1
|
Sharma S, Kapri A, Joshi M, Onteru SK, Singh D. Development of RT-LAMP assay for detection of lead and cadmium toxicity using HepG2 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65328-65343. [PMID: 39578335 DOI: 10.1007/s11356-024-35544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Heavy metals such as lead and cadmium are prevalent in the environment. These are harmful to living beings even at lower concentrations as they persist in the body for years and lead to the development of severe diseases. Therefore, the present work was designed to develop a rapid and field-applicable cell-based assay for quick detection of lead and cadmium in biofluids using an RNA biomarker. The RNA biomarker was identified by analyzing the impact of these heavy metals on the gene expression of candidate genes using HepG2 cells. The results showed that the gene expression of AhR pathway-related genes, apoptosis-related genes, MAPK1, and HMOX1 were significantly increased after lead and cadmium treatments (P < 0.05). Interestingly, the gene expression of HMOX1 was increased linearly up to fivefold in a dose and time-dependent manner in the case of both heavy metals which also correlated with an increased secretion of bilirubin from the cells after 6 h treatment. Therefore, the RT-LAMP assay was developed for lead and cadmium toxicity using HMOX1. The positive amplification was visualized in the form of color change of HNB dye from violet to blue in 30 min. Additionally, standard curves were also prepared for the RT-LAMP color change after treatment with different concentrations of lead and cadmium for their quantification in unknown samples. The developed RT-LAMP assay was also validated using lead and cadmium-spiked milk samples. The ROC curve analysis showed 100% sensitivity and specificity for both heavy metals above their MRL value in infant milk substitutes and infant foods. This assay can be utilized for early detection of heavy metals in common food items such as milk.
Collapse
Affiliation(s)
- Sanjay Sharma
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, ICAR National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Ankita Kapri
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, ICAR National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Mansi Joshi
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, ICAR National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, ICAR National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, ICAR National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
2
|
Koyama H, Kamogashira T, Yamasoba T. Heavy Metal Exposure: Molecular Pathways, Clinical Implications, and Protective Strategies. Antioxidants (Basel) 2024; 13:76. [PMID: 38247500 PMCID: PMC10812460 DOI: 10.3390/antiox13010076] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Heavy metals are often found in soil and can contaminate drinking water, posing a serious threat to human health. Molecular pathways and curation therapies for mitigating heavy metal toxicity have been studied for a long time. Recent studies on oxidative stress and aging have shown that the molecular foundation of cellular damage caused by heavy metals, namely, apoptosis, endoplasmic reticulum stress, and mitochondrial stress, share the same pathways as those involved in cellular senescence and aging. In recent aging studies, many types of heavy metal exposures have been used in both cellular and animal aging models. Chelation therapy is a traditional treatment for heavy metal toxicity. However, recently, various antioxidants have been found to be effective in treating heavy metal-induced damage, shifting the research focus to investigating the interplay between antioxidants and heavy metals. In this review, we introduce the molecular basis of heavy metal-induced cellular damage and its relationship with aging, summarize its clinical implications, and discuss antioxidants and other agents with protective effects against heavy metal damage.
