1
|
Wu H, Wang X, Yu J, Li J, Ma Z, Sheng X, Yang H, Wei L, Qi X. Silencing N29 Regulated miR-193b-5p/TGFBR2 Axis to Mitigate the Progression of Cardiac Hypertrophy. J Gene Med 2024; 26:e70002. [PMID: 39667927 DOI: 10.1002/jgm.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/24/2024] [Accepted: 11/10/2024] [Indexed: 12/14/2024] Open
Abstract
The study aimed to analyze differentially expressed lncRNAs in a model of cardiac hypertrophy, specially focusing on the molecular mechanisms of lncRNA NONMMUT023529 (lncRNA N29) in myocardial hypertrophy. Based on gene microarray results, RT-qPCR validation confirmed that lncRNA N29 was significantly upregulated in TAC-induced mice cardiac tissues. Echocardiographic assessments further verified that silencing lncRNA N29 led to a marked improvement in cardiac function, which aligned with the pathological findings revealed by H&E and Masson staining. Meanwhile, immunofluorescence staining results also confirmed that silencing lncRNA N29 effectively inhibited myocardial hypertrophy. Dual luciferase reporter assay and western blot results confirmed that lncRNA can mediate miR-193b-5p/TGFBR2 axis to regulate smad/2/3 expression and mitigate the progression of myocardial hypertrophy. Our findings suggested that the close association between the protective mechanism involving in the silencing lncRNA N29 in myocardial hypertrophy and miR-193b-5p/TGFBR2 axis. We identified that lncRNA N29 might act as a therapeutic target for the treatment of myocardial hypertrophy.
Collapse
Affiliation(s)
- Hao Wu
- School of Medicine, Nankai University, Tianjin, China
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Xinshuang Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Yu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jiao Li
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Zhenhua Ma
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Xi Sheng
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Han Yang
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Liping Wei
- School of Medicine, Nankai University, Tianjin, China
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Xin Qi
- School of Medicine, Nankai University, Tianjin, China
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
2
|
Lin M, Hu L, Shen S, Liu J, Liu Y, Xu Y, Chen H, Sugimoto K, Li J, Kamitsukasa I, Hiwasa T, Wang H, Xu A. Atherosclerosis-related biomarker PABPC1 predicts pan-cancer events. Stroke Vasc Neurol 2024; 9:108-125. [PMID: 37311641 PMCID: PMC11103157 DOI: 10.1136/svn-2022-002246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Atherosclerosis (AS) and tumours are the leading causes of death worldwide and share common risk factors, detection methods and molecular markers. Therefore, searching for serum markers shared by AS and tumours is beneficial to the early diagnosis of patients. METHODS The sera of 23 patients with AS-related transient ischaemic attack were screened by serological identification of antigens through recombinant cDNA expression cloning (SEREX), and cDNA clones were identified. Pathway function enrichment analysis was performed on cDNA clones to identify their biological pathways and determine whether they were related to AS or tumours. Subsequently, gene-gene and protein-protein interactions were performed and AS-associated markers would be discovered. The expression of AS biomarkers in human normal organs and pan-cancer tumour tissues were explored. Then, immune infiltration level and tumour mutation burden of various immune cells were evaluated. Survival curves analysis could show the expression of AS markers in pan-cancer. RESULTS AS-related sera were screened by SEREX, and 83 cDNA clones with high homology were obtained. Through functional enrichment analysis, it was found that their functions were closely related to AS and tumour functions. After multiple biological information interaction screening and the external cohort validating, poly(A) binding protein cytoplasmic 1 (PABPC1) was found to be a potential AS biomarker. To assess whether PABPC1 was related to pan-cancer, its expression in different tumour pathological stages and ages was screened. Since AS-associated proteins were closely related to cancer immune infiltration, we investigated and found that PABPC1 had the same role in pan-cancer. Finally, analysis of Kaplan-Meier survival curves revealed that high PABPC1 expression in pan-cancer was associated with high risk of death. CONCLUSIONS Through the findings of SEREX and bioinformatics pan-cancer analysis, we concluded that PABPC1 might serve as a potential biomarker for the prediction and diagnosis of AS and pan-cancer.
Collapse
Affiliation(s)
- Miao Lin
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liubing Hu
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- The Biomedical Translational Research Institute,Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Si Shen
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Radiology, Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jiyue Liu
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yanyan Liu
- The Biomedical Translational Research Institute,Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Yixian Xu
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Honglin Chen
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Radiology, Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Kazuo Sugimoto
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jianshuang Li
- The Biomedical Translational Research Institute,Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Ikuo Kamitsukasa
- Department of Neurology, Chiba Rosai Hospital, Chiba, Japan
- Department of Neurology, Chibaken Saiseikai Narashino Hospital, Chiba, Japan
| | - Takaki Hiwasa
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hao Wang
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Anding Xu
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Qi Y, Wang M, Jiang Q. PABPC1--mRNA stability, protein translation and tumorigenesis. Front Oncol 2022; 12:1025291. [PMID: 36531055 PMCID: PMC9753129 DOI: 10.3389/fonc.2022.1025291] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/08/2022] [Indexed: 09/29/2023] Open
Abstract
Mammalian poly A-binding proteins (PABPs) are highly conserved multifunctional RNA-binding proteins primarily involved in the regulation of mRNA translation and stability, of which PABPC1 is considered a central regulator of cytoplasmic mRNA homing and is involved in a wide range of physiological and pathological processes by regulating almost every aspect of RNA metabolism. Alterations in its expression and function disrupt intra-tissue homeostasis and contribute to the development of various tumors. There is increasing evidence that PABPC1 is aberrantly expressed in a variety of tumor tissues and cancers such as lung, gastric, breast, liver, and esophageal cancers, and PABPC1 might be used as a potential biomarker for tumor diagnosis, treatment, and clinical application in the future. In this paper, we review the abnormal expression, functional role, and molecular mechanism of PABPC1 in tumorigenesis and provide directions for further understanding the regulatory role of PABPC1 in tumor cells.
Collapse
Affiliation(s)
- Ya Qi
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University, Shenyang, Liaoning, China
| | - Min Wang
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University, Shenyang, Liaoning, China
| | - Qi Jiang
- Second Department of Clinical Medicine, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|