1
|
Velayutham M, Priya PS, Sarkar P, Murugan R, Almutairi BO, Arokiyaraj S, Kari ZA, Tellez-Isaias G, Guru A, Arockiaraj J. Aquatic Peptide: The Potential Anti-Cancer and Anti-Microbial Activity of GE18 Derived from Pathogenic Fungus Aphanomyces invadans. Molecules 2023; 28:6746. [PMID: 37764521 PMCID: PMC10534430 DOI: 10.3390/molecules28186746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Small molecules as well as peptide-based therapeutic approaches have attracted global interest due to their lower or no toxicity in nature, and their potential in addressing several health complications including immune diseases, cardiovascular diseases, metabolic disorders, osteoporosis and cancer. This study proposed a peptide, GE18 of subtilisin-like peptidase from the virulence factor of aquatic pathogenic fungus Aphanomyces invadans, which elicits anti-cancer and anti-microbial activities. To understand the potential GE18 peptide-induced biological effects, an in silico analysis, in vitro (L6 cells) and in vivo toxicity assays (using zebrafish embryo), in vitro anti-cancer assays and anti-microbial assays were performed. The outcomes of the in silico analyses demonstrated that the GE18 peptide has potent anti-cancer and anti-microbial activities. GE18 is non-toxic to in vitro non-cancerous cells and in vivo zebrafish larvae. However, the peptide showed significant anti-cancer properties against MCF-7 cells with an IC50 value of 35.34 µM, at 24 h. Besides the anti-proliferative effect on cancer cells, the peptide exposure does promote the ROS concentration, mitochondrial membrane potential and the subsequent upregulation of anti-cancer genes. On the other hand, GE18 elicits significant anti-microbial activity against P. aeruginosa, wherein GE18 significantly inhibits bacterial biofilm formation. Since the peptide has positively charged amino acid residues, it targets the cell membrane, as is evident in the FESEM analysis. Based on these outcomes, it is possible that the GE18 peptide is a significant anti-cancer and anti-microbial molecule.
Collapse
Affiliation(s)
- Manikandan Velayutham
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India
| | - P. Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Purabi Sarkar
- Department of Molecular Medicine, School of Allied Healthcare and Sciences, Jain Deemed-to-be University, Whitefield, Bangalore 560066, Karnataka, India
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Bader O. Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | | | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India;
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
2
|
Xue W, Pritchard MF, Khan S, Powell LC, Stokniene J, Wu J, Claydon N, Reddell P, Thomas DW, Hill KE. Defining in vitro topical antimicrobial and antibiofilm activity of epoxy-tigliane structures against oral pathogens. J Oral Microbiol 2023; 15:2241326. [PMID: 37534218 PMCID: PMC10392292 DOI: 10.1080/20002297.2023.2241326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/04/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
Background Peri-implantitis has become an inexorable clinical challenge in implantology. Topical immunomodulatory epoxy-tiglianes (EBCs), derived from the Queensland blushwood tree, which induce remodeling and resolve dermal infection via induction of the inflammasome and biofilm disruption, may offer a novel therapeutic approach. Design In vitro antimicrobial activity of EBC structures (EBC-46, EBC-1013 and EBC-147) against Streptococcus mutans, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis in minimum inhibitory concentration, growth curve and permeabilization assays were determined. Antibiofilm activity was assessed using minimum biofilm eradication concentration (MBEC) experiments. Biofilm formation and disruption assays were analyzed using confocal laser scanning microscopy, scanning electron microscopy and direct plate counting. Results The observed antimicrobial efficacy of the tested compounds (EBC-1013 > EBC-46 > EBC-147) was directly related to significant membrane permeabilization and growth inhibition (p < 0.05) against planktonic S. mutans and P. gingivalis. Antibiofilm activity was evident in MBEC assays, with S. mutans biofilm formation assays revealing significantly lower biomass volume and increased DEAD:LIVE cell ratio observed for EBC-1013 (p < 0.05). Furthermore, biofilm disruption assays on titanium discs induced significant biofilm disruption in S. mutans and P. gingivalis (p < 0.05). Conclusions EBC-1013 is a safe, semi-synthetic, compound, demonstrating clear antimicrobial biofilm disruption potential in peri-implantitis.
