1
|
Farshchi F, Dias-Lopes G, Monteiro de Castro Cortes L, Cysne-Finkelstein L, Souza-Silva F, Alves CR. Leishmania (Viannia) braziliensis Thor strain and subpopulations Thor03, Thor10, and Thor22 have differences in the surface membrane proteases activity profile. Biochimie 2025; 234:20-28. [PMID: 40132668 DOI: 10.1016/j.biochi.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 03/27/2025]
Abstract
The Leishmania (Viannia) braziliensis Thor strain is composed of subpopulations with distinct biological features, as differences of the virulence profile in vitro and in vivo in murine model. As the surface of these parasites is the first contact with the host, this study assesses comparative approaches of surface membrane proteases of promastigotes and axenic amastigotes of L. (V.) braziliensis Thor strain and Thor03, Thor10, and Thor22 subpopulations, accessing differential profiles among these parasites. Here is explored the phospholipase C (PLC) property as a pivotal tool to selectively recover surface proteases of these parasites. The treatment of parasites with PLC yielded protein fractions with metalloprotease, cysteine protease, and serine protease activities, which were detectable by gelatin-SDS-PAGE and fluorogenic substrates and specific inhibitors, showing distinct profiles from both promastigotes and axenic amastigotes of the Thor strain, Thor03, Thor10, and Thor22 subpopulations. Data of protease activity quantitative in solution show metalloprotease as the highest activity, followed by cysteine protease and serine protease onto the surface of promastigotes and axenic amastigotes. The biological significance of these findings points to the potential of the Thor strain, helped by respective subpopulations, to adapt to hosts, as well as reinforcing the importance of this class of enzyme in the first hours of infection.
Collapse
Affiliation(s)
- Fatemeh Farshchi
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Avenida Brasil 4365, Manguinhos, CEP 21040-900, Rio de Janeiro, RJ, Brazil.
| | - Geovane Dias-Lopes
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Avenida Brasil 4365, Manguinhos, CEP 21040-900, Rio de Janeiro, RJ, Brazil; Universidade do Estado do Rio de Janeiro, Departamento de Ciências Biomédicas e Saúde, Instituto de Biologia Roberto Alcântara Gomes, Rua Arízio Gomes da Costa - 186, Jardim Flamboyant, CEP - 28905-320, Cabo Frio, RJ, Brazil.
| | - Luzia Monteiro de Castro Cortes
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Avenida Brasil 4365, Manguinhos, CEP 21040-900, Rio de Janeiro, RJ, Brazil.
| | - Léa Cysne-Finkelstein
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Imunoparasitologia, Avenida Brasil 4365, Manguinhos, CEP 21040-900, Rio de Janeiro, RJ, Brazil.
| | - Franklin Souza-Silva
- Fundação Oswaldo Cruz, Centro de Desenvolvimento Tecnológico em Saúde, Avenida Brasil 4036, Manguinhos, CEP 21040-361, Rio de Janeiro, RJ, Brazil; Universidade Iguaçu, Avenida Abílio Augusto Távora 2134, Dom Rodrigo, CEP 26260-045, Nova Iguaçu, RJ, Brazil.
