1
|
Yin Y, Chen Y, Xu J, Liu B, Zhao Y, Tan X, Xiao M, Zhou Y, Zheng X, Xu Y, Han Z, Hu H, Li Z, Ou N, Lian W, Li Y, Su Z, Dai Y, Tang Y, Zhao L. Molecular and spatial signatures of human and rat corpus cavernosum physiopathological processes at single-cell resolution. Cell Rep 2024; 43:114760. [PMID: 39299236 DOI: 10.1016/j.celrep.2024.114760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/15/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
The composition and cellular heterogeneity of the corpus cavernosum (CC) microenvironment have been characterized, but the spatial heterogeneity at the molecular level remains unexplored. In this study, we integrate single-cell RNA sequencing (scRNA-seq) and spatial transcriptome sequencing to comprehensively chart the spatial cellular landscape of the human and rat CC under normal and disease conditions. We observe differences in the proportions of cell subtypes and marker genes between humans and rats. Based on the analysis of the fibroblast (FB) niche, we also find that the enrichment scores of mechanical force signaling vary across different regions and correlate with the spatial distribution of FB subtypes. In vitro, the soft and hard extracellular matrix (ECM) induces the differentiation of FBs into apolipoprotein (APO)+ FBs and cartilage oligomeric matrix protein (COMP)+ FBs, respectively. In summary, our study provides a cross-species and physiopathological transcriptomic atlas of the CC, contributing to a further understanding of the molecular anatomy and regulation of penile erection.
Collapse
Affiliation(s)
- Yinghao Yin
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Yuzhuo Chen
- Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Jiarong Xu
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Biao Liu
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Yifan Zhao
- Department of Biostatistics & Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Xiaoli Tan
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Ming Xiao
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Yihong Zhou
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Xiaoping Zheng
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Yanghua Xu
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Zhitao Han
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Hongji Hu
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Zitaiyu Li
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Ningjing Ou
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Wenfei Lian
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Yawei Li
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Zhongzhen Su
- Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| | - Liangyu Zhao
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| |
Collapse
|
2
|
Gu Q, Luan J, Yu M, Xia J, Wang Z. Chronic prostatitis/chronic pelvic pain syndrome impairs erectile function by inducing apoptosis in a rat model of experimental autoimmune prostatitis. Int J Impot Res 2024:10.1038/s41443-024-00965-9. [PMID: 39169141 DOI: 10.1038/s41443-024-00965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Over the years, numerous epidemiological studies have shown that chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) promotes erectile dysfunction. Nonetheless, the precise underlying mechanism remains to be fully clarified. The objective of this research was to identify crucial signaling pathways responsible for CP/CPPS-induced erectile dysfunction. Thirty 8-week-old male Sprague‒Dawley rats were randomly assigned to either the CP/CPPS model group or the control group. The CP/CPPS rat model was established through subcutaneous injection of a combination of rat prostate protein and Freund's adjuvant. Penile erectile function assessment was conducted 45 days after immunization through electrical stimulation of the cavernous nerve. RNA sequencing of the corpus cavernosum of the penis was then performed using the Kyoto Encyclopedia of Genes and Genomes and protein‒protein interaction network analysis. Western blotting was performed on the cavernous tissue. Cell apoptosis assays, cell counting kit-8 assays, cell cloning assays, and Western blotting were conducted on rat endothelial cells. Erectile function was significantly lower in the CP/CPPS model group than in the control group (p < 0.001). Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that differentially expressed genes were predominantly enriched in the apoptosis pathway. Moreover, an increase in apoptosis in the rat corpus cavernosum, along with a decrease in the protein expression of CD31 (p = 0.0089) and eNOS (p = 0.0069) following CP/CPPS induction, was observed. In a protein‒protein interaction network, Pitx2 was recognized as a central gene. The role of Pitx2 in regulating apoptosis was demonstrated in experiments using rat endothelial cell lines, and it was found to be regulated by the Wnt/β-catenin pathway. This study highlights the occurrence of cavernous endothelial cell apoptosis in CP/CPPS-induced erectile dysfunction, and the potential mechanism of apoptosis may involve inhibition of the Wnt/β-catenin/Pitx2 pathway.
Collapse
Affiliation(s)
- Qi Gu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Jiaochen Luan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Mengchi Yu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Jiadong Xia
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China.