Collapse
Affiliation(s)
- Wenya Xue
- Advanced Therapies Group, Cardiff School of Dentistry, Heath Park, Cardiff University, Cardiff, UK
| | - Manon F. Pritchard
- Advanced Therapies Group, Cardiff School of Dentistry, Heath Park, Cardiff University, Cardiff, UK
| | - Saira Khan
- Advanced Therapies Group, Cardiff School of Dentistry, Heath Park, Cardiff University, Cardiff, UK
| | - Lydia C. Powell
- Microbiology and Infectious Disease Group, Swansea University Medical School, Swansea, UK
| | - Joana Stokniene
- Advanced Therapies Group, Cardiff School of Dentistry, Heath Park, Cardiff University, Cardiff, UK
| | - Jingxiang Wu
- Advanced Therapies Group, Cardiff School of Dentistry, Heath Park, Cardiff University, Cardiff, UK
| | - Nicholas Claydon
- Advanced Therapies Group, Cardiff School of Dentistry, Heath Park, Cardiff University, Cardiff, UK
| | - Paul Reddell
- QBiotics Group Limited, Yungaburra, Queensland, Australia
| | - David W. Thomas
- Advanced Therapies Group, Cardiff School of Dentistry, Heath Park, Cardiff University, Cardiff, UK
| | - Katja E. Hill
- Advanced Therapies Group, Cardiff School of Dentistry, Heath Park, Cardiff University, Cardiff, UK
| |
Collapse
|
3
|
Adaro M, Ibáñez ÁGS, Origone AL, Vallés D, Guzmán F, Vega A, Barberis S. Enzymatic synthesis of new antimicrobial peptides for food purposes. Front Microbiol 2023; 14:1153135. [PMID: 37260684 PMCID: PMC10227576 DOI: 10.3389/fmicb.2023.1153135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
Growing consumer awareness of the potential negative health effects of synthetic antibiotics has prompted the search for more natural preservatives that can improve the safety and quality of food. In this study we report the enzymatic synthesis of N-α-[Carbobenzyloxy]-Ile-Gln (Z-IQ) which is the precursor of Ile-Gln (IQ), a new antibacterial dipeptide, using an aqueous-organic biphasic system formed by 50% (v/v) ethyl acetate in 0.1 M Tris - HCl buffer pH 8. A partially purified proteolytic extract from the fruits of Solanum granuloso leprosum, named granulosain, proved to be a robust biocatalyst for the synthesis of Z-IQ, eliciting 71 ± 0.10% maximal peptide yield in the above described conditions. After cleaving and purifying IQ dipeptide, antimicrobial activity was assayed against Staphylococcus aureus ATCC 25923, Staphylococcus hominis A17771, and Staphylococcus aureus C00195, and MIC values between 118 ± 0.01 μg/mL and 133.7 ± 0.05 μg/mL were obtained. In addition, IQ showed MIC of 82.4 ± 0.01 μg/mL and 85.0 ± 0.00 μg/mL against Escherichia coli ATCC 25922 and Escherichia coli A17683, respectively. IQ did not show inhibitory activity against single-drug resistance (SDR) strains, such as Klebsiella oxytoca A19438 (SDR) and Pseudomonas aeruginosa C00213 (SDR), and against multidrug-resistant Enterococcus faecalis I00125 (MDR). IQ also caused growth inhibition of Helicobacter pylori NCTC 11638 and three wild-type H. pylori strains, which are sensitive to AML, MTZ, LEV and CLA (H. pylori 659), resistant to LEV (H. pylori 661 SDR), and resistant to MTZ (H. pylori 662 SDR). Finally, this study contributes with a new dipeptide (IQ) that can be used as an antimicrobial agent for food preservation or as a safe ingredient of functional foods.
Collapse
Affiliation(s)
- Mauricio Adaro
- Laboratorio de Bromatología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
- Instituto de Física Aplicada (INFAP) – CCT - San Luis - CONICET, Piso, San Luis, Argentina
| | - Ángel Gabriel Salinas Ibáñez
- Instituto de Física Aplicada (INFAP) – CCT - San Luis - CONICET, Piso, San Luis, Argentina
- Laboratorio de Microbiología e Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Anabella Lucia Origone
- Laboratorio de Bromatología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
- Instituto de Física Aplicada (INFAP) – CCT - San Luis - CONICET, Piso, San Luis, Argentina
| | - Diego Vallés
- Laboratorio de Biocatalizadores y sus Aplicaciones, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Fanny Guzmán
- Laboratorio de Péptidos, Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Curauma, Valparaíso, Chile
| | - Alba Vega
- Laboratorio de Microbiología e Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Sonia Barberis
- Laboratorio de Bromatología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
- Instituto de Física Aplicada (INFAP) – CCT - San Luis - CONICET, Piso, San Luis, Argentina
| |
Collapse
|
4
|
Powell LC, Cullen JK, Boyle GM, De Ridder T, Yap PY, Xue W, Pierce CJ, Pritchard MF, Menzies GE, Abdulkarim M, Adams JYM, Stokniene J, Francis LW, Gumbleton M, Johns J, Hill KE, Jones AV, Parsons PG, Reddell P, Thomas DW. Topical, immunomodulatory epoxy-tiglianes induce biofilm disruption and healing in acute and chronic skin wounds. Sci Transl Med 2022; 14:eabn3758. [DOI: 10.1126/scitranslmed.abn3758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The management of antibiotic-resistant, bacterial biofilm infections in chronic skin wounds is an increasing clinical challenge. Despite advances in diagnosis, many patients do not derive benefit from current anti-infective/antibiotic therapies. Here, we report a novel class of naturally occurring and semisynthetic epoxy-tiglianes, derived from the Queensland blushwood tree (
Fontainea picrosperma)
, and demonstrate their antimicrobial activity (modifying bacterial growth and inducing biofilm disruption), with structure/activity relationships established against important human pathogens. In vitro, the lead candidate EBC-1013 stimulated protein kinase C (PKC)–dependent neutrophil reactive oxygen species (ROS) induction and NETosis and increased expression of wound healing–associated cytokines, chemokines, and antimicrobial peptides in keratinocytes and fibroblasts. In vivo, topical EBC-1013 induced rapid resolution of infection with increased matrix remodeling in acute thermal injuries in calves. In chronically infected diabetic mouse wounds, treatment induced cytokine/chemokine production, inflammatory cell recruitment, and complete healing (in six of seven wounds) with ordered keratinocyte differentiation. These results highlight a nonantibiotic approach involving contrasting, orthogonal mechanisms of action combining targeted biofilm disruption and innate immune induction in the treatment of chronic wounds.
