1
|
Dai CL, Qiu ZY, Wang AQ, Yan S, Zhang LJ, Luan X. Targeting cholesterol metabolism: a promising therapy strategy for cancer. Acta Pharmacol Sin 2025:10.1038/s41401-025-01531-9. [PMID: 40133625 DOI: 10.1038/s41401-025-01531-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
Cholesterol is a crucial structural component of cell membranes, playing a vital role in maintaining membrane fluidity and stability. Cholesterol metabolism involves four interconnected processes: de novo synthesis, uptake, efflux, and esterification. Disruptions in any of these pathways can lead to imbalances in cholesterol homeostasis, which are significantly associated with cancer progression. In recent years, traditional Chinese medicine (TCM) has emerged as a comprehensive therapeutic approach with multi-target and multi-pathway effects, demonstrating significant potential in regulating cholesterol metabolism. Research has shown that certain components of TCM can modulate enzymes, transport proteins, and signaling pathways involved in cholesterol metabolism, effectively interfering with survival and migration of cancer. These mechanisms highlight the unique advantages of TCM in inhibiting tumor progression. In this review we systematically describe the execution and regulation of the four key cholesterol metabolism processes, highlights the roles of critical proteins involved, and provides a comprehensive overview of natural products from TCM that modulate cholesterol metabolism. This review provides valuable insights for the development of novel drugs and cancer therapeutic strategies targeting cholesterol metabolism.
Collapse
Affiliation(s)
- Chun-Lan Dai
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zi-Yang Qiu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - An-Qi Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shen Yan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Ghosh C, Kundu T, Pathak T, Saini S, Das N, Saini S, Sircar D, Kumar P, Roy P. Indian lychee honey ameliorates hepatic glucose uptake by regulating the ChREBP/Glut4 axis under insulin-resistant conditions. Food Funct 2025; 16:2031-2056. [PMID: 39963045 DOI: 10.1039/d4fo03900a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Many traditional treatments include honey owing to its magnificent health beneficiary effects. Recent studies have demonstrated the potent anti-diabetic activity of honey. However, its actual mechanism of action remains elusive. Moreover, being rich in sugar (75%-80%), its role in maintaining glucose homeostasis remains questionable. Although the polyphenol content of honey aids its hypoglycaemic activity, the small quantity of bioactive compounds in honey (0.5%-1.0%) may not be solely responsible for this. In the current study, an attempt was made to understand the role of Indian lychee honey (LyH) in regulating blood glucose levels under diabetic conditions. This study investigated whether LyH, although rich in sugars, can be used as an alternative to regulate glucose and lipid homeostasis under insulin-resistant conditions by regulating the ChREBP/Glut4 signalling pathway. This study was first performed in vitro in palmitic acid-induced insulin-resistant HepG2 cells. Various assays, such as FACS, GCMS, qRT-PCR, immunoblot and ChIP-qPCR, were performed to establish the anti-hyperglycaemic role of LyH in vitro. The in vitro results were subsequently confirmed in vivo using a high-fat diet-induced diabetic C57BL/6 mice model. The in vivo study was supported by several experiments, such as examining blood parameters, histopathology, double-immunohistochemistry and ELISA. Finally, the finding was validated by comparing it with a couple of GEO datasets from the NCBI database. This study found that LyH is an excellent choice for regulating blood sugar levels under diabetic conditions without significant harmful side effects. Moreover, LyH showed excellent hepatic glucose uptake activity in an insulin-independent manner. This activity is mainly governed by sugars as its main ingredient. LyH treatment also regulates hepatic lipid homeostasis by maintaining a balance between saturated and unsaturated fatty acids in insulin-resistant HepG2 cells. Further, sugar, when supplemented individually, caused severe inflammation, which was validated through histopathology, ELISA and IHC. Collectively, the findings of this study indicate that Indian LyH provides a better food matrix (the right proportion of sugars and different bioactive compounds), which significantly improves hyperglycemia and inflammation under diabetic conditions by regulating the hepatic ChREBP/Glut4 axis.
Collapse
Affiliation(s)
- Chandrachur Ghosh
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| | - Tathagata Kundu
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| | - Tiyasa Pathak
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| | - Saakshi Saini
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| | - Neeladrisingha Das
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| | - Surendra Saini
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| | - Debabrata Sircar
- Plant Molecular Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | - Prabhat Kumar
- National Bee Board, DA & FW, Ministry of Agriculture and Farmers Welfare, B Wing, 2nd Floor, Janpath Bhawan, Janpath, New Delhi - 110 001, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
- Center for Indian Knowledge Systems, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| |
Collapse
|
3
|
Zhang Z, Wu H, Li M, Zhou F, Huang Y. From natural herbal wisdom to nano innovation: Revolutionizing tumor treatment through intervening in metabolic reprogramming. Biochim Biophys Acta Rev Cancer 2025; 1880:189263. [PMID: 39800231 DOI: 10.1016/j.bbcan.2025.189263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
In recent years, with the deepening understanding of the biological mechanisms underlying tumorigenesis, metabolic reprogramming has emerged as a pivotal process in cancer initiation, progression, and treatment resistance, gradually paving the way for new avenues in precision oncology. Natural herbal ingredients, characterized by their multi-target engagement, low toxicity, and wide-ranging biological activities, exhibit unique advantages in anti-cancer therapy. Nonetheless, the clinical application of these components has been constrained by issues such as poor solubility, low bioavailability, and inadequate stability when administered through traditional delivery methods. The advent of multifunctional nanoformulations has offered solutions to these challenges, substantially advancing the utilization of natural herbal components in precision therapy targeting tumor metabolic reprogramming. This article provides a comprehensive review of the multidimensional features of cancer metabolic reprogramming and its intricate regulatory network, highlighting the latest advancements in metabolic regulation, targeted delivery, and precision therapy achieved through natural herbs and their multifunctional nanomedicines. It also offers insights into future directions in this field. We are justified in believing that continued breakthroughs in this area will usher in safer and more effective treatment options for cancer patients, heralding a new chapter in cancer therapy.
Collapse
Affiliation(s)
- Zhengguang Zhang
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China; School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
| | - Haitao Wu
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China
| | - Min Li
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
| | - Fuqiong Zhou
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
| | - Yan Huang
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
| |
Collapse
|
4
|
Gu Q, Wang Y, Yi P, Cheng C. Theoretical framework and emerging challenges of lipid metabolism in cancer. Semin Cancer Biol 2025; 108:48-70. [PMID: 39674303 DOI: 10.1016/j.semcancer.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Elevated lipid metabolism is one of hallmarks of malignant tumors. Lipids not only serve as essential structural components of biological membranes but also provide energy and substrates for the proliferation of cancer cells and tumor growth. Cancer cells meet their lipid needs by coordinating the processes of lipid absorption, synthesis, transport, storage, and catabolism. As research in this area continues to deepen, numerous new discoveries have emerged, making it crucial for scientists to stay informed about the developments of cancer lipid metabolism. In this review, we first discuss relevant concepts and theories or assumptions that help us understand the lipid metabolism and -based cancer therapies. We then systematically summarize the latest advancements in lipid metabolism including new mechanisms, novel targets, and up-to-date pre-clinical and clinical investigations of anti-cancer treatment with lipid metabolism targeted drugs. Finally, we emphasize emerging research directions and therapeutic strategies, and discuss future prospective and emerging challenges. This review aims to provide the latest insights and guidance for research in the field of cancer lipid metabolism.
