1
|
Meng X, Zhu X, Wang X, Zhang R, Zhang Z, Sun Y. Comprehensive analysis of the succinylome in Vero cells infected with peste des petits ruminants virus Nigeria 75/1 vaccine strain. BMC Vet Res 2025; 21:45. [PMID: 39885502 PMCID: PMC11784008 DOI: 10.1186/s12917-025-04496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Peste des petits ruminants virus (PPRV) is currently the only member of the Morbillivirus caprinae species within the genus Morbillivirus of the family Paramyoxviridae. PPRV causes a highly contagious disease in small ruminants, especially goats and sheep. Succinylation is a newly identified and conserved modification and plays an important role in host cell response to pathogen infection. However, the extent and function of succinylation in Vero cells during PPRV infection remains unknown. RESULTS In this study, a global profile of the succinylome in Vero cells infected with PPRV Nigeria 75/1 vaccine strain (PPRVvac) was performed by dimethylation labeling-based quantitative proteomics analysis. A total of 2633 succinylation sites derived from 823 proteins were quantified. The comparative analysis of differentially succinylated sites revealed that 228 down-regulated succinylation sites on 139 proteins and 44 up-regulated succinylation sites on 38 proteins were significantly modified in response to PPRVvac infection, seven succinylation motifs were identified. GO classification indicated that the differentially succinylated proteins (DSuPs) mainly participated in cellular respiration, biosynthetic process and transmembrane transporter activity. KEGG pathway analysis indicated that DSuPs were related to protein processing in the endoplasmic reticulum. Protein-protein interaction networks of the identified proteins provided further evidence that various ATP synthase subunits and carbon metabolism were modulated by succinylation, while the overlapped proteins between succinylation and acetylation are involved in glyoxylate and dicarboxylate metabolism. CONCLUSIONS The findings of the present study provide the first report of the succinylome in Vero cells infected with PPRVvac and provided a foundation for investigating the role of succinylation alone and its overlap with acetylation in response to PPRVvac.
Collapse
Affiliation(s)
- Xuelian Meng
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, Gansu, China.
| | - Xueliang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, Gansu, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, Gansu, China
| | - Rui Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, #16, South Section, 1st Ring Road, Chengdu, 610041, Sichuan, China
| | - Zhidong Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, #16, South Section, 1st Ring Road, Chengdu, 610041, Sichuan, China.
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, Gansu, China
| |
Collapse
|
2
|
Catalanotto C, Barbato C, Cogoni C, Benelli D. The RNA-Binding Function of Ribosomal Proteins and Ribosome Biogenesis Factors in Human Health and Disease. Biomedicines 2023; 11:2969. [PMID: 38001969 PMCID: PMC10669870 DOI: 10.3390/biomedicines11112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The ribosome is a macromolecular complex composed of RNA and proteins that interact through an integrated and interconnected network to preserve its ancient core activities. In this review, we emphasize the pivotal role played by RNA-binding proteins as a driving force in the evolution of the current form of the ribosome, underscoring their importance in ensuring accurate protein synthesis. This category of proteins includes both ribosomal proteins and ribosome biogenesis factors. Impairment of their RNA-binding activity can also lead to ribosomopathies, which is a group of disorders characterized by defects in ribosome biogenesis that are detrimental to protein synthesis and cellular homeostasis. A comprehensive understanding of these intricate processes is essential for elucidating the mechanisms underlying the resulting diseases and advancing potential therapeutic interventions.
Collapse
Affiliation(s)
- Caterina Catalanotto
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (C.C.); (C.C.)
| | - Christian Barbato
- National Research Council (CNR), Department of Sense Organs DOS, Institute of Biochemistry and Cell Biology (IBBC), Sapienza University of Rome, 00185 Rome, Italy;
| | - Carlo Cogoni
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (C.C.); (C.C.)
| | - Dario Benelli
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (C.C.); (C.C.)
| |
Collapse
|
3
|
Eukaryotic Ribosomal Protein S5 of the 40S Subunit: Structure and Function. Int J Mol Sci 2023; 24:ijms24043386. [PMID: 36834797 PMCID: PMC9958902 DOI: 10.3390/ijms24043386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
The ribosomal protein RPS5 is one of the prime proteins to combine with RNA and belongs to the conserved ribosomal protein family. It plays a substantial role in the process of translation and also has some non-ribosome functions. Despite the enormous studies on the relationship between the structure and function of prokaryotic RPS7, the structure and molecular details of the mechanism of eukaryotic RPS5 remain largely unexplored. This article focuses on the structure of RPS5 and its role in cells and diseases, especially the binding to 18S rRNA. The role of RPS5 in translation initiation and its potential use as targets for liver disease and cancer are discussed.
