1
|
Wang T, Zhao H, Jing S, Fan Y, Sheng G, Ding Q, Liu C, Wu H, Liu Y. Magnetofection of miR-21 promoted by electromagnetic field and iron oxide nanoparticles via the p38 MAPK pathway contributes to osteogenesis and angiogenesis for intervertebral fusion. J Nanobiotechnology 2023; 21:27. [PMID: 36694219 PMCID: PMC9875474 DOI: 10.1186/s12951-023-01789-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Magnetofection-mediated gene delivery shows great therapeutic potential through the regulation of the direction and degree of differentiation. Lumbar degenerative disc disease (DDD) is a serious global orthopaedic problem. However, even though intervertebral fusion is the gold standard for the treatment of DDD, its therapeutic effect is unsatisfactory. Here, we described a novel magnetofection system for delivering therapeutic miRNAs to promote osteogenesis and angiogenesis in patients with lumbar DDD. RESULTS Co-stimulation with electromagnetic field (EMF) and iron oxide nanoparticles (IONPs) enhanced magnetofection efficiency significantly. Moreover, in vitro, magnetofection of miR-21 into bone marrow mesenchymal stem cells (BMSCs) and human umbilical endothelial cells (HUVECs) influenced their cellular behaviour and promoted osteogenesis and angiogenesis. Then, gene-edited seed cells were planted onto polycaprolactone (PCL) and hydroxyapatite (HA) scaffolds (PCL/HA scaffolds) and evolved into the ideal tissue-engineered bone to promote intervertebral fusion. Finally, our results showed that EMF and polyethyleneimine (PEI)@IONPs were enhancing transfection efficiency by activating the p38 MAPK pathway. CONCLUSION Our findings illustrate that a magnetofection system for delivering miR-21 into BMSCs and HUVECs promoted osteogenesis and angiogenesis in vitro and in vivo and that magnetofection transfection efficiency improved significantly under the co-stimulation of EMF and IONPs. Moreover, it relied on the activation of p38 MAPK pathway. This magnetofection system could be a promising therapeutic approach for various orthopaedic diseases.
Collapse
Affiliation(s)
- Tianqi Wang
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Hongqi Zhao
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shaoze Jing
- grid.470966.aThird Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032 China
| | - Yang Fan
- grid.412793.a0000 0004 1799 5032Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Gaohong Sheng
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qing Ding
- grid.412793.a0000 0004 1799 5032Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Chaoxu Liu
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Hua Wu
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yang Liu
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
2
|
Bassetto M, Sen M, Poulhes F, Arango-Gonzalez B, Ueffing M, Zelphati O. Method for siRNA delivery in retina explants. Methods Cell Biol 2023; 176:199-216. [PMID: 37164538 DOI: 10.1016/bs.mcb.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Several barriers prevent the delivery of nucleic acids to the retina and limit the application of established technologies, such as RNA interference (RNAi), in the study of retinae biology. Organotypic culture of retinal explants is a convenient method to decrease the complexity of the biological environment surrounding the retina while preserving most of its physiological features. Nevertheless, eliciting significant, non-toxic RNAi in retina explants is not straightforward. Retina explants are mainly constituted by neurons organized in discrete circuits embedded within a complex 3D extracellular matrix. About 70% of these neurons are post-mitotic ciliated cells that respond to light. Unfortunately, like the other cells of the retina, photoreceptors are refractory to transfection, and a toxic delivery of nucleic acid often results in permanent cell loss. RNAi has been applied to retina explants using electroporation, viral, and non-viral vectors but with reproducible, poor gene silencing efficiency. In addition, only a few superficial cells can be transduced/transfected in adult retina explants. Therefore, viruses are often injected into the eye of embryos prior to excision of the retina. However, embryonic explants are not the best model to study most retina diseases since even if they are viable for several weeks, the pathological phenotype often appears later in development. We describe a robust and straightforward method to elicit significant RNAi in adult retina explant using Reverse Magnetofection. This transfection method offers a simple tool for non-toxic gene knockdown of specific genes in adult retina explants by using cationic magnetic nanoparticles (MNPs) to complex and deliver short interfering-RNAs (siRNA) in retina cells under the action of a magnetic field.