Collapse
Affiliation(s)
- Qiuying Gu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yuan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Chunming Cheng
- Department of Oncology Science, OU Health Stephenson Cancer Center at University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
5
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024; 82:3157-3208. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Giannotti L, Stanca E, Di Chiara Stanca B, Spedicato F, Massaro M, Quarta S, Del Rio D, Mena P, Siculella L, Damiano F. Coffee Bioactive N-Methylpyridinium: Unveiling Its Antilipogenic Effects by Targeting De Novo Lipogenesis in Human Hepatocytes. Mol Nutr Food Res 2024; 68:e2400338. [PMID: 39370560 DOI: 10.1002/mnfr.202400338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/09/2024] [Indexed: 10/08/2024]
Abstract
SCOPE Type 2 diabetes and nonalcoholic fatty liver diseases (NAFLDs) are promoted by insulin resistance (IR), which alters lipid homeostasis in the liver. This study aims to investigate the effect of N-methylpyridinium (NMP), a bioactive alkaloid of coffee brew, on lipid metabolism in hepatocytes. METHODS AND RESULTS The effect of NMP in modulating lipid metabolism is evaluated at physiological concentrations in a diabetes cell model represented by HepG2 cells cultured in a high-glucose medium. Hyperglycemia triggers lipid droplet accumulation in cells and enhances the lipogenic gene expression, which is transactivated by sterol regulatory element binding protein-1 (SREBP-1). Lipid droplet accumulation alters the redox status and endoplasmic reticulum (ER) stress, leading to the activation of the unfolded protein response and antioxidative pathways by X-Box Binding Protein 1(XBP-1)/eukaryotic Initiation Factor 2 alpha (eIF2α) Protein Kinase RNA-Like ER Kinase and nuclear factor erythroid 2-related factor 2 (NRF2), respectively. NMP induces the phosphorylation of AMP-dependent protein kinase (AMPK) and acetyl-CoA carboxylase α (ACACA), and improves the redox status and ER homeostasis, essential steps to reduce lipogenesis and lipid droplet accumulation. CONCLUSION These results suggest that NMP may be beneficial for the management of T2D and NAFLD by ameliorating the cell oxidative and ER homeostasis and lipid metabolism.
Collapse
Affiliation(s)
- Laura Giannotti
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | - Eleonora Stanca
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | | | - Francesco Spedicato
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce, 73100, Italy
| | - Stefano Quarta
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce, 73100, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, 43125, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, 43125, Italy
| | - Luisa Siculella
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | - Fabrizio Damiano
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| |
Collapse
|
7
|
Wang XJ, Zhang P, Chen L. Quercetin represses cholesterol metabolism and mitigates resistance to cisplatin in oral squamous cell carcinoma by regulating AGR2/AKT/SREBP2 axis. Heliyon 2024; 10:e37518. [PMID: 39323844 PMCID: PMC11422005 DOI: 10.1016/j.heliyon.2024.e37518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/10/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024] Open
Abstract
Purpose This study aimed to explore the effects of quercetin on cholesterol metabolism and cisplatin sensitivity in oral squamous cell carcinoma (OSCC) cell line (CAL27) and investigate the potential molecular mechanisms. Methods CAL27 cells were exposed to quercetin or cisplatin after upregulation or downregulation of AGR2. The expression of proteins and genes associated with cholesterol metabolism were assessed. The levels of cholesterol and LDL were also measured, and the cisplatin sensitivity of CAL27 cells was analyzed. Results RNA high-throughput sequencing revealed that after treatment with quercetin, the expression of AGR2 was significantly reduced in cisplatin-resistant CAL27 cells (CAL-27R), which was associated with lipid metabolism. AGR2 deletion ameliorated but its overexpression exacerbated cisplatin resistance and cholesterol metabolism, evidenced by changes in SQLE, HMGCS, LDLR, and n-SREBP2 expression and cholesterol and LDL levels. Moreover, AGR2 promoted cisplatin resistance by activating the AKT signaling pathway and enhancing SREBP2-mediated cholesterol metabolism. Quercetin increased cisplatin sensitivity by repressing cholesterol metabolism but suppressed the AGR2/AKT/SREBP2 signaling pathway in a concentration-dependent manner. These effects were partly reversed by AGR2 overexpression and AKT activation. Conclusion Our findings demonstrated that quercetin inhibits cholesterol metabolism and cisplatin resistance in CAL27 cells by modulating the AGR2/AKT/SREBP2 axis.
Collapse
Affiliation(s)
- Xiao-Jiao Wang
- Department of Pharmacy, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei, 430060, China
| | - Peng Zhang
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei, 430061, China
- Institute of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, 430074, China
| | - Ling Chen
- Department of Pharmacy, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei, 430060, China
| |
Collapse
|
8
|
Lalchandani DS, Chenkual L, Sonpasare K, Rajdev B, Naidu VGM, Chella N, Porwal PK. Optimization of atorvastatin and quercetin-loaded solid lipid nanoparticles using Box-Behnken design. Nanomedicine (Lond) 2024; 19:1541-1555. [PMID: 39012199 PMCID: PMC11321401 DOI: 10.1080/17435889.2024.2364585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Aim: The study explores the synergistic potential of atorvastatin (ATR) and quercetin (QUER)- loaded solid lipid nanoparticles (SLN) in combating breast cancer. Materials & methods: SLNs were synthesized using a high-shear homogenization method and optimized using Box-Behnken design. The SLNs were characterized and evaluated for their in vitro anticancer activity. Results: The optimized SLN exhibited narrow size distribution (PDI = 0.338 ± 0.034), a particle size of 72.5 ± 6.5 nm, higher entrapment efficiency (<90%), sustained release and spherical surface particles. The in vitro cytotoxicity studies showed a significant reduction in IC50 values on MDA-MB-231 cell lines. Conclusion: We report a novel strategy of repurposing well-known drugs and encapsulating them into SLNs as a promising drug-delivery system against breast cancer.