Collapse
Affiliation(s)
- Lydia C. Powell
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff CF14 4XY, UK
- Centre for Nanohealth, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Jason K. Cullen
- Drug Discovery Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Glen M. Boyle
- Drug Discovery Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tom De Ridder
- QBiotics Group Limited Yungaburra, Queensland 4884, Australia
| | - Pei-Yi Yap
- Drug Discovery Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Wenya Xue
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff CF14 4XY, UK
| | - Carly J. Pierce
- Drug Discovery Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Manon F. Pritchard
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff CF14 4XY, UK
| | | | - Muthanna Abdulkarim
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Jennifer Y. M. Adams
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff CF14 4XY, UK
| | - Joana Stokniene
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff CF14 4XY, UK
| | - Lewis W. Francis
- Centre for Nanohealth, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Mark Gumbleton
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Jenny Johns
- Drug Discovery Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Katja E. Hill
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff CF14 4XY, UK
| | - Adam V. Jones
- Oral Pathology, Cardiff and Vale University Health Board , Cardiff CF14 4XY, UK
| | - Peter G. Parsons
- Drug Discovery Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Paul Reddell
- QBiotics Group Limited Yungaburra, Queensland 4884, Australia
| | - David W. Thomas
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff CF14 4XY, UK
| |
Collapse
|
5
|
Creane SE, Carlile SR, Downey D, Weldon S, Dalton JP, Taggart CC. The Impact of Lung Proteases on Snake-Derived Antimicrobial Peptides. Biomolecules 2021; 11:biom11081106. [PMID: 34439773 PMCID: PMC8394243 DOI: 10.3390/biom11081106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Respiratory infections are a leading cause of global morbidity and mortality and are of significant concern for individuals with chronic inflammatory lung diseases. There is an urgent need for novel antimicrobials. Antimicrobial peptides (AMPs) are naturally occurring innate immune response peptides with therapeutic potential. However, therapeutic development has been hindered by issues with stability and cytotoxicity. Availing of direct drug delivery to the affected site, for example the lung, can reduce unwanted systemic side effects and lower the required dose. As cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) lungs typically exhibit elevated protease levels, the aim of this study was to assess their impact on snake-derived AMPs. Peptide cleavage was determined using SDS-PAGE and antimicrobial and anti-inflammatory activities of neutrophil elastase (NE)-incubated peptides were assessed using a radial diffusion assay (RDA) and an in vitro LPS-induced inflammation model, respectively. Although the snake-derived AMPs were found to be susceptible to cleavage by lung proteases including NE, several retained their function following NE-incubation. This facilitated the design of novel truncated derivatives that retained functionality following NE incubation. Snake-derived AMPs are tractable candidate treatments for use in environments that feature elevated NE levels, such as the CF airways.
Collapse
Affiliation(s)
- Shannice E. Creane
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (S.E.C.); (S.R.C.); (S.W.)
| | - Simon R. Carlile
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (S.E.C.); (S.R.C.); (S.W.)
| | - Damian Downey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK;
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (S.E.C.); (S.R.C.); (S.W.)
| | - John P. Dalton
- Zoology Department, School of Natural Sciences, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 TK33 Galway, Ireland;
- School of Biological Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (S.E.C.); (S.R.C.); (S.W.)
- Correspondence:
| |
Collapse
|
6
|
Abstract
INTRODUCTION Like many tissues, the dental pulp is equipped with innate and adaptive immune responses, designed to defend against infection and limit its spread. The pulp's innate immune response includes the synthesis and release of antimicrobial peptides by several dental pulp cell types. These naturally-occurring antimicrobial peptides have broad spectrum activity against bacteria, fungi and viruses. There is a resurgence of interest in the bioactivities of naturally-occurring antimicrobial peptides, largely driven by the need to develop alternatives to antibiotics. METHODS This narrative review focused on the general properties of antimicrobial peptides, providing an overview of their sources and actions within the dental pulp. RESULTS We summarized the relevance of antimicrobial peptides in defending the dental pulp, highlighting the potential for many of these antimicrobials to be modified or mimicked for prospective therapeutic use. CONCLUSION Antimicrobial peptides and novel peptide-based therapeutics are particularly attractive as emerging treatments for polymicrobial infections, such as endodontic infections, because of their broad activity against a range of pathogens.
Collapse
Affiliation(s)
- Fionnuala T Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland.
| | - Christopher R Irwin
- Centre for Dentistry, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Denise F McLean
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Gerard J Linden
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Ikhlas A El Karim
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
7
|
Bicker KL, Cobb SL. Recent advances in the development of anti-infective peptoids. Chem Commun (Camb) 2020; 56:11158-11168. [DOI: 10.1039/d0cc04704j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This feature article highlights the progress that has been made towards the development of novel anti-infective peptoids and the key areas for future development within this field.
