 interaction with SRSF1 protein. Genetic rescue of MYC-addicted cancer models and isoform-specific single-cell RNA sequencing of tumors reveal that PVT1-MYC better supports MYC dependency and better activates MYC target genes in vivo . Thus, the mutagenic landscape of ecDNA contributes to genome instability and generates chimeric fusions of lncRNA and mRNA genes, selecting PVT1 5' region as a stabilizer of oncogene mRNAs.
Collapse
|
3
|
Zhu GQ, Tang Z, Chu TH, Wang B, Chen SP, Tao CY, Cai JL, Yang R, Qu WF, Wang Y, Zhao QF, Huang R, Tian MX, Fang Y, Gao J, Wu XL, Zhou J, Liu WR, Dai Z, Shi YH, Fan J. Targeting SRSF1 improves cancer immunotherapy by dually acting on CD8 +T and tumor cells. Signal Transduct Target Ther 2025; 10:25. [PMID: 39837814 PMCID: PMC11751439 DOI: 10.1038/s41392-024-02118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 12/02/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025] Open
Abstract
Serine arginine-rich splicing factor 1 (SRSF1) is a key oncogenic splicing factor in various cancers, promoting abnormal gene expression through post-translational regulation. Although the protumoral function of SRSF1 is well-established, the effects of inhibiting tumor-intrinsic SRSF1 on the tumor microenvironment and its impact on CD8+ T cell-mediated antitumor immunity remain unclear. Our findings indicate that depleting SRSF1 in CD8+ T cells improve antitumor immune function, glycolytic metabolism, and the efficacy of adoptive T cell therapy. The inactivation of SRSF1 in tumor cells reduces transcription factors, including c-Jun, c-myc, and JunB, facilitating glycolytic metabolism reprogramming, which restores CD8+ T cell function and inhibits tumor growth. The small-molecule inhibitor TN2008 targets SRSF1, boosting antitumor immune responses and improving immunotherapy effectiveness in mouse models. We therefore introduce a paradigm targeting SRSF1 that simultaneously disrupts tumor cell metabolism and enhances the antitumor immunity of CD8+ T cells.
Collapse
Affiliation(s)
- Gui-Qi Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Zheng Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Tian-Hao Chu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Biao Wang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi-Ping Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen-Yang Tao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia-Liang Cai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei-Feng Qu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian-Fu Zhao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Run Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Meng-Xin Tian
- Department of General Surgery, Gastric cancer center, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yuan Fang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Ling Wu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei-Ren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhi Dai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.
| | - Ying-Hong Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China.
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Xie Y, Yang Z, Chen W, Zhong C, Li M, Zhang L, Cheng T, Deng Q, Wang H, Ju J, Du Z, Liang H. Splicing factor SRSF1 attenuates cardiomyocytes apoptosis via regulating alternative splicing of Bcl2L12. Cell Biosci 2024; 14:142. [PMID: 39578852 PMCID: PMC11585136 DOI: 10.1186/s13578-024-01324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Aberrant alternative splicing (AS) events, triggered by the alterations in serine/arginine splicing factor 1 (SRSF1), a member of the SR protein family, have been implicated in various pathological processes. However, the function and mechanism of SRSF1 in cardiovascular diseases remain unclear. RESULTS In this study, we found that the expression of SRSF1 was significantly down-regulated in the hearts of mice with acute myocardial infarction (AMI) and H9C2 cells exposed to H2O2. Moreover, in vivo experiments utilizing adeno-associated virus serotype 9-mediated SRSF1 overexpression improved cardiac function and reduced infarct size in AMI mice. Mechanistically, we employed RNA-seq assay to identify AS aberrations associated with altered SRSF1 level in cardiomyocytes, and found that SRSF1 regulates the splice switching of Bcl2L12. Further study showed that silencing SRSF1 inhibits the inclusion of exon7 in Bcl2L12. Importantly, the truncated Bcl2L12 lacked the necessary structural elements and failed to interact with p53, thus compromising its ability to suppress apoptosis. CONCLUSIONS Our study unraveled the role of SRSF1 as a splicing factor involved in the regulation of Bcl2L12 splice switching, thereby exerting an anti-apoptotic effect through the p53 pathway, which provides new insights into potential approaches targeting cardiomyocyte apoptosis in cardiovascular diseases.
Collapse
Affiliation(s)
- Yilin Xie
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Jinan University, Zhuhai, 519000, Guangdong, China
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Zhenbo Yang
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Wenxian Chen
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Changsheng Zhong
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Mengyang Li
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Lei Zhang
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Ting Cheng
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Qin Deng
- College of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Huifang Wang
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Jin Ju
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Zhimin Du
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Jinan University, Zhuhai, 519000, Guangdong, China.
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau , 999078, China.
| | - Haihai Liang
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Jinan University, Zhuhai, 519000, Guangdong, China.
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
| |
Collapse
|
5
|
Cai X, Qian M, Zhang K, Li Y, Chang B, Chen M. Profiling and Bioinformatics Analyses of Hypoxia-Induced Differential Expression of Long Non-coding RNA in Glioblastoma Multiforme Cells. Biochem Genet 2024; 62:3052-3070. [PMID: 38066404 DOI: 10.1007/s10528-023-10597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/08/2023] [Indexed: 07/31/2024]
Abstract
Hypoxic microenvironments are intricately linked to malignant characteristics of glioblastoma multiforme (GBM). Long non-coding ribonucleic acids (lncRNAs) have been reported to be involved in the progression of GBM and closely associated with hypoxia. Nevertheless, the differential expression profiles as well as functional roles of lncRNAs in GBM cells under hypoxic conditions remain largely obscure. We explored the expression profiles of lncRNAs in hypoxic U87 cells as well as T98G cells using sequencing analysis. The effect of differentially expressed lncRNAs (DElncRNAs) was assessed through bioinformatic analysis. Furthermore, the expression of lncRNAs significantly dysregulated in both U87 and T98G cells was further validated using quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Relevant cell functional experiments were also conducted. We used predicted RNA-binding proteins (RBPs) to construct an interaction network via the interaction prediction module. U87 and T98G cells showed dysregulation of 1115 and 597 lncRNAs, respectively. Gene Ontology (GO) analysis indicated that altered lncRNA expression was associated with nucleotide-excision repair and cell metabolism in GBM cells. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the association between dysregulated lncRNAs and the Hippo signaling pathway under hypoxia. The dysregulation of six selected lncRNAs (ENST00000371192, uc003tnq.3, ENST00000262952, ENST00000609350, ENST00000610036, and NR_046262) was validated by qRT-PCR. Investigation of lncRNA-microRNA (miRNA)-mRNA networks centered on HIF-1α demonstrated cross-talk between the six validated lncRNAs and 16 related miRNAs. Functional experiments showed the significant inhibition of GBM cell proliferation, invasion, and migration by the knockdown of uc003tnq.3 in vitro. Additionally, uc003tnq.3 was used to construct a comprehensive RBP-transcription factor (TF)-miRNA interaction network. The expression of LncRNAs was dysregulated in GBM cells under hypoxic conditions. The identified six lncRNAs might exert important effect on the development of GBM under hypoxic microenvironment.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Yangpu District, Shanghai, 200092, China
| | - Mengshu Qian
- Department of Emergency and Critical Care Medicine, Kong Jiang Hospital of Yangpu District, Shanghai, 200082, China
| | - Kui Zhang
- Department of Plastic Surgery, Xuzhou Medical University Affiliated Xuzhou City Hospital, Xuzhou, 221000, Jiangsu, China
| | - Yanzhen Li
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Yangpu District, Shanghai, 200092, China
| | - Bowen Chang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lu Jiang Road, Luyang District, Hefei, 230001, Anhui, China.
| | - Ming Chen
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Yangpu District, Shanghai, 200092, China.
| |
Collapse
|
6
|
Zakutansky PM, Ku L, Zhang G, Shi L, Li Y, Yao B, Bassell GJ, Read RD, Feng Y. Isoform balance of the long noncoding RNA NEAT1 is regulated by the RNA-binding protein QKI, governs the glioma transcriptome, and impacts cell migration. J Biol Chem 2024; 300:107595. [PMID: 39032650 PMCID: PMC11367543 DOI: 10.1016/j.jbc.2024.107595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024] Open
Abstract
The long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) is involved in a variety of human cancers. Two overlapping NEAT1 isoforms, NEAT1_1 and NEAT1_2, are produced through mutually exclusive alternative 3' end formation. Previous studies extensively investigated NEAT1 dysregulation in tumors, but often failed to achieve distinct quantification of the two NEAT1 isoforms. Moreover, molecular mechanisms governing the biogenesis of NEAT1 isoforms and the functional impacts of their dysregulation in tumorigenesis remain poorly understood. In this study, we employed an isoform-specific quantification assay and found differential dysregulation of NEAT1 isoforms in patient-derived glioblastoma multiforme cells. We further showed usage of the NEAT1 proximal polyadenylation site (PAS) is a critical mechanism that controls glioma NEAT1 isoform production. CRISPR-Cas9-mediated PAS deletion reduced NEAT1_1 and reciprocally increased NEAT1_2, which enhanced nuclear paraspeckle formation in human glioma cells. Moreover, the utilization of the NEAT1 PAS is facilitated by the RNA-binding protein quaking (QKI), which binds to the proximal QKI recognition elements. Functionally, we identified transcriptomic changes and altered biological pathways caused by NEAT1 isoform imbalance in glioma cells, including the pathway for the regulation of cell migration. Finally, we demonstrated the forced increase of NEAT1_2 upon NEAT1 PAS deletion is responsible for driving glioma cell migration and promoting the expression of genes implicated in the regulation of cell migration. Together, our studies uncovered a novel mechanism that regulates NEAT1 isoforms and their functional impacts on the glioma transcriptome, which affects pathological pathways of glioma, represented by migration.