Collapse
Affiliation(s)
- Marco Bassetto
- OZ Biosciences, Parc Scientifique de Luminy, CEDEX 9, Marseille, France; Gavin Herbert Eye Institute, Center for Translational Vision Research, Department of Physiology & Biophysics, University of California, Irvine, CA, United States
| | - Merve Sen
- Centre of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Florent Poulhes
- OZ Biosciences, Parc Scientifique de Luminy, CEDEX 9, Marseille, France.
| | - Blanca Arango-Gonzalez
- Centre of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Marius Ueffing
- Centre of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Olivier Zelphati
- OZ Biosciences, Parc Scientifique de Luminy, CEDEX 9, Marseille, France
| |
Collapse
|
3
|
Lopez-Gordo E, Orlowski A, Wang A, Weinberg A, Sahoo S, Weber T. Hydroxylation of N-acetylneuraminic Acid Influences the in vivo Tropism of N-linked Sialic Acid-Binding Adeno-Associated Viruses AAV1, AAV5, and AAV6. Front Med (Lausanne) 2021; 8:732095. [PMID: 35036407 PMCID: PMC8757481 DOI: 10.3389/fmed.2021.732095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Adeno-associated virus (AAV) vectors are promising candidates for gene therapy. However, a number of recent preclinical large animal studies failed to translate into the clinic. This illustrates the formidable challenge of choosing the animal models that promise the best chance of a successful translation into the clinic. Several of the most common AAV serotypes use sialic acid (SIA) as their primary receptor. However, in contrast to most mammals, humans lack the enzyme CMAH, which hydroxylates cytidine monophosphate-N-acetylneuraminic acid (CMP-Neu5Ac) into cytidine monophosphate-N-glycolylneuraminic acid (CMP-Neu5Gc). As a result, human glycans only contain Neu5Ac and not Neu5Gc. Here, we investigate the tropism of AAV1, 5, 6 and 9 in wild-type C57BL/6J (WT) and CMAH knock-out (CMAH−/−) mice. All N-linked SIA-binding serotypes (AAV1, 5 and 6) showed significantly lower transduction of the heart in CMAH−/− when compared to WT mice (5–5.8-fold) and, strikingly, skeletal muscle transduction by AAV5 was almost 30-fold higher in CMAH−/− compared to WT mice. Importantly, the AAV tropism or distribution of expression among different organs was also affected. For AAV1, AAV5 and AAV6, expression in the heart compared to the liver was 4.6–8-fold higher in WT than in CMAH−/− mice, and for AAV5 the expression in the heart compared to the skeletal muscle was 57.3-fold higher in WT than in CMAH−/− mice. These data thus strongly suggest that the relative abundance of Neu5Ac and Neu5Gc plays a role in AAV tropism, and that results obtained in commonly used animal models might not translate into the clinic.
Collapse
Affiliation(s)
- Estrella Lopez-Gordo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Alejandro Orlowski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Arthur Wang
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Alan Weinberg
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Thomas Weber
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
- *Correspondence: Thomas Weber
| |
Collapse
|
4
|
Bassetto M, Sen M, Poulhes F, Arango-Gonzalez B, Bonvin E, Sapet C, Ueffing M, Zelphati O. New Method for Efficient siRNA Delivery in Retina Explants: Reverse Magnetofection. Bioconjug Chem 2021; 32:1078-1093. [PMID: 34081855 DOI: 10.1021/acs.bioconjchem.1c00132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The prevalence of retinal disorders associated with visual impairment and blindness is increasing worldwide, while most of them remain without effective treatment. Pharmacological and molecular therapy development is hampered by the lack of effective drug delivery into the posterior segment of the eye. Among molecular approaches, RNA-interference (RNAi) features strong advantages, yet delivering it to the inner layer of the retina appears extremely challenging. To address this, we developed an original magnetic nanoparticles (MNPs)-based transfection method that allows the efficient delivery of siRNA in all retinal layers of rat adult retinas through magnetic targeting. To establish delivery of RNAi throughout the retina, we have chosen organotypic retinal explants as an ex vivo model and for future high content screening of molecular drugs. Conversely to classic Magnetofection, and similar to conditions in the posterior chamber of the eye, our methods allows attraction of siRNA complexed to MNPs from the culture media into the explant. Our method termed "Reverse Magnetofection" provides a novel and nontoxic strategy for RNAi-based molecular as well as gene therapy in the retina that can be transferred to a wide variety of organ explants.