Collapse
Affiliation(s)
- Dimple S. Lalchandani
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam781101, India
| | - Laltanpuii Chenkual
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam781101, India
| | - Kailas Sonpasare
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam781101, India
| | - Bishal Rajdev
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam781101, India
| | - VGM Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam781101, India
| | - Naveen Chella
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education & Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam781101, India
| | - Pawan Kumar Porwal
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam781101, India
| |
Collapse
|
9
|
Wang X, Huangfu W, Zhao F. Correlation of ChREBP Gene Methylation with Pathological Characteristics of Type 2 Diabetes Mellitus. Appl Biochem Biotechnol 2024; 196:3076-3087. [PMID: 37615853 DOI: 10.1007/s12010-023-04714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
The objective of this study is to investigate the expression of the carbohydrate response element binding protein (ChREBP) gene in type 2 diabetes mellitus (T2DM) and its correlation with pathological features. For obtaining and exploring the pathological features in patients, sixty T2DM patients (the research group) and thirty healthy controls (the control group) presented to our hospital between January 2019 and June 2019 were selected as the research participants. After DNA extraction from peripheral blood mononuclear cells (PBMCs) and modification of target gene methylation with bisulfite, differences in methylation were verified, and the correlation of ChREBP methylation level with T2DM pathological features and single nucleotide polymorphism (SNP) typing was discussed. According to the prediction results of UCSC Genome Browser Home, there were two CpG islands in the promoter region of the ChREBP gene, and the first exon was selected for research. The ChREBP methylation rate was statistically higher in the research group versus the control group (P < 0.05). Age, FPG, TC, and TG were confirmed by the multiple linear regression analysis to be correlated with the ChREBP methylation rate (P < 0.05). Finally, there was no difference in ChREBP methylation level between CT- and CC-type patients at rs17145750 and rs1051921 loci (P > 0.05). Peripheral blood ChREBP methylation is elevated in T2DM patients and is closely related to age, blood glucose, and blood-lipid level, which is expected to be a new direction for future T2DM diagnosis and treatment.
Collapse
Affiliation(s)
- Xin Wang
- Department of General Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010000, China.
| | - Weizhong Huangfu
- Department of General Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010000, China
| | - Feng Zhao
- Department of General Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010000, China
| |
Collapse
|
10
|
Bremer S, Weitkemper E, Häberlein H, Franken S. St. John's wort extract Ze 117 alters the membrane fluidity of C6 glioma cells by influencing cellular cholesterol metabolism. Sci Rep 2024; 14:9878. [PMID: 38684848 PMCID: PMC11059309 DOI: 10.1038/s41598-024-60562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
Chronic stress is associated with major depressive disorder (MDD). Increased glucocorticoid levels caused by uncontrolled release through the hypothalamic‒pituitary‒adrenal (HPA) axis can cause changes in the lipid content of the cellular plasma membrane. These changes are suspected to be involved in the development of depressive disorders. St. John's wort extract (SJW) Ze 117 has long been used as an alternative to synthetic antidepressants. Part of its effect may be due to an effect on the cellular lipid composition and thus on the properties of plasma membranes and receptor systems embedded therein. In this study, we investigated the effect of Ze 117 on that of dexamethasone and simvastatin. Dexamethasone increases the fluidity of C6 cell plasma membranes. This effect is counteracted by administration of Ze 117. Here we demonstrate that this is not due to a change in C16:1/16:0 and C18:1/18:0 ratios in C6 cell fatty acids. On the other hand, Ze 117 increased the cellular cholesterol content by 42.5%, whereas dexamethasone reduced cholesterol levels similarly to simvastatin. Lowering cholesterol levels by dexamethasone or simvastatin resulted in decreased β-arrestin 2 recruitment to the 5-HT1a receptor. This effect was counterbalanced by Ze 117, whereas the SJW extract had little effect on β-arrestin 2 recruitment in non-stressed cells. Taken together, in C6 cells, Ze 117 induces changes in membrane fluidity through its effect on cellular cholesterol metabolism rather than by affecting fatty acid saturation. This effect is reflected in an altered signal transduction of the 5-HT1a receptor under Ze 117 administration. The current in vitro results support the hypothesis that Ze 117 addresses relevant parts of the cellular lipid metabolism, possibly explaining some of the antidepressant actions of Ze 117.
Collapse
Affiliation(s)
- Swen Bremer
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Eva Weitkemper
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Hanns Häberlein
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Sebastian Franken
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany.
| |
Collapse
|
11
|
Huang F, Li S, Wang X, Wang C, Pan X, Chen X, Zhang W, Hong J. Serum lipids concentration on prognosis of high-grade glioma. Cancer Causes Control 2023:10.1007/s10552-023-01710-1. [PMID: 37258987 DOI: 10.1007/s10552-023-01710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/03/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVE To investigate the effect of serum lipids concentration on the prognosis of high-grade glioma patients undergoing postoperative radiotherapy. METHODS Retrospective analysis of the patients with high-grade glioma who received postoperative Intensity Modulated Radiotherapy between 13 May 2013 and 12 September 2018 was performed. The patients were grouped according to the average values of serum total cholesterol, LDL, and HDL concentration in peripheral blood (before surgery, 6 months after therapy). Cox proportional hazards model was performed to determine whether the total cholesterol concentration, LDL concentration, and HDL concentration in peripheral blood before therapy and their changes after therapy were factors influencing the prognosis. RESULTS The results of COX regression analysis showed that the independent prognostic factors of high-grade glioma patients were pathological grade, the extent of resection, serum cholesterol concentration pre-surgery, and the change of LDL concentration from pre-surgery to post-therapy. The prognosis of patients with high serum total cholesterol concentration before therapy was worse than those of patients with low total cholesterol concentration. The 5-year survival rate and the median survival time of patients with high serum total cholesterol concentration before therapy were 4.9% and 23.6 months, but the low cholesterol concentration group were 19.6% and 24.5 months, respectively. Besides, the average serum LDL concentration in high-grade glioma patients gradually increased after therapy. The 5-year survival rate of patients and the median survival time with elevated LDL concentration after therapy is 11.8% and 20.4 months, but the reduced LDL concentration group was 16.7% and 28.4 months, respectively. The total cholesterol and LDL concentration increased significantly after therapy in Grade IV patients while Grade III patients did not. CONCLUSIONS The cholesterol concentration before therapy and LDL concentration change from pre-surgery to post-therapy are the factors that affect the prognosis of high-grade glioma patients who have undergone postoperative radiotherapy. In the final analysis, the high serum cholesterol pre-surgery and the increased in serum LDL concentration from pre-surgery to post-therapy were associated with worse survival of patients.