Collapse
Affiliation(s)
- Paul M Zakutansky
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell, and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Li Ku
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Guannan Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Liang Shi
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Renee D Read
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA; Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Yue Feng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
7
|
Naseer QA, Malik A, Zhang F, Chen S. Exploring the enigma: history, present, and future of long non-coding RNAs in cancer. Discov Oncol 2024; 15:214. [PMID: 38847897 PMCID: PMC11161455 DOI: 10.1007/s12672-024-01077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Long noncoding RNAs (lncRNAs), which are more than 200 nucleotides in length and do not encode proteins, play crucial roles in governing gene expression at both the transcriptional and posttranscriptional levels. These molecules demonstrate specific expression patterns in various tissues and developmental stages, suggesting their involvement in numerous developmental processes and diseases, notably cancer. Despite their widespread acknowledgment and the growing enthusiasm surrounding their potential as diagnostic and prognostic biomarkers, the precise mechanisms through which lncRNAs function remain inadequately understood. A few lncRNAs have been studied in depth, providing valuable insights into their biological activities and suggesting emerging functional themes and mechanistic models. However, the extent to which the mammalian genome is transcribed into functional noncoding transcripts is still a matter of debate. This review synthesizes our current understanding of lncRNA biogenesis, their genomic contexts, and their multifaceted roles in tumorigenesis, highlighting their potential in cancer-targeted therapy. By exploring historical perspectives alongside recent breakthroughs, we aim to illuminate the diverse roles of lncRNA and reflect on the broader implications of their study for understanding genome evolution and function, as well as for advancing clinical applications.
Collapse
Affiliation(s)
- Qais Ahmad Naseer
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Abdul Malik
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Fengyuan Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Shengxia Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
8
|
Yucel-Polat A, Campos-Melo D, Alikhah A, Strong MJ. Dynamic Localization of Paraspeckle Components under Osmotic Stress. Noncoding RNA 2024; 10:23. [PMID: 38668381 PMCID: PMC11053584 DOI: 10.3390/ncrna10020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
Paraspeckles are nuclear condensates formed by NEAT1_2 lncRNA and different RNA-binding proteins. In general, these membraneless organelles function in the regulation of gene expression and translation and in miRNA processing, and in doing this, they regulate cellular homeostasis and mediate pro-survival in the cell. Despite evidence showing the importance of paraspeckles in the stress response, the dynamics of paraspeckles and their components under conditions of osmotic stress remain unknown. We exposed HEK293T cells to sorbitol and examined NEAT1_2 expression using real-time PCR. Localization and quantification of the main paraspeckle components, NEAT1_2, PSPC1, NONO, and SFPQ, in different cellular compartments was performed using smFISH and immunofluorescence. Our findings showed a significant decrease in total NEAT1_2 expression in cells after osmotic stress. Sorbitol shifted the subcellular localization of NEAT1_2, PSPC1, NONO, and SFPQ from the nucleus to the cytoplasm and decreased the number and size of NEAT1_2 foci in the nucleus. PSPC1 formed immunoreactive cytoplasmic fibrils under conditions of osmotic stress, which slowly disassembled under recovery. Our study deepens the paraspeckle dynamics in response to stress, suggesting a novel role for NEAT1_2 in the cytoplasm in osmotic stress and physiological conditions.
Collapse
Affiliation(s)
- Aysegul Yucel-Polat
- Molecular Medicine Group, Schulich School of Medicine & Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (A.Y.-P.); (A.A.)
| | - Danae Campos-Melo
- Molecular Medicine Group, Schulich School of Medicine & Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (A.Y.-P.); (A.A.)
| | - Asieh Alikhah
- Molecular Medicine Group, Schulich School of Medicine & Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (A.Y.-P.); (A.A.)
| | - Michael J. Strong
- Molecular Medicine Group, Schulich School of Medicine & Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (A.Y.-P.); (A.A.)
- Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
9
|
Yang J, Yang S, Cai J, Chen H, Sun L, Wang J, Hou G, Gu S, Ma J, Ge J. A Transcription Factor ZNF384, Regulated by LINC00265, Activates the Expression of IFI30 to Stimulate Malignant Progression in Glioma. ACS Chem Neurosci 2024; 15:290-299. [PMID: 38141017 DOI: 10.1021/acschemneuro.3c00562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
Glioma remains one of the most challenging primary brain malignancies to treat. Long noncoding RNAs (lncRNAs) and mRNAs (mRNAs) are implicated in regulating the malignant phenotypes of cancers including glioma. This study aimed to elucidate the functions and mechanisms of lncRNA LINC00265 and mRNA IFI30 in the pathogenesis of glioma. Quantitative real-time polymerase chain reaction (RT-qPCR) analysis revealed the upregulated expression of LINC00265 and IFI30 in glioma cells compared to normal human astrocytes. Western blot (WB) quantified the associated proteins. Glioma stemness and epithelial-to-mesenchymal transition (EMT) were assessed by aldehyde dehydrogenase 1 (ALDH1) activity, sphere formation, and WB. Mechanistic and rescue assays evaluated the LINC00265/miR-let-7d-5p/IFI30/ZNF384/IGF2BP2 axis. The results demonstrated that LINC00265 and IFI30 were highly expressed in glioma cells, promoting stemness and EMT. ZNF384 was identified as a transcription factor that upregulates IFI30. Moreover, LINC00265 elevated ZNF384 by sponging miR-let-7d-5p and recruiting IGF2BP2. In conclusion, LINC00265 and IFI30 act as oncogenes in glioma by driving stemness and EMT, underscoring their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jian Yang
- Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No.160 Pujian Road, Pudong New Area, Shanghai 200127, China
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Shenghe Yang
- Yancheng Tinghu District People's Hospital, Yancheng, Jiangsu 224002, China
| | - Jinlian Cai
- 910 Hospital of the Joint Logistics Team, Quanzhou, Fujian 362000, China
| | - Hongjin Chen
- Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200240, China
| | - Lihua Sun
- Hainan Women and Children's Medical Center, Haikou, Hainan 571199, China
| | - Jiajia Wang
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Guoqiang Hou
- Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No.160 Pujian Road, Pudong New Area, Shanghai 200127, China
| | - Shuo Gu
- Hainan Women and Children's Medical Center, Haikou, Hainan 571199, China
| | - Jie Ma
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Jianwei Ge
- Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No.160 Pujian Road, Pudong New Area, Shanghai 200127, China
| |
Collapse
|
10
|
Malakar P, Shukla S, Mondal M, Kar RK, Siddiqui JA. The nexus of long noncoding RNAs, splicing factors, alternative splicing and their modulations. RNA Biol 2024; 21:1-20. [PMID: 38017665 PMCID: PMC10761143 DOI: 10.1080/15476286.2023.2286099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
The process of alternative splicing (AS) is widely deregulated in a variety of cancers. Splicing is dependent upon splicing factors. Recently, several long noncoding RNAs (lncRNAs) have been shown to regulate AS by directly/indirectly interacting with splicing factors. This review focuses on the regulation of AS by lncRNAs through their interaction with splicing factors. AS mis-regulation caused by either mutation in splicing factors or deregulated expression of splicing factors and lncRNAs has been shown to be involved in cancer development and progression, making aberrant splicing, splicing factors and lncRNA suitable targets for cancer therapy. This review also addresses some of the current approaches used to target AS, splicing factors and lncRNAs. Finally, we discuss research challenges, some of the unanswered questions in the field and provide recommendations to advance understanding of the nexus of lncRNAs, AS and splicing factors in cancer.
Collapse
Affiliation(s)
- Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Sudhanshu Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | - Meghna Mondal
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Rajesh Kumar Kar
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
11
|
Zeng M, Zhang T, Lin Y, Lin Y, Wu Z. The Common LncRNAs of Neuroinflammation-Related Diseases. Mol Pharmacol 2023; 103:113-131. [PMID: 36456192 DOI: 10.1124/molpharm.122.000530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022] Open
Abstract
Spatio-temporal specific long noncoding RNAs (lncRNAs) play important regulatory roles not only in the growth and development of the brain but also in the occurrence and development of neurologic diseases. Generally, the occurrence of neurologic diseases is accompanied by neuroinflammation. Elucidation of the regulatory mechanisms of lncRNAs on neuroinflammation is helpful for the clinical treatment of neurologic diseases. This paper focuses on recent findings on the regulatory effect of lncRNAs on neuroinflammatory diseases and selects 10 lncRNAs that have been intensively studied to analyze their mechanism action. The clinical treatment status of lncRNAs as drug targets is also reviewed. SIGNIFICANCE STATEMENT: Gene therapies such as clustered regularly interspaced short palindrome repeats technology, antisense RNA technology, and RNAi technology are gradually applied in clinical treatment, and the development of technology is based on a large number of basic research investigations. This paper focuses on the mechanisms of lncRNAs regulation of neuroinflammation, elucidates the beneficial or harmful effects of lncRNAs in neurosystemic diseases, and provides theoretical bases for lncRNAs as drug targets.
Collapse
Affiliation(s)
- Meixing Zeng
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Ting Zhang
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yongluan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Zhuomin Wu
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| |
Collapse
|
12
|
Habashy DA, Hamad MHM, Ragheb M, Khalil ZA, El Sobky SA, Hosny KA, Esmat G, El-Ekiaby N, Fawzy IO, Abdelaziz AI. Regulation of IGF2BP1 by miR-186 and its impact on downstream lncRNAs H19, FOXD2-AS1, and SNHG3 in HCC. Life Sci 2022; 310:121075. [PMID: 36243115 DOI: 10.1016/j.lfs.2022.121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
13
|
He Y, Liu Y, Wu D, Chen L, Luo Z, Shi X, Li K, Hu H, Qu G, Zhao Q, Lian C. Linc-UROD stabilizes ENO1 and PKM to strengthen glycolysis, proliferation and migration of pancreatic cancer cells. Transl Oncol 2022; 27:101583. [PMID: 36413861 PMCID: PMC9679386 DOI: 10.1016/j.tranon.2022.101583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/19/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022] Open
Abstract
Pancreatic cancer (PC) is a fatal malignancy, threatening human health in worldwide. Long non-coding RNAs (lncRNAs) have been acknowledged to be essential regulators in various biological processes of human cancers. However, the role of some novel lncRNAs in PC remain to be explored. In this study, we focused on the function and molecular mechanism of a novel lncRNA linc-UROD (also named TCONS_00002016 or XLOC_000166) in PC. The expression of linc-UROD was found to be upregulated in PC cells. The results of loss-of-function assays demonstrated that linc-UROD knockdown suppressed cell proliferation and migration, induced cell cycle G0/G1 arrest, and accelerated apoptosis of PC cells. Through mechanistic experiments, we found that IGF2BP3 stabilized linc-UROD through METTL3-mediated m6A modification. In addition, linc-UROD enhances the stability of ENO1 and PKM through interacting with them to inhibit ubiquitination. Detection on glucose consumption, pyruvate kinase activity and lactate production indicated that linc-UROD accelerated glycolysis of PC cells through PKM/ENO1-mediated pathway. To summarize, linc-UROD stabilized by IGF2BP3/METTL3 contributes to glycolysis and malignant phenotype of PC cells by stabilizing ENO1 and PKM. The findings suggest that linc-UROD may be a novel therapeutic target for PC patients.