Collapse
Affiliation(s)
- Marco Bassetto
- OZ Biosciences, Parc scientifique de Luminy, Case 922, zone entreprise, 13288 Marseille, France
| | - Merve Sen
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - Florent Poulhes
- OZ Biosciences, Parc scientifique de Luminy, Case 922, zone entreprise, 13288 Marseille, France
| | - Blanca Arango-Gonzalez
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - Elise Bonvin
- OZ Biosciences, Parc scientifique de Luminy, Case 922, zone entreprise, 13288 Marseille, France
| | - Cedric Sapet
- OZ Biosciences, Parc scientifique de Luminy, Case 922, zone entreprise, 13288 Marseille, France
| | - Marius Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - Olivier Zelphati
- OZ Biosciences, Parc scientifique de Luminy, Case 922, zone entreprise, 13288 Marseille, France
| |
Collapse
|
5
|
Sen M, Bassetto M, Poulhes F, Zelphati O, Ueffing M, Arango-Gonzalez B. Efficient Ocular Delivery of VCP siRNA via Reverse Magnetofection in RHO P23H Rodent Retina Explants. Pharmaceutics 2021; 13:pharmaceutics13020225. [PMID: 33562020 PMCID: PMC7914601 DOI: 10.3390/pharmaceutics13020225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
The use of synthetic RNA for research purposes as well as RNA-based therapy and vaccination has gained increasing importance. Given the anatomical seclusion of the eye, small interfering RNA (siRNA)-induced gene silencing bears great potential for targeted reduction of pathological gene expression that may allow rational treatment of chronic eye diseases in the future. However, there is yet an unmet need for techniques providing safe and efficient siRNA delivery to the retina. We used magnetic nanoparticles (MNPs) and magnetic force (Reverse Magnetofection) to deliver siRNA/MNP complexes into retinal explant tissue, targeting valosin-containing protein (VCP) previously established as a potential therapeutic target for autosomal dominant retinitis pigmentosa (adRP). Safe and efficient delivery of VCP siRNA was achieved into all retinal cell layers of retinal explants from the RHO P23H rat, a rodent model for adRP. No toxicity or microglial activation was observed. VCP silencing led to a significant decrease of retinal degeneration. Reverse Magnetofection thus offers an effective method to deliver siRNA into retinal tissue. Used in combination with retinal organotypic explants, it can provide an efficient and reliable preclinical test platform of RNA-based therapy approaches for ocular diseases.
Collapse
Affiliation(s)
- Merve Sen
- Centre of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany;
- Graduate Training Centre of Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Marco Bassetto
- OZ Biosciences, Parc Scientifique de Luminy, CEDEX 9, 13288 Marseille, France; (M.B.); (F.P.); (O.Z.)
| | - Florent Poulhes
- OZ Biosciences, Parc Scientifique de Luminy, CEDEX 9, 13288 Marseille, France; (M.B.); (F.P.); (O.Z.)
| | - Olivier Zelphati
- OZ Biosciences, Parc Scientifique de Luminy, CEDEX 9, 13288 Marseille, France; (M.B.); (F.P.); (O.Z.)
| | - Marius Ueffing
- Centre of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany;
- Correspondence: (M.U.); (B.A.-G.)
| | - Blanca Arango-Gonzalez
- Centre of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany;
- Correspondence: (M.U.); (B.A.-G.)
| |
Collapse
|
6
|
Ho BX, Loh SJH, Chan WK, Soh BS. In Vivo Genome Editing as a Therapeutic Approach. Int J Mol Sci 2018; 19:2721. [PMID: 30213032 PMCID: PMC6163904 DOI: 10.3390/ijms19092721] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
Genome editing has been well established as a genome engineering tool that enables researchers to establish causal linkages between genetic mutation and biological phenotypes, providing further understanding of the genetic manifestation of many debilitating diseases. More recently, the paradigm of genome editing technologies has evolved to include the correction of mutations that cause diseases via the use of nucleases such as zinc-finger nucleases (ZFN), transcription activator-like effector nucleases (TALENs), and more recently, Cas9 nuclease. With the aim of reversing disease phenotypes, which arise from somatic gene mutations, current research focuses on the clinical translatability of correcting human genetic diseases in vivo, to provide long-term therapeutic benefits and potentially circumvent the limitations of in vivo cell replacement therapy. In this review, in addition to providing an overview of the various genome editing techniques available, we have also summarized several in vivo genome engineering strategies that have successfully demonstrated disease correction via in vivo genome editing. The various benefits and challenges faced in applying in vivo genome editing in humans will also be discussed.