Collapse
Affiliation(s)
- Kevin L. Bicker
- Department of Chemistry
- Middle Tennessee State University
- Murfreesboro
- USA
| | - Steven L Cobb
- Deparment of Chemistry
- Biophysical Sciences Institute
- Durham University
- Durham
- UK
| |
Collapse
|
8
|
Yang X, Kirungu JN, Magwanga RO, Xu Y, Pu L, Zhou Z, Hou Y, Cai X, Wang K, Liu F. Knockdown of GhIQD31 and GhIQD32 increases drought and salt stress sensitivity in Gossypium hirsutum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:166-177. [PMID: 31568959 DOI: 10.1016/j.plaphy.2019.09.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 05/20/2023]
Abstract
Drought, salinity and cold stresses have a major impact on cotton production, thus identification and utilization of plant genes vital for plant improvement Whole-genome identification and functional characterizations of the IQ67-domain (IQD) protein family was carried out in which 148, 77, and 79 IQD genes were identified in Gossypium hirsutum, G. raimondii, and G. arboreum. The entire IQD proteins had varied physiochemical properties, however; their grand hydropathy values were negative, which demonstrated that the proteins were hydrophilic, a property common among the proteins encoded by various stresses responsive genes, such as the late embryogenesis abundant (LEA) proteins. The IQD proteins were predicted to be majorly sublocalized in the nucleus; moreover, various cis-regulatory elements with higher role in enhancing abiotic stress tolerance were detected. RNA-seq and RT-qPCR analysis revealed two key genes, Gh_D06G0014 and Gh_A09G1608 with significantly higher upregulation across the various tissues under drought, salt and cold stress. Knockdown of the two genes negatively affected the ability of G. hirsutum to tolerate the effects of the three stress factors, being all the antioxidant assayed were significantly low concentrations compared to the oxidizing enzymes in VIGS plants under stress, furthermore, morphological and physiological traits were all negatively affected in VIGS plants. Expression levels of GhLEA2, GhCDK_F4, GPCR (TOM1) and Gh_A05G2067 (TH), the stress responsive genes were all downregulated in the VIGS plants, but significantly upregulated in WT and positively controlled plants. The results demonstrated that the IQD genes could be responsible for enhancing drought, salt and cold stress tolerance in cotton.
Collapse
Affiliation(s)
- Xiu Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China; Cotton Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China
| | - Joy Nyangasi Kirungu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Richard Odongo Magwanga
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China; School of Biological and Physical Sciences (SBPS), Jaramogi Oginga Odinga University of Science and Technology (JOOUST), P.O Box 210-40601, Bondo, Kenya
| | - Yuanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Lu Pu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China; Tarim University, Alar, Xinjiang, 843300, China.
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
9
|
Fang HY, Huang WM, Chen DH. One-step synthesis of positively charged bifunctional carbon dot/silver composite nanoparticles for killing and fluorescence imaging of Gram-negative bacteria. NANOTECHNOLOGY 2019; 30:365603. [PMID: 31067514 DOI: 10.1088/1361-6528/ab1fef] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Positively charged C-dot/Ag composite nanoparticles were synthesized via the facile one-step hydrothermal reaction of L-arginine and silver nitrate. L-arginine was used not only as the carbon and nitrogen sources of N-doped C-dots but also as the reducing agent of silver ions. It was noteworthy that the resulting C-dots were negatively charged but the simultaneous reduction of silver ions made the resulting C-dot/Ag composite nanoparticles become positively charged. Furthermore, as compared to C-dots, the presence of Ag nanoparticles and the higher nitrogen content led to the redshift of excitation and emission intervals. Also, the enlarged excitation wavelength range in the visible light region made the resulting C-dot/Ag nanocomposite more useful in fluorescence imaging. In addition, the C-dot/Ag composite nanoparticles exhibited more excellent bacteria-killing capability than C-dots and were successfully used for the fluorescence imaging of E. coli because they could attach and release silver ions on the surface of E. coli. In conclusion, a facile one-step hydrothermal process has been successfully developed for the synthesis of C-dot/Ag composite nanoparticles, and the resulting C-dot/Ag composite nanoparticles are expected to have great potential in the killing and fluorescence imaging of Gram-negative bacteria.
Collapse
Affiliation(s)
- Hong-Yi Fang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701 Taiwan
| | | | | |
Collapse
|
10
|
Carbon Nanomaterials and LED Irradiation as Antibacterial Strategies against Gram-Positive Multidrug-Resistant Pathogens. Int J Mol Sci 2019; 20:ijms20143603. [PMID: 31340560 PMCID: PMC6678746 DOI: 10.3390/ijms20143603] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/14/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Due to current antibiotic resistance worldwide, there is an urgent need to find new alternative antibacterial approaches capable of dealing with multidrug-resistant pathogens. Most recent studies have demonstrated the antibacterial activity and non-cytotoxicity of carbon nanomaterials such as graphene oxide (GO) and carbon nanofibers (CNFs). On the other hand, light-emitting diodes (LEDs) have shown great potential in a wide range of biomedical applications. Methods: We investigated a nanotechnological strategy consisting of GO or CNFs combined with light-emitting diod (LED) irradiation as novel nanoweapons against two clinically relevant Gram-positive multidrug-resistant pathogens: methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE). The cytotoxicity of GO and CNFs was studied in the presence of human keratinocyte HaCaT cells. Results: GO or CNFs exhibited no cytotoxicity and high antibacterial activity in direct contact with MRSE and MRSA cells. Furthermore, when GO or CNFs were illuminated with LED light, the MRSE and MRSA cells lost viability. The rate of decrease in colony forming units from 0 to 3 h, measured per mL, increased to 98.5 ± 1.6% and 95.8 ± 1.4% for GO and 99.5 ± 0.6% and 99.7 ± 0.2% for CNFs. Conclusions: This combined antimicrobial approach opens up many biomedical research opportunities and provides an enhanced strategy for the prevention and treatment of Gram-positive multidrug-resistant infections.