Collapse
Affiliation(s)
- Yuan He
- Changzhi Medical College, Changzhi, Shanxi 046000, China,Department of General Surgery, Heping Hospital, Changzhi Medical College, No.110 South Yan'an Road, Changzhi, Shanxi 046000, China
| | - Yaxing Liu
- Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Dongkai Wu
- Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Luyao Chen
- Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Zhonglin Luo
- Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Xingsong Shi
- Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Keyan Li
- Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Hao Hu
- Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Gexi Qu
- Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Qiang Zhao
- Department of General Surgery, Heping Hospital, Changzhi Medical College, No.110 South Yan'an Road, Changzhi, Shanxi 046000, China,Corresponding authors.
| | - Changhong Lian
- Department of General Surgery, Heping Hospital, Changzhi Medical College, No.110 South Yan'an Road, Changzhi, Shanxi 046000, China,Corresponding authors.
| |
Collapse
|
14
|
Shaath H, Vishnubalaji R, Elango R, Kardousha A, Islam Z, Qureshi R, Alam T, Kolatkar PR, Alajez NM. Long non-coding RNA and RNA-binding protein interactions in cancer: Experimental and machine learning approaches. Semin Cancer Biol 2022; 86:325-345. [PMID: 35643221 DOI: 10.1016/j.semcancer.2022.05.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023]
Abstract
Understanding the complex and specific roles played by non-coding RNAs (ncRNAs), which comprise the bulk of the genome, is important for understanding virtually every hallmark of cancer. This large group of molecules plays pivotal roles in key regulatory mechanisms in various cellular processes. Regulatory mechanisms, mediated by long non-coding RNA (lncRNA) and RNA-binding protein (RBP) interactions, are well documented in several types of cancer. Their effects are enabled through networks affecting lncRNA and RBP stability, RNA metabolism including N6-methyladenosine (m6A) and alternative splicing, subcellular localization, and numerous other mechanisms involved in cancer. In this review, we discuss the reciprocal interplay between lncRNAs and RBPs and their involvement in epigenetic regulation via histone modifications, as well as their key role in resistance to cancer therapy. Other aspects of RBPs including their structural domains, provide a deeper knowledge on how lncRNAs and RBPs interact and exert their biological functions. In addition, current state-of-the-art knowledge, facilitated by machine and deep learning approaches, unravels such interactions in better details to further enhance our understanding of the field, and the potential to harness RNA-based therapeutics as an alternative treatment modality for cancer are discussed.
Collapse
Affiliation(s)
- Hibah Shaath
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Radhakrishnan Vishnubalaji
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Ramesh Elango
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Ahmed Kardousha
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Zeyaul Islam
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Rizwan Qureshi
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Prasanna R Kolatkar
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Nehad M Alajez
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
15
|
Zhou X, Li X, Wang R, Hua D, Sun C, Yu L, Shi C, Luo W, Jiang Z, An W, Wang Q, Yu S. Recruitment of LEF1 by Pontin chromatin modifier amplifies TGFBR2 transcription and activates TGFβ/SMAD signalling during gliomagenesis. Cell Death Dis 2022; 13:818. [PMID: 36153326 PMCID: PMC9509381 DOI: 10.1038/s41419-022-05265-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 01/23/2023]
Abstract
Synergies of transcription factors, chromatin modifiers and their target genes are vital for cell fate determination in human cancer. Although the importance of numerous epigenetic machinery for regulating gliomagenesis has been previously recognized, how chromatin modifiers collaborate with specific transcription factors remains largely elusive. Herein we report that Pontin chromatin remodelling factor acts as a coactivator for LEF1 to activate TGFβ/SMAD signalling, thereby contributing to gliomagenesis. Pontin is highly expressed in gliomas, and its overexpression paralleled the grade elevation and poor prognosis of patients. Functional studies verified its oncogenic roles in GBM cells by facilitating cell proliferation, survival and invasion both in vitro and in vivo. RNA sequencing results revealed that Pontin regulated multiple target genes involved in TGFβ/SMAD signalling. Intriguingly, we found that Pontin amplified TGFβR2 gene transcription by recruiting LEF1, thereby activating TGFβ/SMAD signalling and facilitating gliomagenesis. Furthermore, higher TGFβR2 expression conferred worse patient outcomes in glioma. To conclude, our study revealed that the Pontin-LEF1 module plays a crucial role in driving TGFβR2 gene transcription, which could be exploited to target TGFβ/SMAD signalling for anti-glioma therapy.
Collapse
Affiliation(s)
- Xuexia Zhou
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China.
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China.
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China.
| | - Xuebing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Run Wang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Dan Hua
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Cuiyun Sun
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Lin Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences of Tianjin Medical University, 300070, Tianjin, China
| | - Cuijuan Shi
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Wenjun Luo
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Zhendong Jiang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Wenzhe An
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Qian Wang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Shizhu Yu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China.
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China.
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China.
| |
Collapse
|
16
|
Molecular Interactions of the Long Noncoding RNA NEAT1 in Cancer. Cancers (Basel) 2022; 14:cancers14164009. [PMID: 36011001 PMCID: PMC9406559 DOI: 10.3390/cancers14164009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
As one of the best-studied long noncoding RNAs, nuclear paraspeckle assembly transcript 1 (NEAT1) plays a pivotal role in the progression of cancers. NEAT1, especially its isoform NEAT1-1, facilitates the growth and metastasis of various cancers, excluding acute promyelocytic leukemia. NEAT1 can be elevated via transcriptional activation or stability alteration in cancers changing the aggressive phenotype of cancer cells. NEAT1 can also be secreted from other cells and be delivered to cancer cells through exosomes. Hence, elucidating the molecular interaction of NEAT1 may shed light on the future treatment of cancer. Herein, we review the molecular function of NEAT1 in cancer progression, and explain how NEAT1 interacts with RNAs, proteins, and DNA promoter regions to upregulate tumorigenic factors.
Collapse
|
17
|
An C, Hu Z, Li Y, Zhao P, Liu R, Zhang Q, Zhu P, Li Y, Wang Y. LINC00662 enhances cell progression and stemness in breast cancer by MiR-144-3p/SOX2 axis. Cancer Cell Int 2022; 22:184. [PMID: 35551606 PMCID: PMC9097442 DOI: 10.1186/s12935-022-02576-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 04/06/2022] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is one of the most prevalent malignancies among women globally. Emerging evidence indicates that long non-coding RNAs (lncRNAs) are associated with BC carcinogenesis. In the current study, we explored the mechanism by which LINC00662 regulates BC. METHODS Quantitative real-time PCR (qRT-PCR) assessed RNA expressions while western blot for protein levels. Kaplan Meier analysis evaluated overall survival (OS). Cytoplasmic/nuclear fractionation, RNA binding protein immunoprecipitation (RIP) and luciferase reporter assays probed into the underlying molecular mechanism of LINC00662 in BC. Xenograft model was established to explore the influence of LINC00662 on BC progression in vivo. R square graphs were utilized to represent RNA relationships. RESULTS LINC00662 is overtly overexpressed in BC tissues and cell lines. LINC00662 knockdown hampers cell proliferation, migration, invasion and stemness. LINC00662 expression is negatively correlated with OS of BC patients. LINC00662 up-regulates SOX2 expression by competitively binding to miR-144-3p, thereby modulating BC cell progression. Xenograft experiments verified that LINC00662 promotes BC tumor growth and cell stemness in vivo. CONCLUSION LINC00662 enhances cell proliferation, migration, invasion and stemness in BC by targeting miR-144-3p/SOX2 axis. The findings in the present study suggested that LINC00662 could be a potential therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Congjing An
- Department of Breast and Thyroid Surgery, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Zhigang Hu
- Department of Breast and Thyroid Surgery, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Yuehong Li
- Department of Pathology, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Pengxin Zhao
- Department of Breast and Thyroid Surgery, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Runtian Liu
- Department of Breast and Thyroid Surgery, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Qing Zhang
- Department of Pathology, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Peiling Zhu
- Department of Breast and Thyroid Surgery, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Yanting Li
- Department of Breast and Thyroid Surgery, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Ying Wang
- Department of Breast and Thyroid Surgery, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
18
|
Xu S, Xie J, Zhou Y, Liu H, Wang Y, Li Z. Integrated Analysis of RNA Binding Protein-Related lncRNA Prognostic Signature for Breast Cancer Patients. Genes (Basel) 2022; 13:genes13020345. [PMID: 35205391 PMCID: PMC8872055 DOI: 10.3390/genes13020345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been well known for their multiple functions in the tumorigenesis, development, and prognosis of breast cancer (BC). Mechanistically, their production, function, or stability can be regulated by RNA binding proteins (RBPs), which were also involved in the carcinogenesis and progression of BC. However, the roles and clinical implications of RBP-related lncRNAs in BC remain largely unknown. Therefore, we herein aim to construct a prognostic signature with RBP-relevant lncRNAs for the prognostic evaluation of BC patients. Firstly, based on the RNA sequencing data of female BC patients from The Cancer Genome Atlas (TCGA) database, we screened out 377 differentially expressed lncRNAs related to RBPs. The univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses were then performed to establish a prognostic signature composed of 12-RBP-related lncRNAs. Furthermore, we divided the BC patients into high- and low-risk groups by the prognostic signature and found the overall survival (OS) of patients in the high-risk group was significantly shorter than that of the low-risk group. Moreover, the 12-lncRNA signature exhibited independence in evaluating the prognosis of BC patients. Additionally, a functional enrichment analysis revealed that the prognostic signature was associated with some cancer-relevant pathways, including cell cycle and immunity. In summary, our 12-lncRNA signature may provide a theoretical reference for the prognostic evaluation or clinical treatment of BC patients.