Collapse
Affiliation(s)
- Hajime Koyama
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Teru Kamogashira
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Tokyo Teishin Hospital, Tokyo 102-0071, Japan
| |
Collapse
|
3
|
Deyssenroth MA, Peng S, Hao K, Marsit CJ, Chen J. Placental Gene Transcript Proportions are Altered in the Presence of In Utero Arsenic and Cadmium Exposures, Genetic Variants, and Birth Weight Differences. Front Genet 2022; 13:865449. [PMID: 35646058 PMCID: PMC9136297 DOI: 10.3389/fgene.2022.865449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022] Open
Abstract
Background: In utero arsenic and cadmium exposures are linked with reduced birth weight as well as alterations in placental molecular features. However, studies thus far have focused on summarizing transcriptional activity at the gene level and do not capture transcript specification, an important resource during fetal development to enable adaptive responses to the rapidly changing in utero physiological conditions. In this study, we conducted a genome-wide analysis of the placental transcriptome to evaluate the role of differential transcript usage (DTU) as a potential marker of in utero arsenic and cadmium exposure and fetal growth restriction. Methods: Transcriptome-wide RNA sequencing was performed in placenta samples from the Rhode Island Child Health Study (RICHS, n = 199). Arsenic and cadmium levels were measured in maternal toenails using ICP-MS. Differential transcript usage (DTU) contrasting small (SGA) and appropriate (AGA) for gestational age infants as well as above vs. below median exposure to arsenic and cadmium were assessed using the DRIMSeq R package. Genetic variants that influence transcript usage were determined using the sQTLseeker R package. Results: We identified 82 genes demonstrating DTU in association with SGA status at an FDR <0.05. Among these, one gene, ORMDL1, also demonstrated DTU in association with arsenic exposure, and fifteen genes (CSNK1E, GBA, LAMTOR4, MORF4L1, PIGO, PSG1, PSG3, PTMA, RBMS1, SLC38A2, SMAD4, SPCS2, TUBA1B, UBE2A, YIPF5) demonstrated DTU in association with cadmium exposure. In addition to cadmium exposure and SGA status, proportions of the LAMTOR4 transcript ENST00000474141.5 also differed by genetic variants (rs10231604, rs12878, and rs3736591), suggesting a pathway by which an in utero exposure and genetic variants converge to impact fetal growth through perturbations of placental processes. Discussion: We report the first genome-wide characterization of placental transcript usage and associations with intrauterine metal exposure and fetal growth restriction. These results highlight the utility of interrogating the transcriptome at finer-scale transcript-level resolution to identify novel placental biomarkers of exposure-induced outcomes.
Collapse
Affiliation(s)
- Maya A. Deyssenroth
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Shouneng Peng
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Carmen J. Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
Wong WPS, Wang JC, Schipma MJ, Zhang X, Edwards JR, El Muayed M. Cadmium-mediated pancreatic islet transcriptome changes in mice and cultured mouse islets. Toxicol Appl Pharmacol 2021; 433:115756. [PMID: 34666113 PMCID: PMC9873403 DOI: 10.1016/j.taap.2021.115756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/08/2021] [Accepted: 10/13/2021] [Indexed: 01/26/2023]
Abstract
Type II diabetes mellitus (T2DM) is a multifactorial disease process that is characterized by insulin resistance and impairment of insulin-producing pancreatic islets. There is evidence that environmental exposure to cadmium contributes to the development of T2DM. The presence of cadmium in human islets from the general population and the uptake of cadmium in β-cells have been reported. To identify cadmium-mediated changes in gene expression and molecular regulatory networks in pancreatic islets, we performed next-generation RNA-Sequencing (RNA-Seq) in islets following either in vivo (1 mM CdCl2 in drinking water) or ex-vivo (0.5 μM CdCl2) exposure. Both exposure regiments resulted in islet cadmium concentrations that are comparable to those found in human islets from the general population. 6-week in vivo cadmium exposure upregulates the expression of five genes: Synj2, Gjb1, Rbpjl, Try5 and 5430419D17Rik. Rbpjl is a known regulator of ctrb, a gene associated with diabetes susceptibility. With 18-week in vivo cadmium exposure, we found more comprehensive changes in gene expression profile. Pathway enrichment analysis showed that these secondary changes were clustered to molecular mechanisms related to intracellular protein trafficking to the plasma membrane. In islet culture, cadmium ex vivo significantly induces the expression of Mt1, Sphk1, Nrcam, L3mbtl2, Rnf216 and Itpr1. Mt1 and Itpr1 are known to be involved in glucose homeostasis. Collectively, findings reported here revealed a complex cadmium-mediated effect on pancreatic islet gene expression at environmentally relevant cadmium exposure conditions, providing the basis for further studies into the pathophysiological processes arising from cadmium accumulation in pancreatic islets.