Collapse
|
11
|
Kumar P, Huo P, Zhang R, Liu B. Antibacterial Properties of Graphene-Based Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E737. [PMID: 31086043 PMCID: PMC6567318 DOI: 10.3390/nano9050737] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023]
Abstract
Bacteria mediated infections may cause various acute or chronic illnesses and antibiotic resistance in pathogenic bacteria has become a serious health problem around the world due to their excessive use or misuse. Replacement of existing antibacterial agents with a novel and efficient alternative is the immediate demand to alleviate this problem. Graphene-based materials have been exquisitely studied because of their remarkable bactericidal activity on a wide range of bacteria. Graphene-based materials provide advantages of easy preparation, renewable, unique catalytic properties, and exceptional physical properties such as a large specific surface area and mechanical strength. However, several queries related to the mechanism of action, significance of size and composition toward bacterial activity, toxicity criteria, and other issues are needed to be addressed. This review summarizes the recent efforts that have been made so far toward the development of graphene-based antibacterial materials to face current challenges to combat against the bacterial targets. This review describes the inherent antibacterial activity of graphene-family and recent advances that have been made on graphene-based antibacterial materials covering the functionalization with silver nanoparticles, other metal ions/oxides nanoparticles, polymers, antibiotics, and enzymes along with their multicomponent functionalization. Furthermore, the review describes the biosafety of the graphene-based antibacterial materials. It is hoped that this review will provide valuable current insight and excite new ideas for the further development of safe and efficient graphene-based antibacterial materials.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Rongzhao Zhang
- Analysis and Testing Center, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| |
Collapse
|
12
|
Salesa B, Martí M, Frígols B, Serrano-Aroca Á. Carbon Nanofibers in Pure Form and in Calcium Alginate Composites Films: New Cost-Effective Antibacterial Biomaterials against the Life-Threatening Multidrug-Resistant Staphylococcus epidermidis. Polymers (Basel) 2019; 11:polym11030453. [PMID: 30960437 PMCID: PMC6473926 DOI: 10.3390/polym11030453] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 11/16/2022] Open
Abstract
Due to the current global health problem of antibiotic resistant recently announced by the World Health Organization, there is an urgent necessity of looking for new alternative antibacterial materials able to treat and impede multidrug-resistant infections which are cost-effective and non-toxic for human beings. In this regard, carbon nanofibers (CNFs) possess currently much lower cost than other carbon nanomaterials, such as graphene oxide, and exhibit excellent chemical, mechanical and electric properties. Furthermore, here, the first report on the antibacterial activity of CNFs was demonstrated. Thus, these nanomaterials, in pure form or incorporated in a minuscule amount into calcium alginate composite films to reduce production costs as much as possible, showed to be new weapons against a globally spreading multidrug-resistant pathogen, the methicillin-resistant Staphylococcus epidermidis (MRSE). This Gram-positive bacterium is becoming one of the most dangerous pathogens, due to its abundance on skin. In this study, these hollow filamentous materials, in direct contact with cells and loaded in the low-cost calcium alginate composite films, showed no cytotoxicity for human keratinocyte HaCaT cells, which render them very promising for biomedical applications. The CNFs used in this work were characterized by Raman spectroscopy and observed by high-resolution transmission electron with energy-disperse X-ray spectroscopy.
Collapse
Affiliation(s)
- Beatriz Salesa
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain.
| | - Miguel Martí
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain.
| | - Belén Frígols
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain.
| | - Ángel Serrano-Aroca
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain.
| |
Collapse
|
13
|
Martí M, Frígols B, Serrano-Aroca A. Antimicrobial Characterization of Advanced Materials for Bioengineering Applications. J Vis Exp 2018:57710. [PMID: 30124638 PMCID: PMC6126623 DOI: 10.3791/57710] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The development of new advanced materials with enhanced properties is becoming more and more important in a wide range of bioengineering applications. Thus, many novel biomaterials are being designed to mimic specific environments required for biomedical applications such as tissue engineering and controlled drug delivery. The development of materials with improved properties for the immobilization of cells or enzymes is also a current research topic in bioprocess engineering. However, one of the most desirable properties of a material in these applications is the antimicrobial capacity to avoid any undesirable infections. For this, we present easy-to-follow protocols for the antimicrobial characterization of materials based on (i) the agar disk diffusion test (diffusion method) and (ii) the ISO 22196:2007 norm to measure the antimicrobial activity on material surfaces (contact method). This protocol must be performed using Gram-positive and Gram-negative bacteria and yeast to cover a broad range of microorganisms. As an example, 4 materials with different chemical natures are tested following this protocol against Staphylococcus aureus, Escherichia coli, and Candida albicans.The results of these tests exhibit non-antimicrobial activity for the first material and increasing antibacterial activity against Gram-positive and Gram-negative bacteria for the other 3 materials. However, none of the 4 materials are able to inhibit the growth of Candida albicans.