| | - Carlos Roberto Alves
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Avenida Brasil 4365, Manguinhos, CEP 21040-900, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Román-Álamo L, Avalos-Padilla Y, Bouzón-Arnáiz I, Iglesias V, Fernández-Lajo J, Monteiro JM, Rivas L, Fisa R, Riera C, Andreu D, Pintado-Grima C, Ventura S, Arce EM, Muñoz-Torrero D, Fernàndez-Busquets X. Effect of the aggregated protein dye YAT2150 on Leishmania parasite viability. Antimicrob Agents Chemother 2024; 68:e0112723. [PMID: 38349159 PMCID: PMC10916400 DOI: 10.1128/aac.01127-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/15/2024] [Indexed: 03/07/2024] Open
Abstract
The problems associated with the drugs currently used to treat leishmaniasis, including resistance, toxicity, and the high cost of some formulations, call for the urgent identification of new therapeutic agents with novel modes of action. The aggregated protein dye YAT2150 has been found to be a potent antileishmanial compound, with a half-maximal inhibitory concentration (IC50) of approximately 0.5 µM against promastigote and amastigote stages of Leishmania infantum. The encapsulation in liposomes of YAT2150 significantly improved its in vitro IC50 to 0.37 and 0.19 µM in promastigotes and amastigotes, respectively, and increased the half-maximal cytotoxic concentration in human umbilical vein endothelial cells to >50 µM. YAT2150 became strongly fluorescent when binding intracellular protein deposits in Leishmania cells. This fluorescence pattern aligns with the proposed mode of action of this drug in the malaria parasite Plasmodium falciparum, the inhibition of protein aggregation. In Leishmania major, YAT2150 rapidly reduced ATP levels, suggesting an alternative antileishmanial mechanism. To the best of our knowledge, this first-in-class compound is the only one described so far having significant activity against both Plasmodium and Leishmania, thus being a potential drug for the treatment of co-infections of both parasites.
Collapse
Affiliation(s)
- Lucía Román-Álamo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Doctoral School of Biotechnology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Yunuen Avalos-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Inés Bouzón-Arnáiz
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Valentín Iglesias
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jorge Fernández-Lajo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan M. Monteiro
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Luis Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Roser Fisa
- Section of Parasitology Department of Biology, Health and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Cristina Riera
- Section of Parasitology Department of Biology, Health and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - David Andreu
- Department of Medicine and Life Sciences, Barcelona Biomedical Research Park, Pompeu Fabra University, Barcelona, Spain
| | - Carlos Pintado-Grima
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Elsa M. Arce
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Oliveira AS, Aredes-Riguetti LM, Pereira BAS, Alves CR, Souza-Silva F. Degron Pathways and Leishmaniasis: Debating Potential Roles of Leishmania spp. Proteases Activity on Guiding Hosts Immune Response and Their Relevance to the Development of Vaccines. Vaccines (Basel) 2023; 11:1015. [PMID: 37376405 DOI: 10.3390/vaccines11061015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/29/2023] Open
Abstract
Degrons are short peptide sequences that signalize target sites for protein degradation by proteases. Herein, we bring forth the discussion on degrons present in proteins related to the immune system of Mus musculus that are potential targets for cysteine and serine proteases of Leishmania spp. and their possible roles on host immune regulation by parasites. The Merops database was used to identify protease substrates and proteases sequence motifs, while MAST/MEME Suite was applied to find degron motifs in murine cytokines (IFN-y, IL-4, IL-5, IL-13, IL-17) and transcription factors (NF-kappaB, STAT-1, AP-1, CREB, and BACH2). STRING tool was used to construct an interaction network for the immune factors and SWISS-MODEL server to generate three-dimensional models of proteins. In silico assays confirm the occurrence of degrons in the selected immune response factors. Further analyses were conducted only in those with resolved three-dimensional structures. The predicted interaction network of degron-containing M. musculus proteins shows the possibility that the specific activity of parasite proteases could interfere with the trend of Th1/Th2 immune responses. Data suggest that degrons may play a role in the immune responses in leishmaniases as targets for parasite proteases activity, directing the degradation of specific immune-related factors.