Collapse
Affiliation(s)
- Winifred P S Wong
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Janice C Wang
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Matthew J Schipma
- NU Seq Core, Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Xiaomin Zhang
- Division of Transplant Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joshua R Edwards
- College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Malek El Muayed
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Brandis JEP, Zalesak SM, Kane MA, Michel SLJ. Cadmium Exchange with Zinc in the Non-Classical Zinc Finger Protein Tristetraprolin. Inorg Chem 2021; 60:7697-7707. [PMID: 33999622 PMCID: PMC8501473 DOI: 10.1021/acs.inorgchem.0c03808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tristetraprolin (TTP) is a nonclassical CCCH zinc finger protein that regulates inflammation. TTP targets AU-rich RNA sequences of cytokine mRNAs forming a TTP/mRNA complex. This complex is then degraded, switching off the inflammatory response. Cadmium, a known carcinogen, triggers proinflammatory effects, and there is evidence that Cd increases TTP expression in cells, suggesting that Zn-TTP may be a target for cadmium toxicity. We sought to determine whether Cd exchanges with Zn in the TTP active site and measure the effect of RNA binding on this exchange. A construct of TTP that contains the two CCCH domains (TTP-2D) was employed to investigate these interactions. A spin-filter ICP-MS experiment to quantify the metal that is bound to the ZF after metal exchange was performed, and it was determined that Cd exchanges with Zn in Zn2-TTP-2D and that Zn exchanges with Cd in Cd2-TTP-2D. A native ESI-MS experiment to identify the metal-ZF complexes formed after metal exchange was performed, and M-TTP-2D complexes with singular and double metal exchange were observed. Metal exchange was measured in both the absence and presence of TTP's partner RNA, with retention of RNA binding. These data show that Cd can exchange with Zn in TTP without affecting function.
Collapse
Affiliation(s)
- Joel E P Brandis
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Stephanie M Zalesak
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
6
|
Systematic network assessment of the carcinogenic activities of cadmium. Toxicol Appl Pharmacol 2016; 310:150-158. [PMID: 27634459 DOI: 10.1016/j.taap.2016.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/28/2016] [Accepted: 09/11/2016] [Indexed: 12/30/2022]
Abstract
Cadmium has been defined as type I carcinogen for humans, but the underlying mechanisms of its carcinogenic activity and its influence on protein-protein interactions in cells are not fully elucidated. The aim of the current study was to evaluate, systematically, the carcinogenic activity of cadmium with systems biology approaches. From a literature search of 209 studies that performed with cellular models, 208 proteins influenced by cadmium exposure were identified. All of these were assessed by Western blotting and were recognized as key nodes in network analyses. The protein-protein functional interaction networks were constructed with NetBox software and visualized with Cytoscape software. These cadmium-rewired genes were used to construct a scale-free, highly connected biological protein interaction network with 850 nodes and 8770 edges. Of the network, nine key modules were identified and 60 key signaling pathways, including the estrogen, RAS, PI3K-Akt, NF-κB, HIF-1α, Jak-STAT, and TGF-β signaling pathways, were significantly enriched. With breast cancer, colorectal and prostate cancer cellular models, we validated the key node genes in the network that had been previously reported or inferred form the network by Western blotting methods, including STAT3, JNK, p38, SMAD2/3, P65, AKT1, and HIF-1α. These results suggested the established network was robust and provided a systematic view of the carcinogenic activities of cadmium in human.
Collapse
|
7
|
The Effects of Cadmium at Low Environmental Concentrations on THP-1 Macrophage Apoptosis. Int J Mol Sci 2015; 16:21410-27. [PMID: 26370970 PMCID: PMC4613260 DOI: 10.3390/ijms160921410] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 01/07/2023] Open
Abstract
Cadmium at environmental concentrations is a risk factor for many diseases, including cardiovascular and neurodegenerative diseases, in which macrophages play an important role. The aim of this study was to evaluate the effects of cadmium at low environmental (nanomolar) concentrations on apoptotic processes in THP-1(acute monocytic leukemia cells line)-derived macrophages, with special focus on mitochondrial events involved. Macrophages were incubated with various cadmium chloride (CdCl2) solutions for 48 h at final concentrations of 5 nM, 20 nM, 200 nM and 2 µM CdCl2. Cell viability was measured using flow cytometry. Flow cytometric measurement (annexin V/FITC (annexin V/fluorescein isothiocyanate) and PI (propidium iodide) double staining) was used to quantify the extent of apoptosis. Fluorescence and confocal microscopy were used for imaging of apoptosis process. Changes in mitochondrial membrane potential were monitored using cytofluorimetry after cell staining with JC-1(5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazol-carbocyane iodide) probe. Mitochondrial ROS (reactive oxygen species) levels were measured cytofluorimetrically after incubation of cells with mitochondrial superoxide indicator (MitoSOX) red fluorescent marker. The mRNA expression of Bcl-2 and Bax was analysed with qRT-PCR. Our study demonstrates that cadmium, even at low environmental concentrations, exerts mitochondrial toxicity in THP-1 macrophages. Forty-eight-hour exposure to very low concentrations reduces cell viability and results in cell death by apoptosis and necrosis. The decrease in mitochondrial membrane potential, increased ROS production, increased Bax and decreased Bcl-2 mRNA expression are mitochondrial events involved in cadmium-induced apoptosis.