Collapse
Affiliation(s)
- Miguel Martí
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir
| | - Belén Frígols
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir
| | - Angel Serrano-Aroca
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir;
| |
Collapse
|
14
|
Luo Y, McLean DTF, Linden GJ, McAuley DF, McMullan R, Lundy FT. The Naturally Occurring Host Defense Peptide, LL-37, and Its Truncated Mimetics KE-18 and KR-12 Have Selected Biocidal and Antibiofilm Activities Against Candida albicans, Staphylococcus aureus, and Escherichia coli In vitro. Front Microbiol 2017; 8:544. [PMID: 28408902 PMCID: PMC5374219 DOI: 10.3389/fmicb.2017.00544] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/15/2017] [Indexed: 12/03/2022] Open
Abstract
Amongst the recognized classes of naturally occurring antimicrobials, human host defense peptides are an important group with an advantage (given their source) that they should be readily translatable to medicinal products. It is also plausible that truncated versions will display some of the biological activities of the parent peptide, with the benefit that they are less costly to synthesize using solid-phase chemistry. The host defense peptide, LL-37, and two truncated mimetics, KE-18 and KR-12, were tested for their inhibitory effects and antibiofilm properties against Candida albicans, Staphylococcus aureus, and Escherichia coli, microorganisms commonly implicated in biofilm-related infections such as ventilator-associated pneumonia (VAP). Using in silico prediction tools, the truncated peptides KE-18 and KR-12 were selected for minimum inhibitory concentration (MIC) and antibiofilm testing on the basis of their favorable cationicity, hydrophobic ratio, and amphipathicity compared with the parent peptide. Two methods were analyzed for determining peptide efficacy against biofilms; a crystal violet assay and an XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assay. The biocidal activities (measured by MIC) and antibiofilm activities (measured by a crystal violet assay) appeared to be independent. LL-37 had no biocidal action against C. albicans (MIC > 250 μg/ml) but significant effects in both biofilm-prevention and biofilm-inhibition assays. KE-18 and KR-12 yielded superior MIC values against all three microorganisms. Only KE-18 had a significant effect in the biofilm-prevention assay, which persisted even at sub-MICs. Neither of the truncated peptides were active in the biofilm-inhibition assay. KE-18 was shown to bind lipopolysaccharide as effectively as LL-37 and to bind lipoteichoic acid more effectively. None of the peptides showed hemolytic activity against human erythrocytes at the concentrations tested. KE-18 should be considered for further development as a natural peptide-derived therapeutic for prevention of multi-species biofilm-related infections such as VAP.
Collapse
Affiliation(s)
- Yu Luo
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| | - Denise T F McLean
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| | - Gerard J Linden
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| | - Danny F McAuley
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| | - Ronan McMullan
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| | - Fionnuala T Lundy
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| |
Collapse
|
15
|
Luo Y, Bolt HL, Eggimann GA, McAuley DF, McMullan R, Curran T, Zhou M, Jahoda PCAB, Cobb SL, Lundy FT. Peptoid Efficacy against Polymicrobial Biofilms Determined by Using Propidium Monoazide-Modified Quantitative PCR. Chembiochem 2016; 18:111-118. [PMID: 27900840 PMCID: PMC6680226 DOI: 10.1002/cbic.201600381] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Indexed: 01/07/2023]
Abstract
Biofilms containing Candida albicans are responsible for a wide variety of clinical infections. The protective effects of the biofilm matrix, the low metabolic activity of microorganisms within a biofilm and their high mutation rate, significantly enhance the resistance of biofilms to conventional antimicrobial treatments. Peptoids are peptide‐mimics that share many features of host defence antimicrobial peptides but have increased resistance to proteases and therefore have better stability in vivo. The activity of a library of peptoids was tested against monospecies and polymicrobial bacterial/fungal biofilms. Selected peptoids showed significant bactericidal and fungicidal activity against the polymicrobial biofilms. This coupled with low cytotoxicity suggests that peptoids could offer a new option for the treatment of clinically relevant polymicrobial infections.
Collapse
Affiliation(s)
- Yu Luo
- Centre for Experimental Medicine, The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Hannah L Bolt
- Durham University, Department of Chemistry, Biophysical Sciences Institute, South Road, Durham, DH1 3LE, UK
| | - Gabriela A Eggimann
- Durham University, Department of Chemistry, Biophysical Sciences Institute, South Road, Durham, DH1 3LE, UK
| | - Danny F McAuley
- Centre for Experimental Medicine, The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ronan McMullan
- Centre for Experimental Medicine, The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Tanya Curran
- Regional Virus Laboratory, Kelvin Building, Royal Victoria Hospital, Belfast Health and Social Care Trust, Grosvenor Road, Belfast, BT12 6BA, UK
| | - Mei Zhou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | | - Steven L Cobb
- Durham University, Department of Chemistry, Biophysical Sciences Institute, South Road, Durham, DH1 3LE, UK
| | - Fionnuala T Lundy
- Centre for Experimental Medicine, The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
16
|
Shi L, Chen J, Teng L, Wang L, Zhu G, Liu S, Luo Z, Shi X, Wang Y, Ren L. The Antibacterial Applications of Graphene and Its Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4165-84. [PMID: 27389848 DOI: 10.1002/smll.201601841] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/11/2016] [Indexed: 05/20/2023]
Abstract
Graphene materials have unique structures and outstanding thermal, optical, mechanical and electronic properties. In the last decade, these materials have attracted substantial interest in the field of nanomaterials, with applications ranging from biosensors to biomedicine. Among these applications, great advances have been made in the field of antibacterial agents. Here, recent advancements in the use of graphene and its derivatives as antibacterial agents are reviewed. Graphene is used in three forms: the pristine form; mixed with other antibacterial agents, such as Ag and chitosan; or with a base material, such as poly (N-vinylcarbazole) (PVK) and poly (lactic acid) (PLA). The main mechanisms proposed to explain the antibacterial behaviors of graphene and its derivatives are the membrane stress hypothesis, the oxidative stress hypothesis, the entrapment hypothesis, the electron transfer hypothesis and the photothermal hypothesis. This review describes contributions to improving these promising materials for antibacterial applications.