Collapse
Affiliation(s)
- Shaohua Xu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha 410082, China; (S.X.); (J.X.); (Y.Z.); (H.L.)
| | - Jiahui Xie
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha 410082, China; (S.X.); (J.X.); (Y.Z.); (H.L.)
| | - Yanjie Zhou
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha 410082, China; (S.X.); (J.X.); (Y.Z.); (H.L.)
| | - Hui Liu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha 410082, China; (S.X.); (J.X.); (Y.Z.); (H.L.)
| | - Yirong Wang
- Bioinformatics Center, College of Biology, Hunan University, Changsha 410082, China
- Correspondence: (Y.W.); (Z.L.)
| | - Zhaoyong Li
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha 410082, China; (S.X.); (J.X.); (Y.Z.); (H.L.)
- Research Institute of Hunan University in Chongqing, Chongqing 401120, China
- Correspondence: (Y.W.); (Z.L.)
| |
Collapse
|
19
|
Ding Y, Yin R, Zhang S, Xiao Q, Zhao H, Pan X, Zhu X. The Combined Regulation of Long Non-coding RNA and RNA-Binding Proteins in Atherosclerosis. Front Cardiovasc Med 2021; 8:731958. [PMID: 34796209 PMCID: PMC8592911 DOI: 10.3389/fcvm.2021.731958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/07/2021] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a complex disease closely related to the function of endothelial cells (ECs), monocytes/macrophages, and vascular smooth muscle cells (VSMCs). Despite a good understanding of the pathogenesis of atherosclerosis, the underlying molecular mechanisms are still only poorly understood. Therefore, atherosclerosis continues to be an important clinical issue worthy of further research. Recent evidence has shown that long non-coding RNAs (lncRNAs) and RNA-binding proteins (RBPs) can serve as important regulators of cellular function in atherosclerosis. Besides, several studies have shown that lncRNAs are partly dependent on the specific interaction with RBPs to exert their function. This review summarizes the important contributions of lncRNAs and RBPs in atherosclerosis and provides novel and comprehensible interaction models of lncRNAs and RBPs.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruihua Yin
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuai Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongqin Zhao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Huang H, Li L, Wen K. Interactions between long non‑coding RNAs and RNA‑binding proteins in cancer (Review). Oncol Rep 2021; 46:256. [PMID: 34676873 PMCID: PMC8548813 DOI: 10.3892/or.2021.8207] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/12/2021] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) fulfill important roles in the majority of cellular processes. Previous studies have demonstrated that lncRNAs are involved in the pathogenesis of various diseases, including cancer. However, to date, the functions of only a small number of the known lncRNAs have been well-documented. lncRNAs comprise a class of multifunctional non-coding transcripts that are able to interact with different types of biomolecules. Interactions between lncRNAs and RNA-binding proteins (RBPs) provide an important mechanism through which lncRNAs exert their regulatory functions, mainly through findings on ‘generalized RBPs’. Regulatory effects on lncRNAs mediated by RBPs have also been explored. Taking account of the research that has been completed to date, the continued and in-depth study of the bidirectional interactions between lncRNAs and RBPs will prove to be of major importance for understanding the pathogenesis of cancer and for developing effective therapies. The present review aims to explore the interactions between lncRNAs and RBPs that have been investigated in cancer, taking into consideration several different aspects, including the regulation of expression, subcellular localization and the mediation of diverse functions.
Collapse
Affiliation(s)
- Handong Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Lu Li
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Kunming Wen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
21
|
Lu Y, Yan Y, Li B, Liu M, Liang Y, Ye Y, Cheng W, Li J, Jiao J, Chang S. A Novel Prognostic Model for Oral Squamous Cell Carcinoma: The Functions and Prognostic Values of RNA-Binding Proteins. Front Oncol 2021; 11:592614. [PMID: 34395233 PMCID: PMC8362834 DOI: 10.3389/fonc.2021.592614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The biological roles and clinical significance of RNA-binding proteins (RBPs) in oral squamous cell carcinoma (OSCC) are not fully understood. We investigated the prognostic value of RBPs in OSCC using several bioinformatic strategies. MATERIALS AND METHODS OSCC data were obtained from a public online database, the Limma R package was used to identify differentially expressed RBPs, and functional enrichment analysis was performed to elucidate the biological functions of the above RBPs in OSCC. We performed protein-protein interaction (PPI) network and Cox regression analyses to extract prognosis-related hub RBPs. Next, we established and validated a prognostic model based on the hub RBPs using Cox regression and risk score analyses. RESULTS We found that the differentially expressed RBPs were closely related to the defense response to viruses and multiple RNA processes. We identified 10 prognosis-related hub RBPs (ZC3H12D, OAS2, INTS10, ACO1, PCBP4, RNASE3, PTGES3L-AARSD1, RNASE13, DDX4, and PCF11) and effectively predicted the overall survival of OSCC patients. The area under the receiver operating characteristic (ROC) curve (AUC) of the risk score model was 0.781, suggesting that our model exhibited excellent prognostic performance. Finally, we built a nomogram integrating the 10 RBPs. The internal validation cohort results showed a reliable predictive capability of the nomogram for OSCC. CONCLUSION We established a novel 10-RBP-based model for OSCC that could enable precise individual treatment and follow-up management strategies in the future.
Collapse
Affiliation(s)
- Yingjuan Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yongcong Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Hepatobiliary Surgery, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bowen Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mo Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yancan Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yushan Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weiqi Cheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinsong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiuyang Jiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shaohai Chang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
22
|
Pan W, Wu A, Yu H, Yu Q, Zheng B, Yang W, Tian D, Gao Y, Li P. NEAT1 Negatively Regulates Cell Proliferation and Migration of Neuroblastoma Cells by miR-183-5p/FOXP1 Via the ERK/AKT Pathway. Cell Transplant 2021; 29:963689720943608. [PMID: 32693640 PMCID: PMC7563027 DOI: 10.1177/0963689720943608] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neuroblastoma, a malignant tumor of the sympathetic nervous system, is an
aggressive extracranial tumor in childhood. Long noncoding RNAs (lncRNAs) have
been discovered to play a key role in the eukaryotic regulatory gene network and
be involved in a wide variety of biological processes. We observed that the
expression of lncRNA nuclear-enriched abundant transcript-1 (NEAT1) was
significantly decreased in human neuroblastoma tissues and cell lines, compared
with the normal. We observed cell proliferation, migration, and invasion with
Cell Counting Kit-8 assay, colony formation assay, and Transwell assay to
investigate the effects of NEAT1, miR-183-5p, or FOXP1 on neuroblastoma cells.
And we also used StarBase and luciferase reporter gene assay to predict and
confirm the interaction of NEAT1, miR-183-5p, and FOXP1 in neuroblastoma cells.
First, overexpression of NEAT1 suppressed cell proliferation and played a key
role in cell migration and invasion. In addition, NEAT1 was demonstrated to
directly interact with miR-183-5p and exerted its antioncogenic role in
neuroblastoma by negatively regulating miR-183-5p expression. miR-183-5p
suppressed the expression of FOXP1 and regulated cell proliferation and
migration by directly targeting FOXP1 mRNA 3′-untranslated region. Moreover,
FOXP1 antagonized the effect of miR-183-5p on the phosphorylation of
extracellular-regulated kinase/protein kinase B (ERK/AKT), while FOXP1 siRNA
increased the reduced phosphorylation of ERK/AKT caused by miR-183-5p inhibitor
in neuroblastoma cells. Taken together, these data showed that NEAT1 negatively
regulated cell proliferation and migration of neuroblastoma by the
miR-183-5p/FOXP1 axis via suppression of the ERK/AKT pathway. Our findings may
provide a new target for the study of pathogenesis and treatment of
neuroblastoma.
Collapse
Affiliation(s)
- Weikang Pan
- Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Both the authors contributed equally to this article
| | - Ali Wu
- Department of Endoscopy, Shaanxi Nuclear Industry, Xianyang, China.,Both the authors contributed equally to this article
| | - Hui Yu
- Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiang Yu
- Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Baijun Zheng
- Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Weili Yang
- Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Donghao Tian
- Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Gao
- Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peng Li
- Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
23
|
Kovalenko TF, Larionova TD, Antipova NV, Shakhparonov MI, Pavlyukov MS. The Role of Non-coding RNAs in the Pathogenesis of Glial Tumors. Acta Naturae 2021; 13:38-51. [PMID: 34707896 PMCID: PMC8526181 DOI: 10.32607/actanaturae.11270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/15/2021] [Indexed: 11/25/2022] Open
Abstract
Among the many malignant neoplasms, glioblastoma (GBM) leads to one of the worst prognosis for patients and has an almost 100% recurrence rate. The only chemotherapeutic drug that is widely used for treating glioblastoma is temozolomide, a DNA alkylating agent. Its impact, however, is only minor; it increases patients' survival just by 12 to 14 months. Multiple highly selective compounds that affect specific proteins and have performed well in other types of cancer have proved ineffective against glioblastoma. Hence, there is an urgent need for novel methods that could help achieve the long-awaited progress in glioblastoma treatment. One of the potentially promising approaches is the targeting of non-coding RNAs (ncRNAs). These molecules are characterized by extremely high multifunctionality and often act as integrators by coordinating multiple key signaling pathways within the cell. Thus, the impact on ncRNAs has the potential to lead to a broader and stronger impact on cells, as opposed to the more focused action of inhibitors targeting specific proteins. In this review, we summarize the functions of long noncoding RNAs, circular RNAs, as well as microRNAs, PIWI-interacting RNAs, small nuclear and small nucleolar RNAs. We provide a classification of these transcripts and describe their role in various signaling pathways and physiological processes. We also provide examples of oncogenic and tumor suppressor ncRNAs belonging to each of these classes in the context of their involvement in the pathogenesis of gliomas and glioblastomas. In conclusion, we considered the potential use of ncRNAs as diagnostic markers and therapeutic targets for the treatment of glioblastoma.