Collapse
Affiliation(s)
- Beatrice Xuan Ho
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Sharon Jia Hui Loh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore.
| | - Woon Khiong Chan
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Boon Seng Soh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
7
|
Wiley LA, Burnight ER, Kaalberg EE, Jiao C, Riker MJ, Halder JA, Luse MA, Han IC, Russell SR, Sohn EH, Stone EM, Tucker BA, Mullins RF. Assessment of Adeno-Associated Virus Serotype Tropism in Human Retinal Explants. Hum Gene Ther 2018; 29:424-436. [PMID: 29160116 DOI: 10.1089/hum.2017.179] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Advances in the discovery of the causes of monogenic retinal disorders, combined with technologies for the delivery of DNA to the retina, offer enormous opportunities for the treatment of previously untreatable blinding diseases. However, for gene augmentation to be most effective, vectors that have the correct cell-type specificity are needed. While animal models are very useful, they often exhibit differences in retinal cell surface receptors compared to the human retina. This study evaluated the use of an ex vivo organotypic explant system to test the transduction efficiency and tropism of seven different adeno-associated virus type 2 (AAV2) serotypes in the human retina and retinal pigment epithelium-choroid-AAV2/1, AAV2/2, AAV2/4, AAV2/5, AAV2/6, AAV2/8, and AAV2/9-all driving expression of GFP under control of the cytomegalovirus promoter. After 7 days in culture, it was found that AAV2/4 and AAV2/5 were particularly efficient at transducing photoreceptor cells and that AAV2/5 was highly specific to the outer nuclear layer, whereas AAV2/8 displayed consistently low transduction of photoreceptors. To validate the authenticity of the organotypic culture system, the transduction of the same set of AAVs was also compared in a pig model, in which sub-retinal injections in vivo were compared to cultured and transduced organotypic cultures ex vivo. This study shows how different AAV serotypes behave in the human retina and provides insight for further investigation of each of these serotypes for gene augmentation-based treatment of inherited retinal degeneration.
Collapse
Affiliation(s)
- Luke A Wiley
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Erin R Burnight
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Emily E Kaalberg
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Chunhua Jiao
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Megan J Riker
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Jennifer A Halder
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Meagan A Luse
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Ian C Han
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Stephen R Russell
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Elliott H Sohn
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Edwin M Stone
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Budd A Tucker
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Robert F Mullins
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| |
Collapse
|
8
|
In vivo genome editing as a potential treatment strategy for inherited retinal dystrophies. Prog Retin Eye Res 2016; 56:1-18. [PMID: 27623223 DOI: 10.1016/j.preteyeres.2016.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/20/2022]
Abstract
In vivo genome editing represents an emerging field in the treatment of monogenic disorders, as it may constitute a solution to the current hurdles in classic gene addition therapy, which are the low levels and limited duration of transgene expression. Following the introduction of a double strand break (DSB) at the mutational site by highly specific endonucleases, such as TALENs (transcription activator like effector nucleases) or RNA based nucleases (clustered regulatory interspaced short palindromic repeats - CRISPR-Cas), the cell's own DNA repair machinery restores integrity to the DNA strand and corrects the mutant sequence, thus allowing the cell to produce protein levels as needed. The DNA repair happens either through the error prone non-homologous end-joining (NHEJ) pathway or with high fidelity through homology directed repair (HDR) in the presence of a DNA donor template. A third pathway called microhomology mediated endjoining (MMEJ) has been recently discovered. In this review, the authors focus on the different DNA repair mechanisms, the current state of the art tools for genome editing and the particularities of the retina and photoreceptors with regard to in vivo therapeutic approaches. Finally, current attempts in the field of retinal in vivo genome editing are discussed and future directions of research identified.
Collapse
|
9
|
Lu Q, Ganjawala TH, Ivanova E, Cheng JG, Troilo D, Pan ZH. AAV-mediated transduction and targeting of retinal bipolar cells with improved mGluR6 promoters in rodents and primates. Gene Ther 2016; 23:680-9. [PMID: 27115727 PMCID: PMC4863234 DOI: 10.1038/gt.2016.42] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
Adeno-associated virus (AAV) vectors have been a powerful gene delivery vehicle to the retina for basic research and gene therapy. For many of these applications, achieving cell type-specific targeting and high transduction efficiency is desired. Recently, there has been increasing interest in AAV-mediated gene targeting to specific retinal bipolar cell types. A 200-bp enhancer in combination with a basal SV40 promoter has been commonly used to target transgenes into ON-type bipolar cells. In the current study, we searched for additional cis-regulatory elements in the mGluR6 gene for improving AAV-mediated transduction efficiency into retinal bipolar cells. Our results showed that the combination of the endogenous mGluR6 promoter with additional enhancers in the introns of the mGluR6 gene markedly enhanced AAV transduction efficiency as well as made the targeting more selective for rod bipolar cells in mice. Furthermore, the AAV vectors with the improved promoter could target to ON bipolar cells with robust transduction efficiency in the parafovea and the far peripheral retina of marmoset monkeys. The improved mGluR6 promoter constructs could provide a valuable tool for genetic manipulation in rod bipolar cells in mice and facilitate clinical applications for ON bipolar cell-based gene therapies.