Collapse
Affiliation(s)
- Adriane Silva Oliveira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
| | - Lara Mata Aredes-Riguetti
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
| | | | - Carlos Roberto Alves
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
| | - Franklin Souza-Silva
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
- Faculdade de Ciências Biológicas e da Saúde, Universidade Iguaçu, Avenida Abílio Augusto Távora, 2134, Dom Rodrigo, Nova Iguaçu 26260-100, RJ, Brazil
| |
Collapse
|
4
|
Clos J, Grünebast J, Holm M. Promastigote-to-Amastigote Conversion in Leishmania spp.-A Molecular View. Pathogens 2022; 11:1052. [PMID: 36145483 PMCID: PMC9503511 DOI: 10.3390/pathogens11091052] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
A key factor in the successful infection of a mammalian host by Leishmania parasites is their conversion from extracellular motile promastigotes into intracellular amastigotes. We discuss the physical and chemical triggers that induce this conversion and the accompanying changes at the molecular level crucial for the survival of these intracellular parasites. Special emphasis is given to the reliance of these trypanosomatids on the post-transcriptional regulation of gene expression but also to the role played by protein kinases, chaperone proteins and proteolytic enzymes. Lastly, we offer a model to integrate the transduction of different stress signals for the induction of stage conversion.
Collapse
|
5
|
Kumari D, Mahajan S, Kour P, Singh K. Virulence factors of Leishmania parasite: Their paramount importance in unraveling novel vaccine candidates and therapeutic targets. Life Sci 2022; 306:120829. [PMID: 35872004 DOI: 10.1016/j.lfs.2022.120829] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 12/30/2022]
Abstract
Leishmaniasis is a neglected tropical disease and remains a global concern for healthcare. It is caused by an opportunistic protozoan parasite belonging to the genus Leishmania and affects millions worldwide. This disease is mainly prevalent in tropical and subtropical regions and is associated with a high risk of public morbidity and mortality if left untreated. Transmission of this deadly disease is aggravated by the bite of female sand-fly vectors (Phlebotomus and Lutzomyia). With time, significant advancement in leishmaniasis-related research has been carried out to cope with the disease burden. Still, the Leishmania parasite has also co-evolved with its host and adapted successfully within the host's lethal milieu/environment. Thus, understanding and knowledge of various leishmanial virulence factors responsible for the parasitic infection are essential for exploring drug targets and vaccine candidates. The present review elucidates the importance of virulence factors in pathogenesis and summarizes the major leishmanial virulence molecules contributing to the parasitic infection during host-pathogen interaction. Furthermore, we have also elaborated on the potential contribution of leishmanial virulence proteins in developing vaccine candidates and exploring novel therapeutics against this parasitic disease. We aim to represent a clearer picture of parasite pathogenesis within the human host that can further aid in unraveling new strategies to fight against the deadly infection of leishmaniasis.
Collapse
Affiliation(s)
- Diksha Kumari
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shavi Mahajan
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Parampreet Kour
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Zabala-Peñafiel A, Cysne-Finkelstein L, Conceição-Silva F, Fagundes A, Miranda LDFC, Souza-Silva F, Brandt AAML, Dias-Lopes G, Alves CR. Novel Insights Into Leishmania (Viannia) braziliensis In Vitro Fitness Guided by Temperature Changes Along With Its Subtilisins and Oligopeptidase B. Front Cell Infect Microbiol 2022; 12:805106. [PMID: 35531337 PMCID: PMC9069558 DOI: 10.3389/fcimb.2022.805106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Proteases are virulence factors with a recognized impact on the Leishmania spp. life cycle. This study considers a set of analyses measuring phenotypic factors of L. (V.) braziliensis clinical isolates as promastigotes growth curves, murine peritoneal macrophages infection, inflammatory mediators production, and serine proteases gene expression (subtilisin 13: S13, subtilisin 28: S28, oligopeptidase B: OPB) assessing these isolates’ fitness on in vitro conditions. Parasites had different behavior during the early growth phase from day zero to day three, and all isolates reached the stationary growth phase between days four and seven. Macrophages infection showed two tendencies, one of decreased infection rate and number of parasites per macrophage (Infection Index <1000) and another with a constant infection index (≥1400). TNF-α (≥10 pg/mL) detected in infections by 75% of isolates, IL-6 (≥80 pg/mL) by 30% of isolates and low levels of NO (≥0.01µM) in almost all infections. Gene expression showed higher values of S13 (≥2RQ) in the intracellular amastigotes of all the isolates evaluated. On the contrary, S28 expression was low (≤1RQ) in all isolates. OPB expression was different between promastigotes and intracellular amastigotes, being significantly higher (≥2RQ) in the latter form of 58% of the isolates. Predictive structural assays of S13 and OPB were performed to explore temperature influence on gene expression and the encoded proteases. Gene expression data is discussed based on in silico predictions of regulatory regions that show plasticity in the linearity index of secondary structures of S13 and OPB 3’-untranslated regions of mRNA, dependent on temperature changes. While hairpin structures suggest an active region of mRNA for both genes above 26°C, pseudoknot structure found in S13 is an indication of a particular profile of this gene at mammalian host temperatures (37°C). Furthermore, the predicted 3D structures are in accordance with the influence of these temperatures on the catalytic site stability of both enzymes, favoring their action over peptide substrates. Data gathered here suggest that L. (V.) braziliensis serine proteases can be influenced by the temperature conditions affecting parasite fitness throughout its life cycle.