Collapse
Affiliation(s)
- T. F. Kovalenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| | - T. D. Larionova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| | - N. V. Antipova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| | - M. I. Shakhparonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| | - M. S. Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
24
|
Dvir S, Argoetti A, Lesnik C, Roytblat M, Shriki K, Amit M, Hashimshony T, Mandel-Gutfreund Y. Uncovering the RNA-binding protein landscape in the pluripotency network of human embryonic stem cells. Cell Rep 2021; 35:109198. [PMID: 34077720 DOI: 10.1016/j.celrep.2021.109198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 03/11/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Embryonic stem cell (ESC) self-renewal and cell fate decisions are driven by a broad array of molecular signals. While transcriptional regulators have been extensively studied in human ESCs (hESCs), the extent to which RNA-binding proteins (RBPs) contribute to human pluripotency remains unclear. Here, we carry out a proteome-wide screen and identify 810 proteins that bind RNA in hESCs. We reveal that RBPs are preferentially expressed in hESCs and dynamically regulated during early stem cell differentiation. Notably, many RBPs are affected by knockdown of OCT4, a master regulator of pluripotency, several dozen of which are directly targeted by this factor. Using cross-linking and immunoprecipitation (CLIP-seq), we find that the pluripotency-associated STAT3 and OCT4 transcription factors interact with RNA in hESCs and confirm the binding of STAT3 to the conserved NORAD long-noncoding RNA. Our findings indicate that RBPs have a more widespread role in human pluripotency than previously appreciated.
Collapse
Affiliation(s)
- Shlomi Dvir
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Amir Argoetti
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Chen Lesnik
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | | | | | - Michal Amit
- Accellta LTD, Haifa 320003, Israel; Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, Karmiel 2161002, Israel
| | - Tamar Hashimshony
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Yael Mandel-Gutfreund
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel; Computer Science Department, Technion - Israel Institute of Technology, Haifa 320003, Israel.
| |
Collapse
|
25
|
Du JX, Luo YH, Zhang SJ, Wang B, Chen C, Zhu GQ, Zhu P, Cai CZ, Wan JL, Cai JL, Chen SP, Dai Z, Zhu W. Splicing factor SRSF1 promotes breast cancer progression via oncogenic splice switching of PTPMT1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:171. [PMID: 33992102 PMCID: PMC8122567 DOI: 10.1186/s13046-021-01978-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/09/2021] [Indexed: 02/08/2023]
Abstract
Background Intensive evidence has highlighted the effect of aberrant alternative splicing (AS) events on cancer progression when triggered by dysregulation of the SR protein family. Nonetheless, the underlying mechanism in breast cancer (BRCA) remains elusive. Here we sought to explore the molecular function of SRSF1 and identify the key AS events regulated by SRSF1 in BRCA. Methods We conducted a comprehensive analysis of the expression and clinical correlation of SRSF1 in BRCA based on the TCGA dataset, Metabric database and clinical tissue samples. Functional analysis of SRSF1 in BRCA was conducted in vitro and in vivo. SRSF1-mediated AS events and their binding motifs were identified by RNA-seq, RNA immunoprecipitation-PCR (RIP-PCR) and in vivo crosslinking followed by immunoprecipitation (CLIP), which was further validated by the minigene reporter assay. PTPMT1 exon 3 (E3) AS was identified to partially mediate the oncogenic role of SRSF1 by the P-AKT/C-MYC axis. Finally, the expression and clinical significance of these AS events were validated in clinical samples and using the TCGA database. Results SRSF1 expression was consistently upregulated in BRCA samples, positively associated with tumor grade and the Ki-67 index, and correlated with poor prognosis in a hormone receptor-positive (HR+) cohort, which facilitated proliferation, cell migration and inhibited apoptosis in vitro and in vivo. We identified SRSF1-mediated AS events and discovered the SRSF1 binding motif in the regulation of splice switching of PTPMT1. Furthermore, PTPMT1 splice switching was regulated by SRSF1 by binding directly to its motif in E3 which partially mediated the oncogenic role of SRSF1 by the AKT/C-MYC axis. Additionally, PTPMT1 splice switching was validated in tissue samples of BRCA patients and using the TCGA database. The high-risk group, identified by AS of PTPMT1 and expression of SRSF1, possessed poorer prognosis in the stage I/II TCGA BRCA cohort. Conclusions SRSF1 exerts oncogenic roles in BRCA partially by regulating the AS of PTPMT1, which could be a therapeutic target candidate in BRCA and a prognostic factor in HR+ BRCA patient. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01978-8.
Collapse
Affiliation(s)
- Jun-Xian Du
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yi-Hong Luo
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Si-Jia Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Biao Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Cong Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Gui-Qi Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Ping Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130 Dongan Road, Shanghai, 200032, China
| | - Cheng-Zhe Cai
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jing-Lei Wan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Jia-Liang Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Shi-Ping Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China.
| | - Wei Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
26
|
Zhao J, Jiang Y, Zhang H, Zhou J, Chen L, Li H, Xu J, Zhang G, Jing Z. The SRSF1/circATP5B/miR-185-5p/HOXB5 feedback loop regulates the proliferation of glioma stem cells via the IL6-mediated JAK2/STAT3 signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:134. [PMID: 33858489 PMCID: PMC8051130 DOI: 10.1186/s13046-021-01931-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/28/2021] [Indexed: 12/17/2022]
Abstract
Background Glioma is the most common and malignant tumor of central nervous system. The tumor initiation, self-renewal, and multi-lineage differentiation abilities of glioma stem cells (GSCs) are responsible for glioma proliferation and recurrence. Although circular RNAs (circRNAs) play vital roles in the progression of glioma, the detailed mechanisms remain unknown. Methods qRT-PCR, western blotting, immunohistochemistry, and bioinformatic analysis were performed to detect the expression of circATP5B, miR-185-5p, HOXB5, and SRSF1. Patient-derived GSCs were established, and MTS, EDU, neurosphere formation, and limiting dilution assays were used to detect the proliferation of GSCs. RNA-binding protein immunoprecipitation, RNA pull-down, luciferase reporter assays, and chromatin immunoprecipitation assays were used to detect these molecules’ regulation mechanisms. Results We found circATP5B expression was significantly upregulated in GSCs and promoted the proliferation of GSCs. Mechanistically, circATP5B acted as miR-185-5p sponge to upregulate HOXB5 expression. HOXB5 was overexpressed in glioma and transcriptionally regulated IL6 expression and promoted the proliferation of GSCs via JAK2/STAT3 signaling. Moreover, RNA binding protein SRSF1 could bind to and promote circATP5B expression and regulate the proliferation of GSCs, while HOXB5 also transcriptionally regulated SRSF1 expression. Conclusions Our study identified the SRSF1/circATP5B/miR-185-5p/HOXB5 feedback loop in GSCs. This provides an effective biomarker for glioma diagnosis and prognostic evaluation. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01931-9.
Collapse
Affiliation(s)
- Junshuang Zhao
- Department of Neurosurgery, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Yang Jiang
- Department of Neurosurgery, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China.,Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Haiying Zhang
- International Education College, Liaoning University of Traditional Chinese Medicine, NO. 79 Chongshan East Road, Shenyang, 110042, China
| | - Jinpeng Zhou
- Department of Neurosurgery, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Lian Chen
- Department of Neurosurgery, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Hao Li
- Department of Neurosurgery, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Jinkun Xu
- Department of Neurosurgery, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Guoqing Zhang
- Department of Neurosurgery, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Zhitao Jing
- Department of Neurosurgery, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China.
| |
Collapse
|
27
|
Multilevel Regulation of Protein Kinase CδI Alternative Splicing by Lithium Chloride. Mol Cell Biol 2021; 41:e0033820. [PMID: 33288642 PMCID: PMC8088272 DOI: 10.1128/mcb.00338-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lithium chloride (LiCl) is commonly used in treatment of mood disorders; however, its usage leads to weight gain, which promotes metabolic disorders. Protein kinase C delta (PKCδ), a serine/threonine kinase, is alternatively spliced to PKCδI and PKCδII in 3T3-L1 cells. We previously demonstrated that PKCδI is the predominantly expressed isoform in 3T3-L1 preadipocytes. Here, we demonstrate that LiCl treatment decreases PKCδI levels, increases formation of lipid droplets, and increases oxidative stress. Hence, we investigated the molecular mechanisms underlying the regulation of PKCδI alternative splicing by LiCl. We previously demonstrated that the splice factor SFRS10 is essential for PKCδI splicing. Our results demonstrate that glycogen synthase kinase 3 beta (GSK3β) phosphorylates SFRS10, and SFRS10 is in a complex with long noncoding RNA NEAT1 to promote PKCδI splicing. Using PKCδ splicing minigene and RNA immunoprecipitation assays, our results demonstrate that upon LiCl treatment, NEAT1 levels are reduced, GSK3β activity is inhibited, and SFRS10 phosphorylation is decreased, which leads to decreased expression of PKCδI. Integration of the GSK3β signaling pathway with the ribonucleoprotein complex of long noncoding RNA (lncRNA) NEAT1 and SFRS10 enables fine-tuning of PKCδI expression during adipogenesis. Knowledge of the molecular pathways impacted by LiCl provides an understanding of the ascent of obesity as a comorbidity in disease management.