Collapse
Affiliation(s)
- Q Lu
- Dept. of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - TH Ganjawala
- Dept. of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - E Ivanova
- Burke Medical Research Institute, Weill Medical College of Cornell University, White Plains, NY
| | - JG Cheng
- Neuroscience Center, University of North Carolina, Chapel Hill, NC
| | - D Troilo
- State University of New York, College of Optometry, New York, NY
| | - Z-H Pan
- Dept. of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
- Dept. of Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
10
|
Petrs-Silva H, Linden R. Advances in gene therapy technologies to treat retinitis pigmentosa. Clin Ophthalmol 2013; 8:127-36. [PMID: 24391438 PMCID: PMC3878960 DOI: 10.2147/opth.s38041] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Retinitis pigmentosa (RP) is a class of diseases that leads to progressive degeneration of the retina. Experimental approaches to gene therapy for the treatment of inherited retinal dystrophies have advanced in recent years, inclusive of the safe delivery of genes to the human retina. This review is focused on the development of gene therapy for RP using recombinant adenoassociated viral vectors, which show a positive safety record and have so far been successful in several clinical trials for congenital retinal disease. Gene therapy for RP is under development in a variety of animal models, and the results raise expectations of future clinical application. Nonetheless, the translation of such strategies to the bedside requires further understanding of the mutations and mechanisms that cause visual defects, as well as thorough examination of potential adverse effects.
Collapse
Affiliation(s)
- Hilda Petrs-Silva
- Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Linden
- Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Current Challenges and Future Directions in Recombinant AAV-Mediated Gene Therapy of Duchenne Muscular Dystrophy. Pharmaceuticals (Basel) 2013; 6:813-36. [PMID: 24276316 PMCID: PMC3816704 DOI: 10.3390/ph6070813] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/14/2013] [Accepted: 06/14/2013] [Indexed: 01/01/2023] Open
Abstract
Various characteristics of adeno-associated virus (AAV)-based vectors with long-term safe expression have made it an exciting transduction tool for clinical gene therapy of Duchenne muscular dystrophy (DMD). Although host immune reactions against the vector as well as transgene products were detected in some instances of the clinical studies, there have been promising observations. Methods of producing AAV vectors for considerable in vivo experimentation and clinical investigations have been developed and a number of studies with AAV vector-mediated muscle transduction were attempted. Notably, an intravenous limb perfusion transduction technique enables extensive transgene expression in the skeletal muscles without noticeable adverse events. Furthermore, cardiac transduction by the rAAV9-microdystrophin would be promising to prevent development of cardiac dysfunction. Recent achievements in transduction technology suggest that long-term transgene expression with therapeutic benefits in DMD treatment would be achieved by the rAAV-mediated transduction strategy with an adequate regimen to regulate host immune response.
Collapse
|
12
|
Robust Long-term Transduction of Common Marmoset Neuromuscular Tissue With rAAV1 and rAAV9. MOLECULAR THERAPY-NUCLEIC ACIDS 2013; 2:e95. [PMID: 23715217 PMCID: PMC4817936 DOI: 10.1038/mtna.2013.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Profiles of recombinant adeno-associated virus (rAAV)-mediated transduction show interspecies differences for each AAV serotype. Robust long-term transgene expression is generally observed in rodents, whereas insufficient transduction is seen in animals with more advanced immune systems. Non-human primates, including the common marmoset, could provide appropriate models for neuromuscular diseases because of their higher brain functions and physiological resemblance to humans. Strategies to induce pathologies in the neuromuscular tissues of non-human primates by rAAV-mediated transduction are promising; however, transgene expression patterns with rAAV transduction have not been elucidated in marmosets. In this study, transduction of adult marmoset skeletal muscle with rAAV9 led to robust and persistent enhanced green fluorescent protein (EGFP) expression that was independent of the muscle fiber type, although lymphocyte infiltration was recognized. Systemic rAAV injection into pregnant marmosets led to transplacental fetal transduction. Surprisingly, the intraperitoneal injection of rAAV1 and rAAV9 into the neonatal marmoset resulted in systemic transduction and persistent transgene expression without lymphocyte infiltration. Skeletal and cardiac muscle were effectively transduced with rAAV1 and rAAV9, respectively. Interestingly, rAAV9 transduction led to intense EGFP signaling in the axons of the corpus callosum. These transduction protocols with rAAV will be useful for investigating gene functions in the neuromuscular tissues and developing gene therapy strategies.
Collapse
|