Collapse
Affiliation(s)
- Lin Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Jiongrun Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Lijing Teng
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Lin Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Guanglin Zhu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Sa Liu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Zhengtang Luo
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Hong Kong, 999077, PR China
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Yingjun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Li Ren
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| |
Collapse
|
17
|
Camper N, Glasgow AMA, Osbourn M, Quinn DJ, Small DM, McLean DT, Lundy FT, Elborn JS, McNally P, Ingram RJ, Weldon S, Taggart CC. A secretory leukocyte protease inhibitor variant with improved activity against lung infection. Mucosal Immunol 2016; 9:669-76. [PMID: 26376365 DOI: 10.1038/mi.2015.90] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 07/28/2015] [Indexed: 02/04/2023]
Abstract
Secretory leukocyte protease inhibitor (SLPI) is an important respiratory tract host defense protein, which is proteolytically inactivated by excessive neutrophil elastase (NE) during chronic Pseudomonas infection in the cystic fibrosis (CF) lung. We generated two putative NE-resistant variants of SLPI by site-directed mutagenesis, SLPI-A16G and SLPI-S15G-A16G, with a view to improving SLPI's proteolytic stability. Both variants showed enhanced resistance to degradation in the presence of excess NE as well as CF patient sputum compared with SLPI-wild type (SLPI-WT). The ability of both variants to bind bacterial lipopolysaccharides and interact with nuclear factor-κB DNA binding sites was also preserved. Finally, we demonstrate increased anti-inflammatory activity of the SLPI-A16G protein compared with SLPI-WT in a murine model of pulmonary Pseudomonas infection. This study demonstrates the increased stability of these SLPI variants compared with SLPI-WT and their therapeutic potential as a putative anti-inflammatory treatment for CF lung disease.
Collapse
Affiliation(s)
- N Camper
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - A M A Glasgow
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - M Osbourn
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - D J Quinn
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - D M Small
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - D T McLean
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - F T Lundy
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - J S Elborn
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - P McNally
- Our Lady's Children's Hospital, Crumlin, Ireland, UK
| | - R J Ingram
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - S Weldon
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - C C Taggart
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
18
|
Ghaleb AM, Bialkowska AB, Snider AJ, Gnatenko DV, Hannun YA, Yang VW, Schmidt VA. IQ Motif-Containing GTPase-Activating Protein 2 (IQGAP2) Is a Novel Regulator of Colonic Inflammation in Mice. PLoS One 2015; 10:e0129314. [PMID: 26047140 PMCID: PMC4457730 DOI: 10.1371/journal.pone.0129314] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/08/2015] [Indexed: 01/05/2023] Open
Abstract
IQ motif-containing GTPase-activating protein 2 (IQGAP2) is a multidomain scaffolding protein that plays a role in cytoskeleton regulation by juxtaposing Rho GTPase and Ca2+/calmodulin signals. While IQGAP2 suppresses tumorigenesis in liver, its role in pathophysiology of the gastrointestinal tract remains unexplored. Here we report that IQGAP2 is required for the inflammatory response in colon. Mice lacking Iqgap2 gene (Iqgap2-/- mice) were resistant to chemically-induced colitis. Unlike wild-type controls, Iqgap2-/- mice treated with 3% dextran sulfate sodium (DSS) in water for 13 days displayed no injury to colonic epithelium. Mechanistically, resistance to colitis was associated with suppression of colonic NF-κB signaling and IL-6 synthesis, along with diminished neutrophil and macrophage production and recruitment in Iqgap2-/- mice. Finally, alterations in IQGAP2 expression were found in colons of patients with inflammatory bowel disease (IBD). Our findings indicate that IQGAP2 promotes inflammatory response at two distinct levels; locally, in colonic epithelium through TLR4/NF-κB signaling pathway, and systemically, via control of maturation and recruitment of myeloid immune cells. This work identifies a novel mechanism of colonic inflammation mediated by signal transducing scaffolding protein IQGAP2. IQGAP2 domain-specific blocking agents may represent a conceptually novel strategy for therapy of IBD and other inflammation-associated disorders, including cancer.
Collapse
Affiliation(s)
- Amr M. Ghaleb
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Agnieszka B. Bialkowska
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Ashley J. Snider
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Northport Veterans Affairs Medical Center, Northport, New York, United States of America
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, United States of America
| | - Dmitri V. Gnatenko
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Genomics Core Facility, Stony Brook University, Stony Brook, New York, United States of America
| | - Yusuf A. Hannun
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, United States of America
| | - Vincent W. Yang
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, United States of America
| | - Valentina A. Schmidt
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Glasgow AMA, Small DM, Scott A, McLean DT, Camper N, Hamid U, Hegarty S, Parekh D, O'Kane C, Lundy FT, McNally P, Elborn JS, McAuley DF, Weldon S, Taggart CC. A role for whey acidic protein four-disulfide-core 12 (WFDC12) in the regulation of the inflammatory response in the lung. Thorax 2015; 70:426-32. [PMID: 25770093 DOI: 10.1136/thoraxjnl-2014-206488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/10/2015] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Secretory leucocyte protease inhibitor and elafin are members of the whey acidic protein (WAP), or WAP four disulfide-core (WFDC), family of proteins and have multiple contributions to innate defence including inhibition of neutrophil serine proteases and inhibition of the inflammatory response to lipopolysaccharide (LPS). This study aimed to explore potential activities of WFDC12, a previously uncharacterised WFDC protein expressed in the lung. METHODS Recombinant expression and purification of WFDC12 were optimised in Escherichia coli. Antiprotease, antibacterial and immunomodulatory activities of recombinant WFDC12 were evaluated and levels of endogenous WFDC12 protein were characterised by immunostaining and ELISA. RESULTS Recombinant WFDC12 inhibited cathepsin G, but not elastase or proteinase-3 activity. Monocytic cells pretreated with recombinant WFDC12 before LPS stimulation produced significantly lower levels of the pro-inflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared with cells stimulated with LPS alone. Recombinant WFDC12 became conjugated to fibronectin in a transglutaminase-mediated reaction and retained antiprotease activity. In vivo WFDC12 expression was confirmed by immunostaining of human lung tissue sections. WFDC12 levels in human bronchoalveolar lavage fluid from healthy and lung-injured patients were quantitatively compared, showing WFDC12 to be elevated in both patients with acute respiratory distress syndrome and healthy subjects treated with LPS, relative to healthy controls. CONCLUSIONS Together, these results suggest a role for this lesser known WFDC protein in the regulation of lung inflammation.