Collapse
Affiliation(s)
- Fei Huang
- Central Lab, First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Central Laboratory, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affliated Hospital, Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer (Fujian Medical University), No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Shan Li
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affliated Hospital, Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer (Fujian Medical University), No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Xuezhen Wang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Caihong Wang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Xiaoxian Pan
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Xiuying Chen
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affliated Hospital, Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer (Fujian Medical University), No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Weijian Zhang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affliated Hospital, Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer (Fujian Medical University), No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China.
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affliated Hospital, Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China.
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer (Fujian Medical University), No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
12
|
Liu X, Xiao X, Han X, Yao L, Lan W. Natural flavonoids alleviate glioblastoma multiforme by regulating long non-coding RNA. Biomed Pharmacother 2023; 161:114477. [PMID: 36931030 DOI: 10.1016/j.biopha.2023.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common primary malignant brain tumors in adults. Due to the poor prognosis of patients, the median survival time of GBM is often less than 1 year. Therefore, it is very necessary to find novel treatment options with a good prognosis for the treatment or prevention of GBM. In recent years, flavonoids are frequently used to treat cancer. It is a new attractive molecule that may achieve this promising treatment option. Flavonoids have been proved to have many biological functions, such as antioxidation, prevention of angiogenesis, anti-inflammation, inhibition of cancer cell proliferation, and protection of nerve cells. It has also shown the ability to regulate long non-coding RNA (LncRNA). Studies have confirmed that flavonoids can regulate epigenetic modification, transcription, and change microRNA (miRNA) expression of GBM through lncRNA at the gene level. It also found that flavonoids can induce apoptosis and autophagy of GBM cells by regulating lncRNA. Moreover, it can improve the metabolic abnormalities of GBM, interfere with the tumor microenvironment and related signaling pathways, and inhibit the angiogenesis of GBM cells. Eventually, flavonoids can block the tumor initiation, growth, proliferation, differentiation, invasion, and metastasis. In this review, we highlight the role of lncRNA in GBM cancer progression and the influence of flavonoids on lncRNA regulation. And emphasize their expected role in the prevention and treatment of GBM.
Collapse
Affiliation(s)
- Xian Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Xinyu Xiao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610015, China
| | - Xue Han
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Lan Yao
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Wei Lan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
13
|
Samec M, Mazurakova A, Lucansky V, Koklesova L, Pecova R, Pec M, Golubnitschaja O, Al-Ishaq RK, Caprnda M, Gaspar L, Prosecky R, Gazdikova K, Adamek M, Büsselberg D, Kruzliak P, Kubatka P. Flavonoids attenuate cancer metabolism by modulating Lipid metabolism, amino acids, ketone bodies and redox state mediated by Nrf2. Eur J Pharmacol 2023; 949:175655. [PMID: 36921709 DOI: 10.1016/j.ejphar.2023.175655] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Metabolic reprogramming of cancer cells is a common hallmark of malignant transformation. The preference for aerobic glycolysis over oxidative phosphorylation in tumors is a well-studied phenomenon known as the Warburg effect. Importantly, metabolic transformation of cancer cells also involves alterations in signaling cascades contributing to lipid metabolism, amino acid flux and synthesis, and utilization of ketone bodies. Also, redox regulation interacts with metabolic reprogramming during malignant transformation. Flavonoids, widely distributed phytochemicals in plants, exert various beneficial effects on human health through modulating molecular cascades altered in the pathological cancer phenotype. Recent evidence has identified numerous flavonoids as modulators of critical components of cancer metabolism and associated pathways interacting with metabolic cascades such as redox balance. Flavonoids affect lipid metabolism by regulating fatty acid synthase, redox balance by modulating nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activity, or amino acid flux and synthesis by phosphoglycerate mutase 1. Here, we discuss recent preclinical evidence evaluating the impact of flavonoids on cancer metabolism, focusing on lipid and amino acid metabolic cascades, redox balance, and ketone bodies.
Collapse
Affiliation(s)
- Marek Samec
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Comenius University in Bratislava, Martin, Slovakia
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Renata Pecova
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Martin Caprnda
- 1(st) Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Ludovit Gaspar
- Faculty of Health Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Robert Prosecky
- 2(nd) Department of Internal Medicine, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Katarina Gazdikova
- Department of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, Bratislava, Slovakia; Department of General Medicine, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| | - Mariusz Adamek
- Department of Thoracic Surgery, Medical University of Silesia, Katowice, Poland
| | | | - Peter Kruzliak
- 2(nd) Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia.
| |
Collapse
|
14
|
Siculella L, Giannotti L, Di Chiara Stanca B, Spedicato F, Calcagnile M, Quarta S, Massaro M, Damiano F. A comprehensive understanding of hnRNP A1 role in cancer: new perspectives on binding with noncoding RNA. Cancer Gene Ther 2023; 30:394-403. [PMID: 36460805 DOI: 10.1038/s41417-022-00571-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is the most abundant and ubiquitously expressed member of the heterogeneous nuclear ribonucleoproteins family (hnRNPs). hnRNP A1 is an RNA-binding protein associated with complexes active in diverse biological processes such as RNA splicing, transactivation of gene expression, and modulation of protein translation. It is overexpressed in several cancers, where it actively promotes the expression and translation of several key proteins and regulators associated with tumorigenesis and cancer progression. Interesting recent studies have focused on the RNA-binding property of hnRNP A1 and revealed previously under-explored functions of hnRNP A1 in the processing of miRNAs, and loading non-coding RNAs into exosomes. Here, we will report the recent advancements in our knowledge of the role of hnRNP A1 in the biological processes underlying cancer proliferation and growth, with a particular focus on metabolic reprogramming.
Collapse
Affiliation(s)
- Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Laura Giannotti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Benedetta Di Chiara Stanca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Francesco Spedicato
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Stefano Quarta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce, Italy
| | - Fabrizio Damiano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
| |
Collapse
|
15
|
Yang Z, Su H, Lv Y, Tao H, Jiang Y, Ni Z, Peng L, Chen X. Inulin intervention attenuates hepatic steatosis in rats via modulating gut microbiota and maintaining intestinal barrier function. Food Res Int 2023; 163:112309. [PMID: 36596207 DOI: 10.1016/j.foodres.2022.112309] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Increasing evidence has suggested the mitigatory efficacy of prebiotic inulin on nonalcoholic fatty liver disease (NAFLD), nevertheless, its action mechanisms remain elusive. Herein, inulin consumption effectively ameliorated high-sucrose diet-induced hepatic steatosis and inflammation, and rehabilitated liver lipogenesis regulators, including carbohydrate response element-binding protein, stearoyl-CoA desaturase-1 and peroxisome proliferator-activated receptor alpha. Furthermore, inulin supplementation restored the intestinal barrier integrity and function by up-regulating expressions of tight junction proteins (zonula occludens-1, claudin-1 and occludin). High-throughput sequencing demonstrated that inulin administration regulated the gut microbiota composition, wherein abundance of short-chain fatty acid (SCFA)-producers, including Bifidobacterium, Phascolarctobacterium and Blautia, was significantly enhanced in the inulin-treated rats, conversely, opportunistic pathogens, such as Acinetobacter and Corynebacterium_1, were suppressed. SCFA quantitative analysis showed that dietary inulin suppressed faecal acetate levels, but improved propionate and butyrate concentrations in rats with NAFLD. Functional prediction showed that tryptophan metabolism was one of the key metabolic pathways affected by gut microbiota changes. A targeted metabolomics profiling of tryptophan metabolism demonstrated that inulin intervention up-regulated faecal contents of indole-3-acetic acid and kynurenic acid, whereas down-regulated levels of kynurenine and 5-hydoxyindoleacetic acid in NAFLD rats. Therefore, this study demonstrated that inulin intake alleviated hepatic steatosis likely by regulating the gut microbiota composition and function and restoring the intestinal barrier integrity, which may provide a novel notion for the prevention and treatment of NAFLD in future.