Collapse
|
8
|
Banni M, Hajer A, Sforzini S, Oliveri C, Boussetta H, Viarengo A. Transcriptional expression levels and biochemical markers of oxidative stress in Mytilus galloprovincialis exposed to nickel and heat stress. Comp Biochem Physiol C Toxicol Pharmacol 2014; 160:23-9. [PMID: 24291086 DOI: 10.1016/j.cbpc.2013.11.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/16/2013] [Accepted: 11/18/2013] [Indexed: 11/20/2022]
Abstract
The present study aims to evaluate transcriptional expression levels and biochemical markers of oxidative stress responses to nickel (Ni) exposure along with heat stress gradient in a mussel (Mytilus galloprovincialis). For this purpose, we investigated the response of oxidative stress markers, metallothionein accumulation and gene expression in digestive gland of mussels exposed to a sublethal concentration of Ni (2.5μM) along with a temperature gradient (18°C, 22°C, and 26°C) for 24h and 72h. Ni digestive gland uptake was evaluated after the exposure periods. Co-exposure to Ni and higher temperature (26°C) for 72h significantly decreased the antioxidant enzyme activities termed as catalase (CAT), superoxide dismutase (SOD) and glutathione-S-transferase (GST) and caused a pronounced increase of lipofuscin and neutral lipid (NL) accumulation. Ni-uptake was different with respect to the exposure periods and temperatures in Ni-exposed mussels. Sod, cat, gst, mt-10 and mt20 gene expression levels showed a substantial increased pattern in animals exposed for one day to heat stress compared to the control condition (18°C). The same pattern but with highest level was registered in animals co-exposed to Ni and temperatures within one day. Three days exposure to 18°C, 22°C and 26°C, resulted in a significant decrease in mRNA abundance of cat, gst and sod and a significant down-regulation of mts targets (22°C and 26°C). Our data provide new insights into the importance of the early protective response of oxidative stress related-gene expression and regulation in mussels challenging heat stress and sublethal Ni concentration.
Collapse
Affiliation(s)
- Mohamed Banni
- Department of Environmental and Life Sciences, University of Piemonte Orientale Amedeo Avogadro, Via Bellini 25G, 15100 Alessandria, Italy; Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia.
| | - Attig Hajer
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Suzanna Sforzini
- Department of Environmental and Life Sciences, University of Piemonte Orientale Amedeo Avogadro, Via Bellini 25G, 15100 Alessandria, Italy
| | - Caterina Oliveri
- Department of Environmental and Life Sciences, University of Piemonte Orientale Amedeo Avogadro, Via Bellini 25G, 15100 Alessandria, Italy
| | - Hamadi Boussetta
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Aldo Viarengo
- Department of Environmental and Life Sciences, University of Piemonte Orientale Amedeo Avogadro, Via Bellini 25G, 15100 Alessandria, Italy
| |
Collapse
|
9
|
Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int J Hyg Environ Health 2013; 216:587-98. [PMID: 23540489 DOI: 10.1016/j.ijheh.2013.02.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/26/2013] [Accepted: 02/26/2013] [Indexed: 12/24/2022]
Abstract
Heavy metals that are harmful to humans include arsenic, cadmium, chromium, lead, mercury, and nickel. Some metals or their related compounds may even cause cancer. However, the mechanism underlying heavy metal-induced cancer remains unclear. Increasing data show a link between heavy metal exposure and aberrant changes in both genetic and epigenetic factors via non-targeted multiple toxicogenomic technologies of the transcriptome, proteome, metabolome, and epigenome. These modifications due to heavy metal exposure might provide a better understanding of environmental disorders. Such informative changes following heavy metal exposure might also be useful for screening of biomarker-monitored exposure to environmental pollutants and/or predicting the risk of disease. We summarize advances in high-throughput toxicogenomic-based technologies and studies related to exposure to individual heavy metal and/or mixtures and propose the underlying mechanism of action and toxicant signatures. Integrative multi-level expression analysis of the toxicity of heavy metals via system toxicology-based methodologies combined with statistical and computational tools might clarify the biological pathways involved in carcinogenic processes. Although standard in vitro and in vivo endpoint testing of mutagenicity and carcinogenicity are considered a complementary approach linked to disease, we also suggest that further evaluation of prominent biomarkers reflecting effects, responses, and disease susceptibility might be diagnostic. Furthermore, we discuss challenges in toxicogenomic applications for toxicological studies of metal mixtures and epidemiological research. Taken together, this review presents toxicogenomic data that will be useful for improvement of the knowledge of carcinogenesis and the development of better strategies for health risk assessment.