Collapse
|
28
|
Sheng C, Chen Z, Lei J, Zhu J, Song S. Development and Multi-Data Set Verification of an RNA Binding Protein Signature for Prognosis Prediction in Glioma. Front Med (Lausanne) 2021; 8:637803. [PMID: 33634155 PMCID: PMC7900154 DOI: 10.3389/fmed.2021.637803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Objective: Increasing evidence emphasizes the clinical implications of RNA binding proteins (RBPs) in cancers. This study aimed to develop a RBP signature for predicting prognosis in glioma. Methods: Two glioma datasets as training (n = 693) and validation (n = 325) sets were retrieved from the CGGA database. In the training set, univariate Cox regression analysis was conducted to screen prognosis-related RBPs based on differentially expressed RBPs between WHO grade II and IV. A ten-RBP signature was then established. The predictive efficacy was evaluated by ROCs. The applicability was verified in the validation set. The pathways involving the risk scores were analyzed by ssGSEA. scRNA-seq was utilized for evaluating their expression in different glioma cell types. Moreover, their expression was externally validated between glioma and control samples. Results: Based on 39 prognosis-related RBPs, a ten RBP signature was constructed. High risk score distinctly indicated a poorer prognosis than low risk score. AUCs were separately 0.838 and 0.822 in the training and validation sets, suggesting its well performance for prognosis prediction. Following adjustment of other clinicopathological characteristics, the signature was an independent risk factor. Various cancer-related pathways were significantly activated in samples with high risk score. The scRNA-seq identified that risk RBPs were mainly expressed in glioma malignant cells. Their high expression was also found in glioma than control samples. Conclusion: This study developed a novel RBP signature for robustly predicting prognosis of glioma following multi-data set verification. These RBPs may affect the progression of glioma.
Collapse
Affiliation(s)
- Chunpeng Sheng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhihua Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianwei Lei
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuxin Song
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
29
|
The GAUGAA Motif Is Responsible for the Binding between circSMARCA5 and SRSF1 and Related Downstream Effects on Glioblastoma Multiforme Cell Migration and Angiogenic Potential. Int J Mol Sci 2021; 22:ijms22041678. [PMID: 33562358 PMCID: PMC7915938 DOI: 10.3390/ijms22041678] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs) are a large class of RNAs with regulatory functions within cells. We recently showed that circSMARCA5 is a tumor suppressor in glioblastoma multiforme (GBM) and acts as a decoy for Serine and Arginine Rich Splicing Factor 1 (SRSF1) through six predicted binding sites (BSs). Here we characterized RNA motifs functionally involved in the interaction between circSMARCA5 and SRSF1. Three different circSMARCA5 molecules (Mut1, Mut2, Mut3), each mutated in two predicted SRSF1 BSs at once, were obtained through PCR-based replacement of wild-type (WT) BS sequences and cloned in three independent pcDNA3 vectors. Mut1 significantly decreased its capability to interact with SRSF1 as compared to WT, based on the RNA immunoprecipitation assay. In silico analysis through the “Find Individual Motif Occurrences” (FIMO) algorithm showed GAUGAA as an experimentally validated SRSF1 binding motif significantly overrepresented within both predicted SRSF1 BSs mutated in Mut1 (q-value = 0.0011). U87MG and CAS-1, transfected with Mut1, significantly increased their migration with respect to controls transfected with WT, as revealed by the cell exclusion zone assay. Immortalized human brain microvascular endothelial cells (IM-HBMEC) exposed to conditioned medium (CM) harvested from U87MG and CAS-1 transfected with Mut1 significantly sprouted more than those treated with CM harvested from U87MG and CAS-1 transfected with WT, as shown by the tube formation assay. qRT-PCR showed that the intracellular pro- to anti-angiogenic Vascular Endothelial Growth Factor A (VEGFA) mRNA isoform ratio and the amount of total VEGFA mRNA secreted in CM significantly increased in Mut1-transfected CAS-1 as compared to controls transfected with WT. Our data suggest that GAUGAA is the RNA motif responsible for the interaction between circSMARCA5 and SRSF1 as well as for the circSMARCA5-mediated control of GBM cell migration and angiogenic potential.
Collapse
|
30
|
Chen J, Luo X, Liu M, Peng L, Zhao Z, He C, He Y. Silencing long non-coding RNA NEAT1 attenuates rheumatoid arthritis via the MAPK/ERK signalling pathway by downregulating microRNA-129 and microRNA-204. RNA Biol 2021; 18:657-668. [PMID: 33258403 DOI: 10.1080/15476286.2020.1857941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The participation of long noncoding RNAs (lncRNAs) and microRNAs (miRs) in the progression of rheumatoid arthritis (RA) is a key area of investigation. The current study aimed to investigate the action of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in fibroblast-like synoviocyte (FLS) proliferation and synovitis in RA. A rat model of RA was established. LncRNA NEAT1 expression in the synovial tissues of patients with RA and FLSs from the RA rat model was determined using RT-qPCR. Next, dual luciferase reporter gene assay was applied to investigate the relationship between miR-129/204 and mitogen-activated protein kinase (MAPK)/extracellular regulated protein kinase (ERK). A putative binding relationship between miR-204 and lncRNA NEAT1 was evaluated by RIP assay, and miR-129 promoter methylation was determined using MSP. After the expression of lncRNA NEAT1, miR-129 or miR-204 was altered in FLSs, the extent of ERK1/2 phosphorylation was assessed. In addition, FLS synovitis and proliferation were determined by ELISA and EdU assay, respectively. In RA rats, lncRNA NEAT1 was silenced and miR-129/miR-204 was overexpressed to explore their roles in vivo. LncRNA NEAT1 was upregulated, while miR-129 and miR-204 were downregulated in RA synovial tissues and FLSs. MAPK1 was target gene of both miR-129 and miR-204. LncRNA NEAT1 bound to miR-204 and promoted miR-129 promoter methylation. Silencing lncRNA NEAT1 or overexpressing miR-129/miR-204 enhanced miR-129/miR-204 expression, but reduced the extent of ERK1/2 phosphorylation, proliferation of FLSs, and synovitis in RA. Collectively, silencing lncRNA NEAT1 promoted miR-129 and miR-204 to inhibit the MAPK/ERK signalling pathway, reducing FLS synovitis in RA.Abbreviations: ACR: American College of Rheumatology; ELISA: Enzyme-linked immunosorbent assay; ERK: extracellular signal-regulated kinase; FLS: fibroblast-like synoviocyte; GADPH: glyceraldehyde-3-phosphate dehydrogenase; HRP: horseradish peroxidase; IFA: Incomplete Freund's Adjuvant; lncRNAs: long noncoding RNAs; MSP: Methylation-specific PCR; NC: negative control; NEAT1: nuclear paraspeckle assembly transcript 1; OD: optical density; RA: rheumatoid arthritis; RIPA: Radio Immunoprecipitation Assay; RLU: relative light units; RT-qPCR: reverse transcription quantitative polymerase chain reaction; UTR: untranslated region.
Collapse
Affiliation(s)
- Jie Chen
- Department of Rheumatology and Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Xiao Luo
- Department of Rheumatology and Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Mao Liu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Lihui Peng
- Department of Rheumatology and Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Zixia Zhao
- Department of Rheumatology and Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Chengsong He
- Department of Rheumatology and Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Yue He
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| |
Collapse
|
31
|
Pang B, Quan F, Ping Y, Hu J, Lan Y, Pang L. Dissecting the Invasion-Associated Long Non-coding RNAs Using Single-Cell RNA-Seq Data of Glioblastoma. Front Genet 2021; 11:633455. [PMID: 33505440 PMCID: PMC7831882 DOI: 10.3389/fgene.2020.633455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma (GBM) is characterized by rapid and lethal infiltration of brain tissue, which is the primary cause of treatment failure and deaths for GBM. Therefore, understanding the molecular mechanisms of tumor cell invasion is crucial for the treatment of GBM. In this study, we dissected the single-cell RNA-seq data of 3345 cells from four patients and identified dysregulated genes including long non-coding RNAs (lncRNAs), which were involved in the development and progression of GBM. Based on co-expression network analysis, we identified a module (M1) that significantly overlapped with the largest number of dysregulated genes and was confirmed to be associated with GBM invasion by integrating EMT signature, experiment-validated invasive marker and pseudotime trajectory analysis. Further, we denoted invasion-associated lncRNAs which showed significant correlations with M1 and revealed their gradually increased expression levels along the tumor cell invasion trajectory, such as VIM-AS1, WWTR1-AS1, and NEAT1. We also observed the contribution of higher expression of these lncRNAs to poorer survival of GBM patients. These results were mostly recaptured in another validation data of 7930 single cells from 28 GBM patients. Our findings identified lncRNAs that played critical roles in regulating or controlling cell invasion and migration of GBM and provided new insights into the molecular mechanisms underlying GBM invasion as well as potential targets for the treatment of GBM.
Collapse
Affiliation(s)
- Bo Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Fei Quan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yanyan Ping
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jing Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yujia Lan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lin Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
32
|
Ak Aksoy S, Mutlu M, Balcin RN, Taskapilioglu MO, Tekin C, Kaya S, Civan MN, Kocaeli H, Bekar A, Eser Ocak P, Cecener G, Egeli U, Tolunay S, Tunca B. NEAT1 Is a Novel Oncogenic LncRNA and Correlated with miR-143 in Pediatric Oligodendrogliomas. Pediatr Neurosurg 2021; 56:133-139. [PMID: 33744906 DOI: 10.1159/000514330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/11/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The noncoding RNAs (ncRNAs) play a role in biological processes of various cancers including gliomas. The majority of these transcripts are uniquely expressed in differentiated tissues or specific glioma types. Pediatric oligodendroglioma (POG) is a rare subtype of diffuse glioma and accounts for <1% of pediatric brain tumors. Because histologically POG resembles adult OG, the same treatment is applied as adults. However, the significance in predicting outcomes in POG patients is unclear. In this study, we aimed to investigate the prognostic significance of expression -profiles of microRNA (miRNA) and long noncoding RNA -(LncRNA) in POGs. METHODS We investigated the levels of 13 known miRNAs and 6 LncRNAs in tumor samples from 9 patients with primary POG by using RT-PCR and analyzed their association with outcomes. RESULTS The expression levels of miR-21, miR-106a, miR-10b, and LncRNA NEAT1 were higher, and the expression level of miR-143 was lower in POG tissues compared with normal brain tissues (p = 0.006, p = 0.032, p = 0.034, p = 0.002, and p = 0.001, respectively). High levels of NEAT1 and low expression of miR-143 were associated with decreased probability of short disease-free survival (p = 0.018 and p = 0.022, respectively). DISCUSSION NEAT1 and miR-143 levels could serve as reciprocal prognostic predictors of disease progression in patients with POG. New treatment models to regulate the expression levels of NEAT1 and miR-143 will bring a new approach to the therapy of POG.