Collapse
Affiliation(s)
- Zhandong Yang
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Huihui Su
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Engineering Research Center for Sugar Technology, Guangzhou 510316, China
| | - Yunjuan Lv
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510182, China
| | - Heqing Tao
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yonghong Jiang
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Ziyan Ni
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Liang Peng
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| | - Xueqing Chen
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| |
Collapse
|
16
|
Synthetic Pathways and the Therapeutic Potential of Quercetin and Curcumin. Int J Mol Sci 2022; 23:ijms232214413. [PMID: 36430891 PMCID: PMC9696847 DOI: 10.3390/ijms232214413] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Polyphenols are considered popular ingredients in the pharmaceutical and medical fields due to their preventive and therapeutic properties. However, the potential effects and mechanisms of action of individual polyphenols remain largely unknown. Herein, we analyzed recent data on the synthetic pathways, features, and similarity of the properties of quercetin, as the most famous flavonoid, and curcumin, a representative of curcuminoids that despite their anti-oxidant activity, also have a pro-oxidant effect, depending on the concentration and the cellular environment. This review focuses on an analysis of their anti-cancer efficacy against various cancer cell lines via cell cycle arrest (regulation of p53/p21 and CDK/cyclins) and by triggering the mitochondrial intrinsic (Bcl-2/Bax/caspase 9) apoptotic pathway, as well as through the modulation of the signaling pathways (PI3K/Akt, Wnt/β-catenin, JAK/STAT, MAPK, p53, and NF-ĸB) and their influence on the non-coding RNAs involved in angiogenesis, invasion, migration, and metastasis. The therapeutic potential of quercetin and curcumin is discussed not only on the basis of their anti-cancer effects, but also with regard to their anti-diabetic, anti-obesity, anti-inflammatory, and anti-bacterial actions.
Collapse
|
17
|
Alzahrani NS, Alshammari GM, El-Ansary A, Yagoub AEA, Amina M, Saleh A, Yahya MA. Anti-Hyperlipidemia, Hypoglycemic, and Hepatoprotective Impacts of Pearl Millet ( Pennisetum glaucum L.) Grains and Their Ethanol Extract on Rats Fed a High-Fat Diet. Nutrients 2022; 14:nu14091791. [PMID: 35565759 PMCID: PMC9105973 DOI: 10.3390/nu14091791] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 12/17/2022] Open
Abstract
This study tested the anti-hyperlipidemic, hypoglycemic, hepatoprotective, and anti-inflammatory effects of whole pearl millet grain powder (MPG) and its ethanol extract (MPGethaolE) in obese rats fed a high-fat diet. The rats were divided into eight groups based on the treatments they received: control, high fat diet (HFD), HFD + MGE (25 mg/Kg), HFD + MPGethaolE (50 mg/Kg), HFD + MPGethaolE (100 mg/Kg), HFD + MPG (10%), HFD + MPG (20%), and HFD + MPG (30%). The final body weight, visceral, epididymal fat pads, and the liver weight were significantly decreased, in a dose-dependent manner, in HFD fed rats that were co-administered either the MPG powder or MPGethaolE. In the same line, serum levels of triglycerides (TGs), cholesterol (CHOL), and low-density lipoprotein-cholesterol (LDL-c), as well as fasting glucose, insulin, HOMA-IR, and serum levels of lipopolysaccharides (LPS), interleukine-6 (IL-6), interleukine-10 (IL-10), C-reactive protein (CRP), tumor necrosis factor (TNF-α), and adiponectin were progressively decreased while serum levels of high-density lipoproteins (HDL-c) were significantly increased when increasing the doses of both treatments. In conclusion, both the raw powder and ethanolic extract of MP have a comparative dose-dependent anti-obesity, hypoglycemic, hypolipidemic, anti-inflammatory, and anti-steatotic in HFD-fed rats.
Collapse
Affiliation(s)
- Nadiah S. Alzahrani
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia; (N.S.A.); (A.E.A.Y.); (A.S.); (M.A.Y.)
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia; (N.S.A.); (A.E.A.Y.); (A.S.); (M.A.Y.)
- Correspondence:
| | - Afaf El-Ansary
- Central Research Laboratory, Female Campus, King Saud University, Riyadh 11472, Saudi Arabia;
| | - Abu ElGasim A. Yagoub
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia; (N.S.A.); (A.E.A.Y.); (A.S.); (M.A.Y.)
| | - Musarat Amina
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ali Saleh
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia; (N.S.A.); (A.E.A.Y.); (A.S.); (M.A.Y.)
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia; (N.S.A.); (A.E.A.Y.); (A.S.); (M.A.Y.)
| |
Collapse
|
18
|
Waiz M, Alvi SS, Khan MS. Potential dual inhibitors of PCSK-9 and HMG-R from natural sources in cardiovascular risk management. EXCLI JOURNAL 2022; 21:47-76. [PMID: 35221836 PMCID: PMC8859648 DOI: 10.17179/excli2021-4453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) stands amongst the leading causes of mortality worldwide and has attracted the attention of world's leading pharmaceutical companies in order to tackle such mortalities. The low-density lipoprotein-cholesterol (LDL-C) is considered the most prominent biomarker for the assessment of ASCVD risk. Distinct inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-R), the chief hepatic cholesterogenic enzyme, are being used since last seven decades to manage hypercholesterolemia. On the other hand, discovery and the association of proprotein convertase subtilisin/kexin type-9 (PCSK-9) with increased ASCVD risk have established PCSK-9 as a novel therapeutic target in cardiovascular medicine. PCSK-9 is well reckoned to facilitate the LDL-receptor (LDL-R) degradation and compromised LDL-C clearance leading to the arterial atherosclerotic plaque formation. The currently available HMG-R inhibitors (statins) and PCSK-9 inhibitors (siRNA, anti-sense oligonucleotides, and monoclonal antibodies) have shown great promises in achieving LDL-C lowering goals, however, their life long prescriptions have raised significant concerns. These deficits associated with the synthetic HMG-R and PCSK-9 inhibitors called for the discovery of alternative therapeutic candidates with potential dual HMG-R and PCSK-9 inhibitory activities from natural origins. Therefore, this report firstly describes the mechanistic insights into the cholesterol homeostasis through HMG-R, PCSK-9, and LDL-R functionality and then compiles the pharmacological effects of natural secondary metabolites with special emphasis on their dual HMG-R and PCSK-9 inhibitory action. In conclusion, various natural products exhibit atheroprotective effects via targeting HMG-R and PCSK-9 activities and lipoprotein metabolism, however, further clinical assessments are still warranted prior their approval for ASCVD risk management in hypercholesterolemic patients.