Collapse
Affiliation(s)
- Arlene M A Glasgow
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Donna M Small
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Aaron Scott
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Denise T McLean
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Nicolas Camper
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Umar Hamid
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Shauna Hegarty
- Department of Pathology, Royal Victoria Hospital, Belfast, UK
| | - Dhruv Parekh
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Cecilia O'Kane
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Fionnuala T Lundy
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Paul McNally
- Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - J Stuart Elborn
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Danny F McAuley
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Sinéad Weldon
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Clifford C Taggart
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| |
Collapse
|
20
|
McLean DTF, McCrudden MTC, Linden GJ, Irwin CR, Conlon JM, Lundy FT. Antimicrobial and immunomodulatory properties of PGLa-AM1, CPF-AM1, and magainin-AM1: potent activity against oral pathogens. ACTA ACUST UNITED AC 2014; 194-195:63-8. [PMID: 25447193 DOI: 10.1016/j.regpep.2014.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 11/28/2022]
Abstract
Cationic amphipathic α-helical peptides are intensively studied classes of host defence peptides (HDPs). Three peptides, peptide glycine-leucine-amide (PGLa-AM1), caerulein-precursor fragment (CPF-AM1) and magainin-AM1, originally isolated from norepinephrine-stimulated skin secretions of the African volcano frog Xenopus amieti (Pipidae), were studied for their antimicrobial and immunomodulatory activities against oral and respiratory pathogens. Minimal effective concentrations (MECs), determined by radial diffusion assay, were generally lower than minimal inhibitory concentrations (MICs) determined by microbroth dilution. PGLa-AM1 and CPF-AM1 were particularly active against Streptococcus mutans and all three peptides were effective against Fusobacterium nucleatum, whereas Enterococcus faecalis and Candida albicans proved to be relatively resistant micro-organisms. A type strain of Pseudomonas aeruginosa was shown to be more susceptible than the clinical isolate studied. PGLa-AM1 displayed the greatest propensity to bind lipopolysaccharide (LPS) from Escherichia coli, P. aeruginosa and Porphyromonas gingivalis. All three peptides showed less binding to P. gingivalis LPS than to LPS from the other species studied. Oral fibroblast viability was unaffected by 50 μM peptide treatments. Production of the pro-inflammatory cytokine IL-8 by oral fibroblasts was significantly increased following treatment with 1 or 10 μM magainin-AM1 but not following treatment with PGLa-AM1 or CPF-AM1. In conclusion, as well as possessing potent antimicrobial actions, the X. amieti peptides bound to LPS from three human pathogens and had no effect on oral fibroblast viability. CPF-AM1 and PGLa-AM1 show promise as templates for the design of novel analogues for the treatment of oral and dental diseases associated with bacteria or fungi.
Collapse
Affiliation(s)
- Denise T F McLean
- Centre for Infection & Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Maelíosa T C McCrudden
- Centre for Infection & Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Gerard J Linden
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Christopher R Irwin
- Centre for Dentistry, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - J Michael Conlon
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates
| | - Fionnuala T Lundy
- Centre for Infection & Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, Northern Ireland, UK.
| |
Collapse
|
21
|
The Host Defence Peptide LL-37 is Susceptible to Proteolytic Degradation by Wound Fluid Isolated from Foot Ulcers of Diabetic Patients. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9410-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
McCrudden MTC, Orr DF, Yu Y, Coulter WA, Manning G, Irwin CR, Lundy FT. LL-37 in periodontal health and disease and its susceptibility to degradation by proteinases present in gingival crevicular fluid. J Clin Periodontol 2013; 40:933-41. [PMID: 23952216 DOI: 10.1111/jcpe.12141] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2013] [Indexed: 11/29/2022]
Abstract
AIM To determine the levels of LL-37 in and its susceptibility to degradation by components of gingival crevicular fluid (GCF) in periodontal health and disease. MATERIALS AND METHODS Levels of LL-37 in GCF from periodontitis patients and periodontally healthy subjects were determined by ELISA. In addition, degradation of synthetic/exogenous LL-37 by components of GCF in the presence and absence of inhibitors was determined by matrix-assisted laser desorption/ionization time of flight mass spectrometry. RESULTS The concentration of native LL-37 in GCF from Porphyromonas gingivalis positive (Pg+) and P. gingivalis negative (Pg-) sites in periodontitis patients was significantly higher than in GCF from healthy subjects. When synthetic LL-37 was added to healthy GCF, the peptide was not degraded. Conversely, GCF from Pg+ sites rapidly degraded synthetic LL-37 which was prevented in the presence of Arg- and Lys- gingipain inhibitors. Synthetic LL-37 was degraded more slowly by GCF from Pg- sites. CONCLUSIONS LL-37 is detectable in GCF in periodontal health and disease. The rapid degradation of synthetic LL-37 in periodontitis GCF, particularly in Pg+ sites, limits its role as a potential therapeutic in the gingival crevice. These results highlight the need to design stable peptide mimetics of LL-37 as future therapeutics in periodontitis.
Collapse
Affiliation(s)
- Maelíosa T C McCrudden
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | | | | | | | | | | |
Collapse
|