Collapse
Affiliation(s)
- Anabel Zabala-Peñafiel
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lea Cysne-Finkelstein
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fatima Conceição-Silva
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Aline Fagundes
- Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luciana de Freitas Campos Miranda
- Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Franklin Souza-Silva
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Universidade Iguaçu, Dom Rodrigo, Nova Iguaçu, Rio de Janeiro, Brazil
| | - Artur A. M. L. Brandt
- Departamento de Computação e Sistemas, Faculdade de Educação Tecnológica do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Ciência da Computação, Univeritas-Rio, Rio de Janeiro, Brazil
| | - Geovane Dias-Lopes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Geovane Dias-Lopes, ; Carlos Roberto Alves,
| | - Carlos Roberto Alves
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Geovane Dias-Lopes, ; Carlos Roberto Alves,
| |
Collapse
|
7
|
Dias-Lopes G, Zabala-Peñafiel A, de Albuquerque-Melo BC, Souza-Silva F, Menaguali do Canto L, Cysne-Finkelstein L, Alves CR. Axenic amastigotes of Leishmania species as a suitable model for in vitro studies. Acta Trop 2021; 220:105956. [PMID: 33979642 DOI: 10.1016/j.actatropica.2021.105956] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/26/2022]
Abstract
Leishmania spp. are etiological agents of infection diseases, which in some cases can be fatal. The main forms of their biological cycle, promastigotes and amastigotes, can be maintained in vitro. While promastigotes are easier to maintain, amastigotes are more complex and can be obtained through different ways, including infection assays of tissues or in vitro cells, and differentiation from promastigotes to axenic amastigotes. Several protocols have been proposed for in vitro differentiation for at least 12 Leishmania spp. of both subgenera, Leishmania and Viannia. In this review we propose a critical summary of axenic amastigotes induction, as well as the impact of these strategies on metabolic pathways and regulatory networks analyzed by omics approaches. The parameters used by different research groups show considerable variations in temperature, pH and induction stages, as highlighted here for Leishmania (Viannia) braziliensis. Therefore, a consensus on strategies for inducing amastigogenesis is necessary to improve accuracy and even define stage-specific biomarkers. In fact, the axenic amastigote model has contributed to elucidate several aspects of the parasite cycle, however, since it does not reproduce the intracellular environment, its use requires several precautions. In addition, we present a discussion about using axenic amastigotes for drug screening, suggesting the need of a more sensitive methodology to verify cell viability in these tests. Collectively, this review explores the advantages and limitations found in studies with axenic amastigotes, done for more than 30 years, and discuss the gaps that impair their use as a suitable model for in vitro studies.