Collapse
Affiliation(s)
- Mohd Waiz
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| | - Sahir Sultan Alvi
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| | - M Salman Khan
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| |
Collapse
|
19
|
The Mechanism Study of Common Flavonoids on Antiglioma Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2198722. [PMID: 35140796 PMCID: PMC8820855 DOI: 10.1155/2022/2198722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/30/2021] [Accepted: 12/28/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Glioma is the most common primary intracranial tumor in adult patients. Among them, glioblastoma is a highly malignant one with a poor prognosis. Flavonoids are a class of phenolic compounds widely distributed in plants and have many biological functions, such as anti-inflammatory, antioxidant, antiaging, and anticancer. Nowadays, flavonoids have been applied to the therapy of glioma; however, the molecular mechanism underlying the therapeutic effects has not been fully elaborated. This study was carried out to explore the mechanism of selected active flavonoid compounds in treating glioma using network pharmacology and molecular docking approaches. METHODS Active ingredients and associated targets of flavonoids were acquired by using the Traditional Chinese Medicine Database and Analysis Platform (TCMSP) and Swiss TargetPrediction platform. Genes related to glioma were obtained from the GeneCards and DisGeNET databases. The intersection targets between flavonoid targets and glioma-related genes were used to construct protein-protein interaction (PPI) network via the STRING database, and the results were analyzed by Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed and displayed by utilizing the Metascape portal and clusterProfiler R package. Molecular docking was carried out by iGEMDOCK and SwissDock, and the results were visually displayed by UCSF Chimera software. RESULTS Eighty-four active flavonoid compounds and 258 targets overlapped between flavonoid targets and glioma-related genes were achieved. PPI network revealed potential therapeutic targets, such as AKT1, EGFR, VEGFA, MAPK3, and CASP3, based on their node degree. GO and KEGG analyses showed that core targets were mainly enriched in the PI3K-Akt signaling pathway. Molecular docking simulation indicated that potential glioma-related targets-MAPK1 and HSP90AA1 were bounded more firmly with epigallocatechin-3-gallate (EGCG) than with quercetin. CONCLUSIONS The findings of this study indicated that selected active flavonoid compounds might play therapeutic roles in glioma mainly through the PI3K-Akt signaling pathway. Moreover, EGCG had the potential antiglioma activity by targeting MAPK1 and HSP90AA1.
Collapse
|
20
|
Quercetin Reduces Lipid Accumulation in a Cell Model of NAFLD by Inhibiting De Novo Fatty Acid Synthesis through the Acetyl-CoA Carboxylase 1/AMPK/PP2A Axis. Int J Mol Sci 2022; 23:ijms23031044. [PMID: 35162967 PMCID: PMC8834998 DOI: 10.3390/ijms23031044] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of de novo lipogenesis (DNL) has recently gained strong attention as being one of the critical factors that contribute to the assessment of non-alcoholic fatty liver disease (NAFLD). NAFLD is often diagnosed in patients with dyslipidemias and type 2 diabetes; thus, an interesting correlation can be deduced between high hematic free fatty acids and glucose excess in the DNL dysregulation. In the present study, we report that, in a cellular model of NAFLD, the coexistence of elevated glucose and FFA conditions caused the highest cellular lipid accumulation. Deepening the molecular mechanisms of the DNL dysregulation—RT-qPCR and immunoblot analysis demonstrated increased expression of mitochondrial citrate carrier (CiC), cytosolic acetyl-CoA carboxylase 1 (ACACA), and diacylglycerol acyltransferase 2 (DGAT2) involved in fatty acids and triglycerides synthesis, respectively. XBP-1, an endoplasmic reticulum stress marker, and SREBP-1 were the transcription factors connected to the DNL activation. Quercetin (Que), a flavonoid with strong antioxidant properties, and noticeably reduced the lipid accumulation and the expression of SREBP-1 and XBP-1, as well as of their lipogenic gene targets in steatotic cells. The anti-lipogenic action of Que mainly occurs through a strong phosphorylation of ACACA, which catalyzes the committing step in the DNL pathway. The high level of ACACA phosphorylation in Que-treated cells was explained by the intervention of AMPK together with the reduction of enzymatic activity of PP2A phosphatase. Overall, our findings highlight a direct anti-lipogenic effect of Que exerted through inhibition of the DNL pathway by acting on ACACA/AMPK/PP2A axis; thus, suggesting this flavonoid as a promising molecule for the NAFLD treatment.
Collapse
|
21
|
Gao XR, Chen Z, Fang K, Xu JX, Ge JF. Protective effect of quercetin against the metabolic dysfunction of glucose and lipids and its associated learning and memory impairments in NAFLD rats. Lipids Health Dis 2021; 20:164. [PMID: 34789244 PMCID: PMC8596093 DOI: 10.1186/s12944-021-01590-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Quercetin (QUE) is a flavonol reported with anti-inflammatory and antioxidant activities, and previous results from the group of this study have demonstrated its neuroprotective effect against lipopolysaccharide-induced neuropsychiatric injuries. However, little is known about its potential effect on neuropsychiatric injuries induced or accompanied by metabolic dysfunction of glucose and lipids. METHODS A nonalcoholic fatty liver disease (NAFLD) rat model was induced via a high-fat diet (HFD), and glucolipid parameters and liver function were measured. Behavioral performance was observed via the open field test (OFT) and the Morris water maze (MWM). The plasma levels of triggering receptor expressed on myeloid cells-1 (TREM1) and TREM2 were measured via enzyme-linked immunosorbent assay (ELISA). The protein expression levels of Synapsin-1 (Syn-1), Synaptatogmin-1 (Syt-1), TREM1 and TREM2 in the hippocampus were detected using western blotting. Morphological changes in the liver and hippocampus were detected by HE and Oil red or silver staining. RESULTS Compared with the control rats, HFD-induced NAFLD model rats presented significant metabolic dysfunction, hepatocyte steatosis, and impaired learning and memory ability, as indicated by the increased plasma concentrations of total cholesterol (TC) and triglyceride (TG), the impaired glucose tolerance, the accumulated fat droplets and balloon-like changes in the liver, and the increased escaping latency but decreased duration in the target quadrant in the Morris water maze. All these changes were reversed in QUE-treated rats. Moreover, apart from improving the morphological injuries in the hippocampus, treatment with QUE could increase the decreased plasma concentration and hippocampal protein expression of TREM1 in NAFLD rats and increase the decreased expression of Syn-1 and Syt-1 in the hippocampus. CONCLUSIONS These results suggested the therapeutic potential of QUE against NAFLD-associated impairment of learning and memory, and the mechanism might involve regulating the metabolic dysfunction of glucose and lipids and balancing the protein expression of synaptic plasticity markers and TREM1/2 in the hippocampus.