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
3
|
Bae SG, Yin GN, Ock J, Suh JK, Ryu JK, Park J. Single-cell transcriptome analysis of cavernous tissues reveals the key roles of pericytes in diabetic erectile dysfunction. eLife 2024; 12:RP88942. [PMID: 38856719 PMCID: PMC11164535 DOI: 10.7554/elife.88942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Erectile dysfunction (ED) affects a significant proportion of men aged 40-70 and is caused by cavernous tissue dysfunction. Presently, the most common treatment for ED is phosphodiesterase 5 inhibitors; however, this is less effective in patients with severe vascular disease such as diabetic ED. Therefore, there is a need for development of new treatment, which requires a better understanding of the cavernous microenvironment and cell-cell communications under diabetic condition. Pericytes are vital in penile erection; however, their dysfunction due to diabetes remains unclear. In this study, we performed single-cell RNA sequencing to understand the cellular landscape of cavernous tissues and cell type-specific transcriptional changes in diabetic ED. We found a decreased expression of genes associated with collagen or extracellular matrix organization and angiogenesis in diabetic fibroblasts, chondrocytes, myofibroblasts, valve-related lymphatic endothelial cells, and pericytes. Moreover, the newly identified pericyte-specific marker, Limb Bud-Heart (Lbh), in mouse and human cavernous tissues, clearly distinguishing pericytes from smooth muscle cells. Cell-cell interaction analysis revealed that pericytes are involved in angiogenesis, adhesion, and migration by communicating with other cell types in the corpus cavernosum; however, these interactions were highly reduced under diabetic conditions. Lbh expression is low in diabetic pericytes, and overexpression of LBH prevents erectile function by regulating neurovascular regeneration. Furthermore, the LBH-interacting proteins (Crystallin Alpha B and Vimentin) were identified in mouse cavernous pericytes through LC-MS/MS analysis, indicating that their interactions were critical for maintaining pericyte function. Thus, our study reveals novel targets and insights into the pathogenesis of ED in patients with diabetes.
Collapse
Affiliation(s)
- Seo-Gyeong Bae
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST)GwangjuRepublic of Korea
| | - Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urolog, Inha University School of MedicineIncheonRepublic of Korea
| | - Jiyeon Ock
- National Research Center for Sexual Medicine and Department of Urolog, Inha University School of MedicineIncheonRepublic of Korea
| | - Jun-Kyu Suh
- National Research Center for Sexual Medicine and Department of Urolog, Inha University School of MedicineIncheonRepublic of Korea
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urolog, Inha University School of MedicineIncheonRepublic of Korea
- Program in Biomedical Science & Engineering, Inha UniversityIncheonRepublic of Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST)GwangjuRepublic of Korea
| |
Collapse
|
4
|
Luo C, Peng Y, Gu J, Li T, Wang Q, Qi X, Wei A. Single-cell RNA sequencing reveals critical modulators of extracellular matrix of penile cavernous cells in erectile dysfunction. Sci Rep 2024; 14:5886. [PMID: 38467692 PMCID: PMC10928087 DOI: 10.1038/s41598-024-56428-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
Erectile dysfunction (ED) is a common and difficult to treat disease, and has a high incidence rate worldwide. As a marker of vascular disease, ED usually occurs in cardiovascular disease, 2-5 years prior to cardiovascular disease events. The extracellular matrix (ECM) network plays a crucial role in maintaining cardiac homeostasis, not only by providing structural support, but also by promoting force transmission, and by transducing key signals to intracardiac cells. However, the relationship between ECM and ED remains unclear. To help fill this gap, we profiled single-cell RNA-seq (scRNA-seq) to obtain transcriptome maps of 82,554 cavernous single cells from ED and non-ED samples. Cellular composition of cavernous tissues was explored by uniform manifold approximation and projection. Pseudo-time cell trajectory combined with gene enrichment analysis were performed to unveil the molecular pathways of cell fate determination. The relationship between cavernous cells and the ECM, and the changes in related genes were elucidated. The CellChat identified ligand-receptor pairs (e.g., PTN-SDC2, PTN-NCL, and MDK-SDC2) among the major cell types in the cavernous tissue microenvironment. Differential analysis revealed that the cell type-specific transcriptomic changes in ED are related to ECM and extracellular structure organization, external encapsulating structure organization, and regulation of vasculature development. Trajectory analysis predicted the underlying target genes to modulate ECM (e.g., COL3A1, MDK, MMP2, and POSTN). Together, this study highlights potential cell-cell interactions and the main regulatory factors of ECM, and reveals that genes may represent potential marker features of ED progression.
Collapse
Affiliation(s)
- Chao Luo
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang City, 550004, Guizhou Province, China
| | - Yaqian Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang City, 550004, Guizhou Province, China
| | - Jiang Gu
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Tao Li
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Qiang Wang
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang City, 550004, Guizhou Province, China.
| | - Anyang Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou City, Guangdong Province, China.
| |
Collapse
|