Collapse
|
8
|
Serine proteases profiles of Leishmania (Viannia) braziliensis clinical isolates with distinct susceptibilities to antimony. Sci Rep 2021; 11:14234. [PMID: 34244581 PMCID: PMC8271011 DOI: 10.1038/s41598-021-93665-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/29/2021] [Indexed: 11/10/2022] Open
Abstract
Glucantime (SbV) is the first-line treatment against American Tegumentary Leishmaniasis. Resistance cases to this drug have been reported and related to host characteristics and parasite phenotypes. In this study, 12 Leishmania (Viannia) braziliensis isolates from patients that presented clinical cure (Responders—R) and relapse or therapeutic failure (Non-responders—NR) after treatment with antimony, were analyzed. These parasites were assessed by in vitro susceptibility to SbIII and SbV, serine proteases activity measured with substrate (z-FR-AMC) and specific inhibitors (TLCK, AEBSF and PMSF). In vitro susceptibility of axenic amastigotes to SbIII showed a significant difference between R and NR groups. The protease assays showed that TLCK inhibited almost 100% of activity in both axenic amastigotes and promastigotes while AEBSF inhibited around 70%, and PMSF showed lower inhibition of some isolates. Principal component and clustering analysis performed with these data yielded one homogeneous cluster with only NR isolates and three heterogeneous clusters with R and NR isolates. Additionally, differential expression of subtilisins (LbrM.13.0860 and LbrM.28.2570) and TXNPx (LbrM.15.1080) was evaluated in promastigotes and axenic amastigotes from both groups. The results showed a higher expression of LbrM.13.0860 and LbrM.15.1080 genes in axenic amastigotes, while LbrM.28.2570 gene had the lowest expression in all isolates, regardless of the parasite form. The data presented here show a phenotypic heterogeneity among the parasites, suggesting that exploration of in vitro phenotypes based on SbIII and serine proteases profiles can aid in the characterization of L. (V.) braziliensis clinical isolates.
Collapse
|
9
|
Detection of Metalloproteases and Cysteine Proteases RNA Transcripts of Leishmania (Leishmania) infantum in Ear Edge Skin of Naturally Infected Dogs. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2615787. [PMID: 32685457 PMCID: PMC7333044 DOI: 10.1155/2020/2615787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 12/03/2022]
Abstract
Leishmania spp. proteases have been proposed as virulence factors contributing to adaptive success these parasites to the mammalian hosts. Since these enzymes are poorly studied in naturally infected dogs, this work aims to show the differences in metalloprotease and cysteine proteases gene expression in ear edge skin of dogs naturally infected by Leishmania (Leishmania) infantum. A cohort of dogs (n = 20) naturally infected by L. (L.) infantum was clinically classified as asymptomatic, oligosymptomatic, and polysymptomatic and the parasite load range estimated. The analysis of proteases expression by RT-PCR in the ear edge skin was also assessed, suggesting more transcripts of proteases in cDNA samples from polysymptomatic dogs than oligosymptomatic and asymptomatic ones. Metalloprotease RT-PCR assays yielded products (202 bp) in all assessed cDNA dog samples. In contrast, cysteine proteases transcripts (227 bp) had shown to be better detected in cDNA samples of polysymptomatic dogs, compared with cDNA samples from asymptomatic and oligosymptomatic dogs. Predictive in silico assays suggested that secondary structures of metalloproteasee mRNAs can be more stable than cysteine proteases at the skin temperature of dogs. Evidence is presented that during natural infection of dogs by L. (L.) infantum, this parasite produces transcripts of metalloprotease and cysteine protease RNA in the skin from asymptomatic, oligosymptomatic, and polysymptomatic dogs.
Collapse
|
10
|
Wang M, Hu Y, Li M, Xu Q, Zhang X, Wang X, Xue X, Xiao Q, Liu J, Wang H. A proteomics analysis of the ovarian development in females of Haemaphysalis longicornis. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 80:289-309. [PMID: 31919614 DOI: 10.1007/s10493-020-00469-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Haemaphysalis longicornis is an ixodid tick that can spread a wide variety of pathogens, affecting humans, livestock and wildlife health. The high reproductive capability of this species is initiated by the ingestion of a large amount of blood ingested by the engorged female tick. The degree of ovarian development is proportional to the number of eggs laid. Studying the regulatory mechanism of tick ovary development is relevant for the development of novel tick control methods. In this study, we used quantitative proteomics to study the dynamic changes in protein expression and protein phosphorylation during ovarian development of engorged female H. longicornis ticks. Synergistic action of many proteins (n = 3031) is required to achieve ovarian development and oocyte formation rapidly. Through bioinformatics analysis, changes in protein expressions and phosphorylation modifications in regulating the ovarian development of female ticks are described. Many proteins play an essential role during ovarian development. Also, protein phosphorylation appeared an important reproductive strategy to enable ticks to efficiently convert large amounts of blood in the ovaries into egg-producing components and ultimately produce many eggs.