Collapse
Affiliation(s)
- Xin-Ran Gao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Zheng Chen
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Ke Fang
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Jing-Xian Xu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, People's Republic of China.
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| |
Collapse
|
22
|
Qiu R, Zhong Y, Li Q, Li Y, Fan H. Metabolic Remodeling in Glioma Immune Microenvironment: Intercellular Interactions Distinct From Peripheral Tumors. Front Cell Dev Biol 2021; 9:693215. [PMID: 34211978 PMCID: PMC8239469 DOI: 10.3389/fcell.2021.693215] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/19/2021] [Indexed: 01/29/2023] Open
Abstract
During metabolic reprogramming, glioma cells and their initiating cells efficiently utilized carbohydrates, lipids and amino acids in the hypoxic lesions, which not only ensured sufficient energy for rapid growth and improved the migration to normal brain tissues, but also altered the role of immune cells in tumor microenvironment. Glioma cells secreted interferential metabolites or depriving nutrients to injure the tumor recognition, phagocytosis and lysis of glioma-associated microglia/macrophages (GAMs), cytotoxic T lymphocytes, natural killer cells and dendritic cells, promoted the expansion and infiltration of immunosuppressive regulatory T cells and myeloid-derived suppressor cells, and conferred immune silencing phenotypes on GAMs and dendritic cells. The overexpressed metabolic enzymes also increased the secretion of chemokines to attract neutrophils, regulatory T cells, GAMs, and dendritic cells, while weakening the recruitment of cytotoxic T lymphocytes and natural killer cells, which activated anti-inflammatory and tolerant mechanisms and hindered anti-tumor responses. Therefore, brain-targeted metabolic therapy may improve glioma immunity. This review will clarify the metabolic properties of glioma cells and their interactions with tumor microenvironment immunity, and discuss the application strategies of metabolic therapy in glioma immune silence and escape.
Collapse
Affiliation(s)
- Runze Qiu
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Zhong
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qingquan Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingbin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongwei Fan
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Danchenko OO, Nicolaeva YV, Koshelev OI, Danchenko MM, Yakoviichuk OV, Halko TI. Effect of extract from common oat on the antioxidant activity and fatty acid composition of the muscular tissues of geese. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Among natural antioxidants, increasing attention is being drawn to avenanthramides - phenolic compounds of the common oat Avena sativa (Linnaeus, 1753). Research has shown that avenanthramides have much higher antioxidant activity than well-known bioflavanoids. Currently, a great deal of work is being conducted on the structure of these compounds and mechanisms of their effect on the organism of humans and animals. We explored the specifics of the influence of aqueous extract from A. satíva on the antioxidant activity and fatty acid composition of lipids of histologically similar tissues of geese with different levels of aerobicity (muscles of the stomach and cardiac muscle), dynamics of the birds’ live weight and pterylographic parameters under physiological loading by the development of contour and juvenile feathers. The addition of extract of oat to the diet of geese during growth of feathers was observed to increase the antioxidant activity of their tissues. Physiological loading related to the development of contour feathers in the examined tissues of geese significantly weakens as a result of selective inhibition of synthesis of unsaturated fatty acids, especially oleic acid, the content of which in 28-day old geese of the experimental group decreased by 31.7 in the cardiac muscle and 46.8 times in the stomach, compared with the control. Further changes in fatty acid composition were characterized by lower number of differences between the control and experimental groups. Increase in antioxidant activity in these tissues during development of juvenile feathers (day 49) occurs as a result of activation of alternative mechanisms of antioxidative protection, which take place with no significant changes in fatty acid composition. Furthermore, we determined that in the stomach and cardiac muscles of geese, the action of extract from common oat activated mechanisms of antioxidative protection, which increased the level of correlation between the changes in fatty acid composition. The study confirmed that the extract caused not only significant increase in the weight of geese at the end of the experiment, but also improved their pterylographic parameters. Therefore, it is practical to conduct similar studies on wild species of birds grown for hunting, because this process of development of feathers, particularly for such species of birds, is essential.
Collapse
|
24
|
Ponte LGS, Pavan ICB, Mancini MCS, da Silva LGS, Morelli AP, Severino MB, Bezerra RMN, Simabuco FM. The Hallmarks of Flavonoids in Cancer. Molecules 2021; 26:2029. [PMID: 33918290 PMCID: PMC8038160 DOI: 10.3390/molecules26072029] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Flavonoids represent an important group of bioactive compounds derived from plant-based foods and beverages with known biological activity in cells. From the modulation of inflammation to the inhibition of cell proliferation, flavonoids have been described as important therapeutic adjuvants against several diseases, including diabetes, arteriosclerosis, neurological disorders, and cancer. Cancer is a complex and multifactor disease that has been studied for years however, its prevention is still one of the best known and efficient factors impacting the epidemiology of the disease. In the molecular and cellular context, some of the mechanisms underlying the oncogenesis and the progression of the disease are understood, known as the hallmarks of cancer. In this text, we review important molecular signaling pathways, including inflammation, immunity, redox metabolism, cell growth, autophagy, apoptosis, and cell cycle, and analyze the known mechanisms of action of flavonoids in cancer. The current literature provides enough evidence supporting that flavonoids may be important adjuvants in cancer therapy, highlighting the importance of healthy and balanced diets to prevent the onset and progression of the disease.