Collapse
|
10
|
Abstract
Rapid advances in redox systems biology are creating new opportunities to understand complexities of human disease and contributions of environmental exposures. New understanding of thiol-disulfide systems have occurred during the past decade as a consequence of the discoveries that thiol and disulfide systems are maintained in kinetically controlled steady states displaced from thermodynamic equilibrium, that a widely distributed family of NADPH oxidases produces oxidants that function in cell signaling and that a family of peroxiredoxins utilize thioredoxin as a reductant to complement the well-studied glutathione antioxidant system for peroxide elimination and redox regulation. This review focuses on thiol/disulfide redox state in biologic systems and the knowledge base available to support development of integrated redox systems biology models to better understand the function and dysfunction of thiol-disulfide redox systems. In particular, central principles have emerged concerning redox compartmentalization and utility of thiol/disulfide redox measures as indicators of physiologic function. Advances in redox proteomics show that, in addition to functioning in protein active sites and cell signaling, cysteine residues also serve as redox sensors to integrate biologic functions. These advances provide a framework for translation of redox systems biology concepts to practical use in understanding and treating human disease. Biological responses to cadmium, a widespread environmental agent, are used to illustrate the utility of these advances to the understanding of complex pleiotropic toxicities.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
11
|
El Muayed M, Raja MR, Zhang X, MacRenaris KW, Bhatt S, Chen X, Urbanek M, O'Halloran TV, Lowe WL. Accumulation of cadmium in insulin-producing β cells. Islets 2012; 4:405-16. [PMID: 23466887 PMCID: PMC3605169 DOI: 10.4161/isl.23101] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Evidence suggests that chronic low level cadmium exposure impairs the function of insulin-producing β cells and may be associated with type-2 diabetes mellitus. Herein, we describe the cadmium content in primary human islets and define the uptake kinetics and effects of environmentally relevant cadmium concentrations in cultured β cells. The average cadmium content in islets from 10 non-diabetic human subjects was 29 ± 7 nmol/g protein (range 7 to 72 nmol/g protein). Exposure of the β-cell line MIN6 to CdCl 2 concentrations between 0.1 and 1.0 µmol/L resulted in a dose- and time-dependent uptake of cadmium over 72 h. This uptake resulted in an induction of metallthionein expression, likely enhancing cellular cadmium accumulation. Furthermore, cadmium accumulation resulted in an inhibition of glucose stimulated insulin secretion in MIN6 cells and primary mouse islets. Our results indicate that this impairment in β-cell function is not due to an increase in cell death or due to an increase in oxidative stress. We conclude that mouse β cells accumulate cadmium in a dose- and time-dependent manner over a prolonged time course at environmentally relevant concentrations. This uptake leads to a functional impairment of β-cell function without significant alterations in cell viability, expression of genes important for β-cell function or increase in oxidative stress.