Collapse
Affiliation(s)
- Minjing Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yuhong Hu
- Instrumental Analysis Center, Hebei Normal University, Shijiazhuang, 050024, China
| | - Mengxue Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qianqian Xu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoli Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoshuang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaomin Xue
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qi Xiao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
- , Shijiazhuang, Hebei, China.
| | - Hui Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
- , Shijiazhuang, Hebei, China.
| |
Collapse
|
11
|
Crepaldi F, de Toledo JS, do Carmo AO, Ferreira Marques Machado L, de Brito DDV, Serufo AV, Almeida APM, de Oliveira LG, Ricotta TQN, Moreira DDS, Murta SMF, Diniz AB, Menezes GB, López-Gonzálvez Á, Barbas C, Fernandes AP. Mapping Alterations Induced by Long-Term Axenic Cultivation of Leishmania amazonensis Promastigotes With a Multiplatform Metabolomic Fingerprint Approach. Front Cell Infect Microbiol 2019; 9:403. [PMID: 31867285 PMCID: PMC6904349 DOI: 10.3389/fcimb.2019.00403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/11/2019] [Indexed: 11/16/2022] Open
Abstract
Leishmaniases are widespread neglected diseases with an incidence of 1.6 million new cases and 40 thousand deaths per year. Leishmania parasites may show distinct, species-specific patterns of virulence that lead to different clinical manifestations. It is well known that successive in vitro passages (SIVP) lead to the attenuation of virulence, but neither the metabolism nor the pathways involved in these processes are well understood. Herein, promastigotes of a virulent L. amazonensis strain recently isolated from mice was compared to SIVP derived and attenuated promastigotes, submitted to 10, 40, and 60 axenic passages and named R10, R40, and R60, respectively. In vitro assays and in vivo tests were performed to characterize and confirmed the attenuation profiles. A metabolomic fingerprint comparison of R0, R10, and R60 was performed by means of capillary electrophoresis, liquid and gas chromatography coupled to mass spectrometry. To validate the metabolomic data, qPCR for selected loci, flow cytometry to measure aPS exposure, sensitivity to antimony tartrate and ROS production assays were conducted. The 65 identified metabolites were clustered in biochemical categories and mapped in eight metabolic pathways: ABC transporters; fatty acid biosynthesis; glycine, serine and threonine metabolism; β-alanine metabolism; glutathione metabolism; oxidative phosphorylation; glycerophospholipid metabolism and lysine degradation. The obtained metabolomic data correlated with previous proteomic findings of the SVIP parasites and the gene expression of 13 selected targets. Late SIVP cultures were more sensitive to SbIII produced more ROS and exposed less phosphatidylserine in their surface. The correspondent pathways were connected to build a biochemical map of the most significant alterations involved with the process of attenuation of L. amazonensis. Overall, the reported data pointed out to a very dynamic and continuous metabolic reprogramming process, accompanied by changes in energetic, lipid and redox metabolisms, membrane remodeling and reshaping of parasite-host cells interactions, causing impacts in chemotaxis, host inflammatory responses and infectivity at the early stages of infection.