Collapse
|
4
|
Romero-López C, Ríos-Marco P, Berzal-Herranz B, Berzal-Herranz A. The HCV genome domains 5BSL3.1 and 5BSL3.3 act as managers of translation. Sci Rep 2018; 8:16101. [PMID: 30382192 PMCID: PMC6208389 DOI: 10.1038/s41598-018-34422-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/12/2018] [Indexed: 02/08/2023] Open
Abstract
The RNA genome of the hepatitis C virus (HCV) encodes a single open reading frame (ORF) containing numerous functional elements. Among these, the cis-acting replication element (CRE) at the 3' end of the viral ORF, has become of increasing interest given its dual role as a viral translation repressor and replication enhancer. Long-range RNA-RNA contacts mediated by the CRE build the structural scaffold required for its proper functioning. The recruitment of different cellular factors, many related to the functioning of the translation machinery, might aid in the CRE-exerted downregulation of viral translation. The present data show that the CRE promotes a defect in polysome production, and hinders the assembly of the 80S complex, likely through the direct, high affinity recruitment of the 40S ribosomal subunit. This interaction involves the highly conserved 5BSL3.1 and 5BSL3.3 domains of the CRE, and is strictly dependent on RNA-protein contacts, particularly with the ribosomal proteins RPSA and RPS29. These observations support a model in which the CRE-mediated inhibition of viral translation is a multifactorial process defined by the establishment of long-range RNA-RNA interactions between the 5' and 3' ends of the viral genome, the sequestration of the 40S subunit by the CRE, and the subsequent stalling of polysome elongation at the 3' end of the ORF, all governed by the highly stable hairpin domains 5BSL3.1 and 5BSL3.3. The present data thus suggest a new managerial role in HCV translation for these 5BSL3.1 and 5BSL3.3 domains.
Collapse
Grants
- BFU2015-64359-P Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness)
- BFU2015-64359-P Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness)
- CVI-7430 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- CVI-7430 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness)
- Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC), Av. del Conocimiento 17, 18016, Armilla, Granada, Spain.
| | - Pablo Ríos-Marco
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC), Av. del Conocimiento 17, 18016, Armilla, Granada, Spain
| | - Beatriz Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC), Av. del Conocimiento 17, 18016, Armilla, Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC), Av. del Conocimiento 17, 18016, Armilla, Granada, Spain.
| |
Collapse
|
5
|
Yanshina DD, Bulygin KN, Malygin AA, Karpova GG. Hydroxylated histidine of human ribosomal protein uL2 is involved in maintaining the local structure of 28S rRNA in the ribosomal peptidyl transferase center. FEBS J 2015; 282:1554-66. [PMID: 25702831 DOI: 10.1111/febs.13241] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/09/2015] [Accepted: 02/16/2015] [Indexed: 12/13/2022]
Abstract
Protein uL2 is essential for the catalytic activity of the ribosome and has a conserved shape in ribosomes from all domains of life. However, the sequence of its unstructured C-terminal loop apex that contacts the conserved 23S/28S rRNA helix (H) 93 near the ribosomal peptidyl transferase center differs in bacteria, archaea and eukaryotes. Eukaryote-specific residue His216 located in this loop in mammalian uL2 is hydroxylated in ribosomes. We used a set of chemical probes to explore the structure of an RNA that mimicked a segment of 28S rRNA domain V containing part of the uL2 binding site including H93, complexed with either natural (hydroxylated) or recombinant (unmodified) human uL2. It was found that both protein forms engage H93 during binding, but only natural uL2 (uL2n) protects it from hydroxyl radicals. The association of uL2n with RNA leads to changes in its structure at U4532 adjacent to the universally conserved U4531 (U2585, Escherichia coli numbering) involved in peptidyl transferase center formation, and at the universally conserved C4447 (2501) located in the ribosome near A4397 (2451) and C3909 (2063) belonging to the peptidyl transferase center. As a result, both nucleotides become strongly exposed to hydroxyl radicals. Our data argue that the hydroxyl group at His216 in the C-terminal loop apex of mammalian uL2 contributes to stabilization of a protein conformation that is favorable for binding to H93 of 28S rRNA and that this binding induces structural rearrangement in the regions close to the peptidyl transferase center in the mature ribosome.