Collapse
Affiliation(s)
- Malek El Muayed
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Michalek JL, Lee SJ, Michel SL. Cadmium coordination to the zinc binding domains of the non-classical zinc finger protein Tristetraprolin affects RNA binding selectivity. J Inorg Biochem 2012; 112:32-8. [DOI: 10.1016/j.jinorgbio.2012.02.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 12/22/2011] [Accepted: 02/07/2012] [Indexed: 11/24/2022]
|
13
|
Chen X, Zhu G, Jin T, Gu S, Xiao H, Qiu J. Cadmium induces differentiation of RAW264.7 cells into osteoclasts in the presence of RANKL. Food Chem Toxicol 2011; 49:2392-7. [PMID: 21723911 DOI: 10.1016/j.fct.2011.06.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 06/17/2011] [Accepted: 06/18/2011] [Indexed: 11/30/2022]
Abstract
The mechanism of cadmium effects on bone is not fully understood. In this study, we investigated the effects of cadmium on osteoclasts differentiation and the probable mechanism. RAW264.7 cells were exposed to cadmium (0-60 nmol/L) in the presence or absence of receptor-activated nuclear factor κ B ligand (RANKL) for 5 days. Then, the viability, tartrate-resistant acid phosphatase (TRAP) activity and the formation of TRAP positive multinucleated osteoclasts were observed. Receptor activator of nuclear factor κ B (RANK), tumor necrosis factor receptor associated factor 6 (TRAF6), c-src, c-fos, fos-related antigen 1 (Fra1) expression were determined by reverse transcription polymerase chain reaction. Cadmium increased TRAP activity (20-40%) and TRAP positive cell formation in the presence of RANKL, but had no obvious influence on them without RANKL. RANK, TRAF6, Fra1, c-src and c-fos (at 15-30 nmol/L) expression were enhanced (30-70%) by cadmium in the presence of RANKL, but cadmium had little influence on them in the absence of RANKL. This study demonstrated that cadmium could induce differentiation of osteoclasts precursor into osteoclasts in the presence of RANKL. Even though the changes of gene expression were small, RANKL/RANK and downstream genes may play an important role in cadmium effects on osteoclasts.
Collapse
Affiliation(s)
- Xiao Chen
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
14
|
Tvermoes BE, Bird GS, Freedman JH. Cadmium induces transcription independently of intracellular calcium mobilization. PLoS One 2011; 6:e20542. [PMID: 21694771 PMCID: PMC3111418 DOI: 10.1371/journal.pone.0020542] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/05/2011] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Exposure to cadmium is associated with human pathologies and altered gene expression. The molecular mechanisms by which cadmium affects transcription remain unclear. It has been proposed that cadmium activates transcription by altering intracellular calcium concentration ([Ca(2+)](i)) and disrupting calcium-mediated intracellular signaling processes. This hypothesis is based on several studies that may be technically problematic; including the use of BAPTA chelators, BAPTA-based fluorescent sensors, and cytotoxic concentrations of metal. METHODOLOGY/PRINCIPAL FINDING In the present report, the effects of cadmium on [Ca(2+)](i) under non-cytotoxic and cytotoxic conditions was monitored using the protein-based calcium sensor yellow cameleon (YC3.60), which was stably expressed in HEK293 cells. In HEK293 constitutively expressing YC3.60, this calcium sensor was found to be insensitive to cadmium. Exposing HEK293::YC3.60 cells to non-cytotoxic cadmium concentrations was sufficient to induce transcription of cadmium-responsive genes but did not affect [Ca(2+)](i) mobilization or increase steady-state mRNA levels of calcium-responsive genes. In contrast, exposure to cytotoxic concentrations of cadmium significantly reduced intracellular calcium stores and altered calcium-responsive gene expression. CONCLUSIONS/SIGNIFICANCE These data indicate that at low levels, cadmium induces transcription independently of intracellular calcium mobilization. The results also support a model whereby cytotoxic levels of cadmium activate calcium-responsive transcription as a general response to metal-induced intracellular damage and not via a specific mechanism. Thus, the modulation of intracellular calcium may not be a primary mechanism by which cadmium regulates transcription.