Collapse
Affiliation(s)
- Luis Gustavo Saboia Ponte
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
- Laboratory of Signal Mechanisms (LMS), School of Pharmaceutical Sciences (FCF), University of Campinas (UNICAMP), Campinas, São Paulo 13083-871, Brazil
| | - Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Luiz Guilherme Salvino da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Matheus Brandemarte Severino
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Rosangela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| |
Collapse
|
25
|
Qiu Z, Deng W, Hong Y, Zhao L, Li M, Guan Y, Su Y, Chen C, Shi Q, Yu J, Wang W. Biological Behavior and Lipid Metabolism of Colon Cancer Cells are Regulated by a Combination of Sterol Regulatory Element-Binding Protein 1 and ATP Citrate Lyase. Onco Targets Ther 2021; 14:1531-1542. [PMID: 33688201 PMCID: PMC7935446 DOI: 10.2147/ott.s282906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/02/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose To research the effects of ATP citrate lyase (ACLY) and Sterol-regulatory element binding protein 1 (SREBP1) on the biology and lipid metabolism of colorectal cancer cells. Methods Colorectal cancer cells Caco-2 and Lovo were transfected with ACLY or SREBP1 gene knockdown lentiviruses. Four groups were set: ACLY knockdown, SREBP1 knockdown group, empty vector-transfected (negative control), and untreated cells (blank control). Cell proliferation was measured using CCK-8, colony formation, and EdU labeling assays. Apoptosis was detected using Annexin V-APC/7- AAD and JC-1 assay. Transwell migration and wound healing assays analyzed cell migration and invasion. A triglyceride test kit and oil red O stain assessed cell lipid production. Key factors related to lipid metabolism were detected. Results ACLY and SREBP1 promoted cell proliferation at 48 and 120 h, but there was no significant difference in Caco-2 cells at 24 h, at which point the effect of SREBP1 was more important. ACLY's effect on cell proliferation was more obvious at 120 h. Colony formation assays in Caco-2 showed similar results to the CCK-8 assay at 120 h, but ACLY knockdown had no effect in Lovo cells. EDU assays showed that ACLY or SREBP1 facilitated DNA reproduction in the two cell lines, in which SREBP1 was more significant. Knockdown of the two genes showed significant differences in Lovo cells. However, ALCY knockdown promoted apoptosis to a greater extent than SREBP1 knockdown in Caco-2 cells. In addition, ACLY and SREBP1 enhanced migration, invasion, and lipid production in both cell lines. Knockdown of ACLY or SREBP1 reduced lipid metabolism pathway gene expression in the two cell lines. Conclusion Knockdown of ACLY and SREBP1 genes inhibit the proliferation, migration, and invasion of colorectal cancer cells, while promoting their apoptosis. Our results identified potential new targets to treat colorectal cancer via lipid synthesis modulation in cancer cells.
Collapse
Affiliation(s)
- Zhendong Qiu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Yupu Hong
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Liang Zhao
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Man Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Yongjun Guan
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Yingru Su
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Qiao Shi
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Jia Yu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| |
Collapse
|
26
|
Koltai T. Targeting the pH Paradigm at the Bedside: A Practical Approach. Int J Mol Sci 2020; 21:E9221. [PMID: 33287221 PMCID: PMC7730959 DOI: 10.3390/ijms21239221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
The inversion of the pH gradient in malignant tumors, known as the pH paradigm, is increasingly becoming accepted by the scientific community as a hallmark of cancer. Accumulated evidence shows that this is not simply a metabolic consequence of a dysregulated behavior, but rather an essential process in the physiopathology of accelerated proliferation and invasion. From the over-simplification of increased lactate production as the cause of the paradigm, as initially proposed, basic science researchers have arrived at highly complex and far-reaching knowledge, that substantially modified that initial belief. These new developments show that the paradigm entails a different regulation of membrane transporters, electrolyte exchangers, cellular and membrane enzymes, water trafficking, specialized membrane structures, transcription factors, and metabolic changes that go far beyond fermentative glycolysis. This complex world of dysregulations is still shuttered behind the walls of experimental laboratories and has not yet reached bedside medicine. However, there are many known pharmaceuticals and nutraceuticals that are capable of targeting the pH paradigm. Most of these products are well known, have low toxicity, and are also inexpensive. They need to be repurposed, and this would entail shorter clinical studies and enormous cost savings if we compare them with the time and expense required for the development of a new molecule. Will targeting the pH paradigm solve the "cancer problem"? Absolutely not. However, reversing the pH inversion would strongly enhance standard treatments, rendering them more efficient, and in some cases permitting lower doses of toxic drugs. This article's goal is to describe how to reverse the pH gradient inversion with existing drugs and nutraceuticals that can easily be used in bedside medicine, without adding toxicity to established treatments. It also aims at increasing awareness among practicing physicians that targeting the pH paradigm would be able to improve the results of standard therapies. Some clinical cases will be presented as well, showing how the pH gradient inversion can be treated at the bedside in a simple manner with repurposed drugs.
Collapse
Affiliation(s)
- Tomas Koltai
- Centro de Diagnostico y Tratamiento de la Obra Social del Personal de la Alimentacion, Talar de Pacheco, Buenos Aires 1617, Argentina
| |
Collapse
|
27
|
Little R, Houghton MJ, Carr IM, Wabitsch M, Kerimi A, Williamson G. The Ability of Quercetin and Ferulic Acid to Lower Stored Fat is Dependent on the Metabolic Background of Human Adipocytes. Mol Nutr Food Res 2020; 64:e2000034. [PMID: 32350998 DOI: 10.1002/mnfr.202000034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/12/2020] [Indexed: 12/15/2022]
Abstract
SCOPE Dietary flavonoids and phenolic acids can modulate lipid metabolism, but effects on mature human adipocytes are not well characterized. MATERIALS AND METHODS Human adipocytes are differentiated, and contain accumulated lipids, mimicking white adipocytes. They are then cultured either under conditions of actively synthesizing and accumulating additional lipids through lipogenesis ("ongoing lipogenic state") or under conditions of maintaining but not increasing stored lipids ("lipid storage state"). Total lipid, lipidomic and transcriptomics analyses are employed to assess changes after treatment with quercetin and/or ferulic acid. RESULTS In the "lipid storage state," a longer-term treatment (3 doses over 72 h) with low concentrations of quercetin and ferulic acid together significantly lowered stored lipid content, modified lipid composition, and modulated genes related to lipid metabolism with a strong implication of peroxisome proliferator-activated receptor (PPARα)/retinoid X receptor (RXRα) involvement. In the "ongoing lipogenic state," the effect of quercetin and ferulic acid is markedly different, with fewer changes in gene expression and lipid composition, and no detectable involvement of PPARα/RXRα, with a tenfold higher concentration required to attenuate stored lipid content. CONCLUSIONS Multiple low-dose treatment of quercetin and ferulic acid modulates lipid metabolism in adipocytes, but the effect is dramatically dependent on the metabolic state of the cell.
Collapse
Affiliation(s)
- Robert Little
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Michael J Houghton
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | - Ian M Carr
- Saint James' University Hospital, Granville Road, Leeds, LS9 7TF, UK
| | - Martin Wabitsch
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine University Medical Centre, University of Ulm, Ulm, 89075, Germany
| | - Asimina Kerimi
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | - Gary Williamson
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| |
Collapse
|