Collapse
Affiliation(s)
- Darya D Yanshina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | | | | | | |
Collapse
|
6
|
Ghosh A, Jindal S, Bentley AA, Hinnebusch AG, Komar AA. Rps5-Rps16 communication is essential for efficient translation initiation in yeast S. cerevisiae. Nucleic Acids Res 2014; 42:8537-55. [PMID: 24948608 PMCID: PMC4117775 DOI: 10.1093/nar/gku550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Conserved ribosomal proteins frequently harbor additional segments in eukaryotes not found in bacteria, which could facilitate eukaryotic-specific reactions in the initiation phase of protein synthesis. Here we provide evidence showing that truncation of the N-terminal domain (NTD) of yeast Rps5 (absent in bacterial ortholog S7) impairs translation initiation, cell growth and induction of GCN4 mRNA translation in a manner suggesting incomplete assembly of 48S preinitiation complexes (PICs) at upstream AUG codons in GCN4 mRNA. Rps5 mutations evoke accumulation of factors on native 40S subunits normally released on conversion of 48S PICs to 80S initiation complexes (ICs) and this abnormality and related phenotypes are mitigated by the SUI5 variant of eIF5. Remarkably, similar effects are observed by substitution of Lys45 in the Rps5-NTD, involved in contact with Rps16, and by eliminating the last two residues of the C-terminal tail (CTT) of Rps16, believed to contact initiator tRNA base-paired to AUG in the P site. We propose that Rps5-NTD-Rps16-NTD interaction modulates Rps16-CTT association with Met-tRNAi (Met) to promote a functional 48S PIC.
Collapse
Affiliation(s)
- Arnab Ghosh
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Supriya Jindal
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Amber A Bentley
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anton A Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
7
|
Ivanov AV, Malygin AA, Karpova GG. Mg2+ ions affect structure of central domain of 18S rRNA near ribosomal protein S13 binding site. Mol Biol 2013. [DOI: 10.1134/s0026893312060088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation. Nat Struct Mol Biol 2012; 20:150-8. [PMID: 23262488 PMCID: PMC3864654 DOI: 10.1038/nsmb.2465] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/12/2012] [Indexed: 12/11/2022]
Abstract
The hepatitis C virus (HCV) internal ribosome entry site (IRES) drives non-canonical initiation of protein synthesis necessary for viral replication. HCV IRES functional studies have focused on 80S ribosome formation, but have not explored roles after the 80S ribosome is poised at the start codon. Here, we report that mutations of an IRES domain that docks in the 40S subunit’s decoding groove and cause only a local perturbation in IRES structure result in conformational changes in the IRES-rabbit 40S subunit complex. Functionally, we find the mutation decreases IRES activity by inhibiting the first ribosome translocation event, and modeling suggests that this effect is through an interaction with a single ribosomal protein. The HCV IRES’ ability to manipulate the ribosome provides insight into how the ribosome’s structure and function can be altered by bound RNAs, including those derived from cellular invaders.
Collapse
|
9
|
Ivanov AV, Malygin AA, Karpova GG. Binding of the human ribosomal protein S13 to the central domain of 18S rRNA. Mol Biol 2011. [DOI: 10.1134/s0026893311050074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Ilin AA, Malygin AA, Karpova GG. Ribosomal protein S18e as a putative molecular staple for the 18S rRNA 3′-major domain core. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:505-12. [DOI: 10.1016/j.bbapap.2011.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/22/2010] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
|
11
|
Malygin AA, Karpova GG. Site-specific cleavage of the 40S ribosomal subunit reveals eukaryote-specific ribosomal protein S28 in the subunit head. FEBS Lett 2010; 584:4396-400. [DOI: 10.1016/j.febslet.2010.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 01/24/2023]
|