Collapse
Affiliation(s)
- Secil Ak Aksoy
- Inegol Vocation School, Uludag University, Bursa, Turkey
| | - Melis Mutlu
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Rabia Nur Balcin
- Department of Neurosurgery, Faculty of Medicine, Uludag University, Bursa, Turkey
| | | | - Cagla Tekin
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Seckin Kaya
- Department of Neurosurgery, Faculty of Medicine, Uludag University, Bursa, Turkey
| | | | - Hasan Kocaeli
- Department of Neurosurgery, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Ahmet Bekar
- Department of Neurosurgery, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Pinar Eser Ocak
- Department of Neurosurgery, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Gulsah Cecener
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Unal Egeli
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Sahsine Tolunay
- Department of Pathology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey,
| |
Collapse
|
33
|
Du J, Han R, Li Y, Liu X, Liu S, Cai Z, Xu Z, Li Y, Yuan X, Guo X, Lu B, Sun K. LncRNA HCG11/miR-26b-5p/QKI5 feedback loop reversed high glucose-induced proliferation and angiogenesis inhibition of HUVECs. J Cell Mol Med 2020; 24:14231-14246. [PMID: 33128346 PMCID: PMC7753996 DOI: 10.1111/jcmm.16040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Acute coronary syndrome caused by the rupture of atherosclerotic plaques is one of the primary causes of cerebrovascular and cardiovascular events. Neovascularization within the plaque is closely associated with its stability. Long non-coding RNA (lncRNA) serves a crucial role in regulating vascular endothelial cells (VECs) proliferation and angiogenesis. In this study, we identified lncRNA HCG11, which is highly expressed in patients with vulnerable plaque compared with stable plaque. Then, functional experiments showed that HCG11 reversed high glucose-induced vascular endothelial injury through increased cell proliferation and tube formation. Meanwhile, vascular-related RNA-binding protein QKI5 was greatly activated. Luciferase reporter assays and RNA-binding protein immunoprecipitation (RIP) assays verified interaction between them. Interestingly, HCG11 can also positively regulated by QKI5. Bioinformatics analysis and luciferase reporter assays showed HCG11 can worked as a competing endogenous RNA by sponging miR-26b-5p, and QKI5 was speculated as the target of miR-26b-5p. Taken together, our findings revered that the feedback loop of lncRNA HCG11/miR-26b-5p/QKI-5 played a vital role in the physiological function of HUVECs, and this also provide a potential target for therapeutic strategies of As.
Collapse
Affiliation(s)
- Jiao Du
- Department of RadiologyState Key Laboratory of Cardiovascular DiseaseFu Wai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of RadiologyFuwai Hospital Chinese Academy of Medical SciencesShenzhenChina
- Department of RadiologyBayannur HospitalBayannurChina
| | - Ruijuan Han
- Department of RadiologyState Key Laboratory of Cardiovascular DiseaseFu Wai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of RadiologyFuwai Hospital Chinese Academy of Medical SciencesShenzhenChina
| | - Yihua Li
- Department of RadiologyFuwai Hospital Chinese Academy of Medical SciencesShenzhenChina
| | - Xiaolin Liu
- Department of RadiologyBaotou Central HospitalBaotouChina
| | - Shurong Liu
- Department of RadiologyBaotou Central HospitalBaotouChina
| | - Zhenyu Cai
- Department of RadiologyFuwai Hospital Chinese Academy of Medical SciencesShenzhenChina
| | - Zhaolong Xu
- Institute of cardiovascular diseasethe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Ya Li
- Department of RadiologyFuwai Hospital Chinese Academy of Medical SciencesShenzhenChina
| | - Xuchun Yuan
- Department of RadiologyFuwai Hospital Chinese Academy of Medical SciencesShenzhenChina
| | - Xiuhai Guo
- Department of NeurologyXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Bin Lu
- Department of RadiologyState Key Laboratory of Cardiovascular DiseaseFu Wai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Kai Sun
- Department of RadiologyState Key Laboratory of Cardiovascular DiseaseFu Wai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of RadiologyFuwai Hospital Chinese Academy of Medical SciencesShenzhenChina
| |
Collapse
|
34
|
Hua D, Zhao Q, Yu Y, Yu H, Yu L, Zhou X, Wang Q, Sun C, Shi C, Luo W, Jiang Z, Wang W, Wang L, Zhang D, Tang S, Yu S. Eucalyptal A inhibits glioma by rectifying oncogenic splicing of MYO1B mRNA via suppressing SRSF1 expression. Eur J Pharmacol 2020; 890:173669. [PMID: 33098832 DOI: 10.1016/j.ejphar.2020.173669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022]
Abstract
Glioma is the most common primary intracranial tumor, in which glioblastoma (GBM) is the most malignant and lethal. However, the current chemotherapy drugs are still unsatisfactory for GBM therapy. As the natural products mainly extracted from Eucalyptus species, phloroglucinol-terpene adducts have the potential to be anti-cancer lead compounds that attracted increasing attention. In order to discover the new lead compounds with the anti-GBM ability, we isolated Eucalyptal A with a phloroglucinol-terpene skeleton from the fruit of E. globulus and investigated its anti-GBM activity in vitro and in vivo. Functionally, we verified that Eucalyptal A could inhibit the proliferation, growth and invasiveness of GBM cells in vitro. Moreover, Eucalyptal A had the same anti-GBM activity in tumor-bearing mice as in vitro and prolonged the overall survival time by maintaining mice body weight. Further mechanism research revealed that Eucalyptal A downregulated SRSF1 expression and rectified SRSF1-guided abnormal alternative splicing of MYO1B mRNA, which led to anti-GBM activity through the PDK1/AKT/c-Myc and PAK/Cofilin axes. Taken together, we identified Eucalyptal A as an important anti-GBM lead compound, which represents a novel direction for glioma therapy.
Collapse
Affiliation(s)
- Dan Hua
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China
| | - Qian Zhao
- Department of Sports Injury and Arthroscopy, Tianjin University Tianjin Hospital, Tianjin, 300221, China
| | - Yang Yu
- Department of Pulmonary and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, 300222, China
| | - Huan Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Lin Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences of Tianjin Medical University, Tianjin, 300070, China
| | - Xuexia Zhou
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China
| | - Qian Wang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China
| | - Cuiyun Sun
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China
| | - Cuijuan Shi
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China
| | - Wenjun Luo
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China
| | - Zhendong Jiang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China
| | - Weiting Wang
- Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
| | - Lingli Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Dongli Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Shengan Tang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China.
| | - Shizhu Yu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China.
| |
Collapse
|
35
|
Liu D, Zou Z, Li G, Pan P, Liang G. Long Noncoding RNA NEAT1 Suppresses Proliferation and Promotes Apoptosis of Glioma Cells Via Downregulating MiR-92b. Cancer Control 2020; 27:1073274819897977. [PMID: 31933377 PMCID: PMC6961147 DOI: 10.1177/1073274819897977] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The mechanisms underlying the proliferation and apoptosis of glioma cells remain unelucidated. A recent study has revealed that microRNA-92b (miR-92b) inhibits apoptosis of glioma cells via downregulating DKK3. Notably, long noncoding RNA nuclear-enriched abundant transcript 1 (NEAT1) is predicted to have a possible interaction with miR-92b. OBJECTIVE This study aimed to identify whether NEAT1 affects glioma cell proliferation and apoptosis via regulating miR-92b. METHODS The expression of NEAT1 was compared between glioma tissues and adjacent tissues as well as between glioma cells and normal astrocytes using quantitative real-time polymerase chain reaction. Glioma cell proliferation was determined by using the 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and glioma cell apoptosis was determined by using the flow cytometry. RESULTS The expression of NEAT1 was low in glioma tissues and cells compared to the normal ones. Overexpression of NEAT1 inhibited proliferation and promoted apoptosis of glioma cell lines (U-87 MG and U251). The interaction between NEAT1 and miR-92b was confirmed using RNA immunoprecipitation, RNA pull-down assay, and luciferase reporter assay. Importantly, the tumor suppressor function of overexpressing NEAT1 was achieved by downregulating miR-92b and subsequently upregulating DKK3. CONCLUSION Our findings indicated that NEAT1 acts as a tumor suppressor in glioma cells, which provides a novel target in overcoming glioma growth.
Collapse
Affiliation(s)
- Dongdong Liu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenhe District, Shenyang, Liaoning Province, China.,Dalian Medical University, Dalian, China
| | - Zheng Zou
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenhe District, Shenyang, Liaoning Province, China.,General Hospital of Northern Theater Command Base, Jinzhou Medical University, Shenyang, China
| | - Gen Li
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenhe District, Shenyang, Liaoning Province, China.,Dalian Medical University, Dalian, China
| | - Pengyu Pan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenhe District, Shenyang, Liaoning Province, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenhe District, Shenyang, Liaoning Province, China
| |
Collapse
|
36
|
Wang Z, Li K, Huang W. Long non-coding RNA NEAT1-centric gene regulation. Cell Mol Life Sci 2020; 77:3769-3779. [PMID: 32219465 PMCID: PMC11104955 DOI: 10.1007/s00018-020-03503-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022]
Abstract
Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long non-coding RNA that is widely expressed in a variety of mammalian cell types. An increasing number of studies have demonstrated that NEAT1 plays key roles in various biological and pathological processes; therefore, it is important to understand how its expression is regulated and how it regulates the expression of its target genes. Recently, we found that NEAT1 expression could be regulated by signal transducer and activator of transcription 3 and that altered NEAT1 expression epigenetically regulates downstream gene transcription during herpes simplex virus-1 infection and Alzheimer's disease, suggesting that NEAT1 acts as an important sensor and effector during stress and disease development. In this review, we summarize and discuss the molecules and regulatory patterns that control NEAT1 gene expression and the molecular mechanism via which NEAT1 regulates the expression of its target genes, providing novel insights into the central role of NEAT1 in gene regulation.