Collapse
Affiliation(s)
- Brooke E. Tvermoes
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Gary S. Bird
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
| | - Jonathan H. Freedman
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
15
|
Hsiao CJJ, Younis H, Boelsterli UA. Trovafloxacin, a fluoroquinolone antibiotic with hepatotoxic potential, causes mitochondrial peroxynitrite stress in a mouse model of underlying mitochondrial dysfunction. Chem Biol Interact 2010; 188:204-13. [DOI: 10.1016/j.cbi.2010.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/14/2010] [Accepted: 07/16/2010] [Indexed: 01/09/2023]
|
16
|
Kale VM, Hsiao CJJ, Boelsterli UA. Nimesulide-induced electrophile stress activates Nrf2 in human hepatocytes and mice but is not sufficient to induce hepatotoxicity in Nrf2-deficient mice. Chem Res Toxicol 2010; 23:967-76. [PMID: 20405857 DOI: 10.1021/tx100063z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nimesulide is a widely prescribed nitroaromatic sulfoanilide-type nonsteroidal anti-inflammatory drug that, despite its favorable safety profile, has been associated with rare cases of idiosyncratic drug-induced liver injury (DILI). Because reactive metabolites have been implicated in DILI, we aimed at investigating whether hepatic bioactivation of nimesulide produces a protein-reactive intermediate in hepatocytes. Also, we explored whether nimesulide can activate the transcription factor Nrf2 that would protect from drug-induced hepatocyte injury. We found that [(14)C]-nimesulide covalently bound to human liver microsomes (<50 pmol/mg under standard conditions) or immortalized human hepatocytes in a sulfaphenazole-sensitive, rifampicin-inducible manner; yet the overall extent of binding was modest. Although exposure of hepatocytes to nimesulide was not associated with increased net levels of superoxide anion, nimesulide (100 microM, 24 h) caused nuclear translocation of Nrf2 in a sulfaphenazole-sensitive manner, indicating a role of electrophilic metabolites. However, knockdown of Nrf2 with siRNA did not make the cells more sensitive to nimesulide-induced cell injury. Similarly, exposure of wild-type C57BL/6x129 Sv mice to nimesulide (100 mg/kg/day, po, for 5 days) was associated with nuclear translocation of immunoreactive Nrf2 in a small number of hepatocytes and induced >2-fold the expression levels of the Nrf2-target gene Nqo1 in wild-type but not Nrf2-null mice. Nimesulide administered to Nrf2(-/-) knockout mice did not cause increases in serum ALT activity or any apparent histopathological signs of liver injury. In conclusion, these data indicate that nimesulide is bioactivated by CYP2C to a protein-reactive electrophilic intermediate that activates the Nrf2 pathway even at nontoxic exposure levels.
Collapse
Affiliation(s)
- Vijay M Kale
- University of Connecticut School of Pharmacy, Department of Pharmaceutical Sciences, Storrs, Connecticut 06269, USA
| | | | | |
Collapse
|
17
|
Moulis JM. Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals. Biometals 2010; 23:877-96. [DOI: 10.1007/s10534-010-9336-y] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 04/01/2010] [Indexed: 01/12/2023]
|
18
|
Moraitis C, Curran BPG. Differential effects of hydrogen peroxide and ascorbic acid on the aerobic thermosensitivity of yeast cells grown under aerobic and anoxic conditions. Yeast 2009; 27:103-14. [PMID: 20014153 DOI: 10.1002/yea.1735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have previously demonstrated that in aerobically-grown cells of the yeast Saccharomyces cerevisiae, hydrogen peroxide (H(2)O(2)) increases and ascorbic acid decreases cellular thermosensitivity, as determined by the inducibility of a heat shock (HS)-reporter gene. In this work, we reveal that the aerobic thermosensitivity of anaerobically-grown yeast cells also increases in the presence of H(2)O(2), albeit differentially between cells with two different lipid profiles. In comparison to aerobically-grown fermenting cells treated with the same H(2)O(2) concentration, both these types of anaerobically-grown cells were found to be considerably less sensitive to aerobic heat shock and considerably more thermotolerant. Paradoxically, and in contrast to ascorbate-pretreated aerobically-grown yeast cells, when anaerobically-grown cells were heat-shocked aerobically in the presence of the same ascorbic acid concentration, they exhibited increased thermosensitivity and decreased intrinsic thermotolerance with respect to their untreated counterparts. These findings are discussed with respect to what is currently known about the redox and physiological status of yeast cells grown aerobically and cells reoxygenated following anoxic growth.
Collapse
Affiliation(s)
- Christos Moraitis
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | | |
Collapse
|