Collapse
Affiliation(s)
- Ziqiang Wang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China.
| | - Kun Li
- Department of Nuclear Medicine, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, 250014, China
| | - Weiren Huang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China.
| |
Collapse
|
37
|
Zhang X, Feng S, Fan Y, Luo Y, Jin L, Li S. Identifying a Comprehensive ceRNA Network to Reveal Novel Targets for the Pathogenesis of Parkinson's Disease. Front Neurol 2020; 11:810. [PMID: 32849243 PMCID: PMC7417679 DOI: 10.3389/fneur.2020.00810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/29/2020] [Indexed: 01/03/2023] Open
Abstract
Parkinson's disease (PD) is the second commonest progressive neurodegenerative disease worldwide. Increasing evidence reveals that non-coding RNAs play roles in the pathophysiological process of PD. The notion called competing endogenous RNAs (ceRNAs) network is used to describe the roles of non-coding RNAs. According to this theory, long non-coding RNAs (lncRNAs) act as microRNAs (miRNAs) sponges by miRNA response elements or miRNA binding sites to control the availability of endogenous miRNA for binding to their target mRNAs. This study aimed to construct a ceRNA network in PD, which might have the potential to clarify the pathogenesis of PD. We investigated differential expression (DE) lncRNAs and mRNAs in substantia nigra array data GSE7621 between PD patients and healthy controls from the Gene Expression Omnibus database. And we used starBase 2.0 and miRWalk 2.0 databases to predict miRNAs that have interactions with DElncRNAs and DEmRNAs. Based on DElncRNAs, DEmRNAs and predicted miRNAs, two ceRNA networks were constructed. The first one was based on lncRNA-miRNA interactions and miRNA-mRNA interactions that shared the same miRNAs that we predicted, on which function annotation and PPI analysis were performed to identify hub genes. Hereby the second ceRNA network was generated to explore the core section in the first ceRNA network and was validated in external datasets. As a result, we identified 31 DE lncRNAs and 1,828 DEmRNAs, and finally constructed the first ceRNA network associated with PD, including 9 lncRNAs, 18 miRNAs, and 185 mRNAs. mRNAs in the first ceRNA network focused on autophagy, DNA repair and vesicle transport, which were critical pathological processes in PD. Nineteen hub genes in the first ceRNA network identified through PPI analysis, the second ceRNA network was constructed to annotate the core part of the first one. Moreover, the core subnetwork was validated in external datasets, of which several nodes including FBXL7, PTBP2, and lncRNA NEAT1 were verified. In conclusion, a ceRNA network was constructed based on the differential expression profiles of whole substantia nigra tissues of normal and PD patients, and the network was subsequently identified which revealed its association with autophagy, DNA repair and vesicle transport. The core subnetwork of the ceRNA network was identified and validated in external data. Our findings offered novel insights into the roles of ceRNAs in the pathogenesis of PD and provided promising diagnostic biomarkers.
Collapse
Affiliation(s)
- Xi Zhang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengyu Feng
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Fan
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuping Luo
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingjing Jin
- Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Siguang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Cerasuolo A, Buonaguro L, Buonaguro FM, Tornesello ML. The Role of RNA Splicing Factors in Cancer: Regulation of Viral and Human Gene Expression in Human Papillomavirus-Related Cervical Cancer. Front Cell Dev Biol 2020; 8:474. [PMID: 32596243 PMCID: PMC7303290 DOI: 10.3389/fcell.2020.00474] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
The spliceosomal complex components, together with the heterogeneous nuclear ribonucleoproteins (hnRNPs) and serine/arginine-rich (SR) proteins, regulate the process of constitutive and alternative splicing, the latter leading to the production of mRNA isoforms coding multiple proteins from a single pre-mRNA molecule. The expression of splicing factors is frequently deregulated in different cancer types causing the generation of oncogenic proteins involved in cancer hallmarks. Cervical cancer is caused by persistent infection with oncogenic human papillomaviruses (HPVs) and constitutive expression of viral oncogenes. The aberrant activity of hnRNPs and SR proteins in cervical neoplasia has been shown to trigger the production of oncoproteins through the processing of pre-mRNA transcripts either derived from human genes or HPV genomes. Indeed, hnRNP and SR splicing factors have been shown to regulate the production of viral oncoprotein isoforms necessary for the completion of viral life cycle and for cell transformation. Target-therapy strategies against hnRNPs and SR proteins, causing simultaneous reduction of oncogenic factors and inhibition of HPV replication, are under development. In this review, we describe the current knowledge of the functional link between RNA splicing factors and deregulated cellular as well as viral RNA maturation in cervical cancer and the opportunity of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumouri IRCCS–Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
39
|
RNA-Binding Proteins as Important Regulators of Long Non-Coding RNAs in Cancer. Int J Mol Sci 2020; 21:ijms21082969. [PMID: 32340118 PMCID: PMC7215867 DOI: 10.3390/ijms21082969] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
The majority of the genome is transcribed into pieces of non-(protein) coding RNA, among which long non-coding RNAs (lncRNAs) constitute a large group of particularly versatile molecules that govern basic cellular processes including transcription, splicing, RNA stability, and translation. The frequent deregulation of numerous lncRNAs in cancer is known to contribute to virtually all hallmarks of cancer. An important regulatory mechanism of lncRNAs is the post-transcriptional regulation mediated by RNA-binding proteins (RBPs). So far, however, only a small number of known cancer-associated lncRNAs have been found to be regulated by the interaction with RBPs like human antigen R (HuR), ARE/poly(U)-binding/degradation factor 1 (AUF1), insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), and tristetraprolin (TTP). These RBPs regulate, by various means, two aspects in particular, namely the stability and the localization of lncRNAs. Importantly, these RBPs themselves are commonly deregulated in cancer and might thus play a major role in the deregulation of cancer-related lncRNAs. There are, however, still many open questions, for example regarding the context specificity of these regulatory mechanisms that, in part, is based on the synergistic or competitive interaction between different RBPs. There is also a lack of knowledge on how RBPs facilitate the transport of lncRNAs between different cellular compartments.
Collapse
|
40
|
Tang Y, Zha L, Zeng X, Yu Z. Identification of Biomarkers Related to Systemic Sclerosis With or Without Pulmonary Hypertension Using Co-expression Analysis. J Comput Biol 2020; 27:1519-1531. [PMID: 32298610 DOI: 10.1089/cmb.2019.0492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Systemic sclerosis (SSc), also known as scleroderma, is an autoimmune disease with multiple system involvement, and pulmonary complications, including pulmonary hypertension (PH), are leading causes of death. This study aimed to develop early biomarkers to distinguish SSc with or without PH from normal population using bioinformatics approaches. The gene expression profile GSE22356, which contains 10 SSc samples with PH, 10 SSc samples without PH, and 10 normal samples, was obtained from the Gene Expression Omnibus database. First, we constructed co-expression networks and identified critical gene modules using the weighted gene co-expression network analysis. Then, functional enrichment analysis of significant modules was performed. Finally, the "real" hub gene was screened out by intramodule analysis and protein-protein interaction networks, and the receiver operating characteristic analysis was conducted. A total of 5046 genes were screened out to construct co-expression networks, and 18 modules were identified. Of these modules, the turquoise module had a strong correlation with SSc only, whereas the midnightblue module showed an obvious positive correlation with SSc with PH. Functional enrichment analysis indicated that the turquoise module was mainly enriched in transcription of DNA template and its regulation and protein ubiquitination and involved in apoptosis and pyrimidine metabolism pathway. The midnightblue module was significantly associated with inflammatory and immune response and pathways in Staphylococcus aureus infection and Chagas disease. The "real" hub genes in the turquoise module were WDR36, POLR1B, and SRSF1, and those in midnightblue were TLR2 and TNFAIP6.
Collapse
Affiliation(s)
- Yiyang Tang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Lihuang Zha
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xiaofang Zeng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zaixin Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
41
|
Shen L, Li Y, Hu G, Huang Y, Song X, Yu S, Xu X. MIR155HG Knockdown Inhibited the Progression of Cervical Cancer by Binding SRSF1. Onco Targets Ther 2020; 13:12043-12054. [PMID: 33262605 PMCID: PMC7695692 DOI: 10.2147/ott.s267594] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/16/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND As the fourth most common cancer among women worldwide, cervical cancer lead to 311,000 deaths in 2018. Although the treatments have been developed, the survival rate of cervical cancer remains unsatisfactory. In this study, we aimed to identify differentially expressed lncRNAs (DEIncRNAs) between cervical cancer and adjacent normal tissues using bioinformatics analysis, and further to investigate the biological function of the DEIncRNAs in vitro and in vivo. METHODS The expression profiles from two microarray datasets (GSE6791 and GSE63514) were downloaded from GEO for analysis of DEIncRNAs between cervical cancer and adjacent normal cervical tissues. Among all DEIncRNAs, MIR155HG upregulation was identified and selected for further investigation. The effect of MIR155HG knockdown on proliferation, apoptosis and invasion in SiHa and Hela cells were evaluated. In addition, Western blot, RNA immunoprecipitation (RIP) and cell cycle assays were performed to determine the binding target of MIR155HG. Furthermore, the effect of MIR155HG knockdown on tumor growth in vivo was investigated. RESULTS The level of MIR155HG was found to be significantly upregulated in cervical cancer tissue compared with adjacent cervical tissue. Knockdown of MIR155HG notably inhibited the proliferation of SiHa and Hela cells by inducing apoptosis. In addition, MIR155HG knockdown decreased cell invasion. Moreover, tumor growth in xenograft was significantly inhibited by MIR155HG knockdown in vivo. Additionally, SRSF1 was identified as the binding protein of MIR155HG. CONCLUSION Our findings demonstrated that MIR155HG knockdown inhibited the progression of cervical cancer by binding SRSF1, inspiring the usage of MIR155HG as a potential novel therapy target for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Ling Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong515041, People’s Republic of China
| | - Yuancheng Li
- Department of Gynecological Oncology, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong515041, People’s Republic of China
| | - Guiying Hu
- Department of Gynecology, Maternal and Children Hospital of Guangdong Province, Guangzhou, Guangdong511400, People’s Republic of China
| | - Yihong Huang
- Department of Gynecological Oncology, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong515041, People’s Republic of China
| | - Xinli Song
- Department of Gynecological Oncology, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Shun Yu
- Department of Gynecological Oncology, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Xiaoyuan Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong515041, People’s Republic of China
- Correspondence: Xiaoyuan Xu Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong515041, People’s Republic of China Email
| |
Collapse
|