Collapse
Affiliation(s)
- Frederico Crepaldi
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Centro de Metabolómica y Bioanálisis, Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Spain
| | - Juliano Simões de Toledo
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Centro de Metabolómica y Bioanálisis, Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Spain
| | - Anderson Oliveira do Carmo
- Laboratory of Biotechnology and Molecular Markers, General Biology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Daniela Diniz Viana de Brito
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Angela Vieira Serufo
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Paula Martins Almeida
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Leandro Gonzaga de Oliveira
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tiago Queiroga Nery Ricotta
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Ariane Barros Diniz
- Morphology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo Batista Menezes
- Morphology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ángeles López-Gonzálvez
- Centro de Metabolómica y Bioanálisis, Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis, Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Spain
| | - Ana Paula Fernandes
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
12
|
da Silva RE, Sampaio BM, Tonhosolo R, da Costa APR, da Silva Costa LE, Nieri-Bastos FA, Sperança MA, Marcili A. Exploring Leishmania infantum cathepsin as a new molecular marker for phylogenetic relationships and visceral leishmaniasis diagnosis. BMC Infect Dis 2019; 19:895. [PMID: 31660874 PMCID: PMC6819481 DOI: 10.1186/s12879-019-4463-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022] Open
Abstract
Background Leishmania infantum, the etiological agent of visceral leishmaniasis, is a neglected zoonosis that requires validation and standardization of satisfactory diagnostic methodologies. Thus, the aim of the present study was to evaluate the effectiveness of cathepsin L-like protease as a target for making molecular diagnoses and as a phylogenetic marker enabling to understand the intraspecies variations and evolutionary history of L. infantum in Brazil. Methods We used 44 isolates of L. infantum. The cathepsin L-like gene fragments were amplified, sequenced, manually aligned and analyzed using inference methods. The sequences generated were used to search and design oligonucleotide primers to be used in reactions specific to the target parasite. Results The cathepsin L-like gene did not show any intraspecies variability among the isolates analyzed. The pair of primers proposed amplified the target deoxyribonucleic acid (DNA) of L. infantum isolates and were effective for DNA amplification at concentrations of as low as 10− 11 ng/μl. The proposed marker did not present cross-reactions with other hemoparasites. When used for making the diagnosis in a panel of clinical samples from dogs, a positivity rate of 49.03% (102/208) was obtained, versus 14.42% (30/208) for a ribosomal internal transcribed spacer (ITS) marker. In samples from sandflies, the rate was 6.25% and from humans, 14.28%. Conclusions The results described in this work allow us to infer that CatLeish-PCR is a sensitive and specific marker for use in diagnostic trials of L. infantum and in clinical and epidemiological surveys.
Collapse
Affiliation(s)
- Ryan Emiliano da Silva
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP, 05508-270, Brazil
| | - Bruna Matarucco Sampaio
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP, 05508-270, Brazil
| | - Renata Tonhosolo
- Faculdade de Medicina, Universidade Santo Amaro, São Paulo, SP, Brazil
| | | | - Luiz Eduardo da Silva Costa
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP, 05508-270, Brazil
| | - Fernanda Ap Nieri-Bastos
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP, 05508-270, Brazil
| | - Márcia Aparecida Sperança
- Ciência Animal, Universidade Estadual do Maranhão, São Luís, MA, Brazil.,Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Arlei Marcili
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP, 05508-270, Brazil. .,Medicina Veterinária e Bem estar animal, Universidade Santo Amaro, São Paulo, SP, Brazil.
| |
Collapse
|
13
|
B-1 lymphocytes are able to produce IL-10, but is not pathogenic during Leishmania (Leishmania) amazonensis infection. Immunobiology 2019; 225:151857. [PMID: 31744626 DOI: 10.1016/j.imbio.2019.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/26/2019] [Accepted: 10/15/2019] [Indexed: 02/05/2023]
Abstract
Over the years research has found an association between B lymphocytes and pathogenesis during Leishmania sp. infections. Recently we demonstrated that B-2 lymphocytes are the main producers of IL-10 during L. amazonensis infection, and that the disease severity in BALB/c mice was attributed to these IL-10-producing B-2 lymphocytes. Here, we aim to understand the role of peritoneal B-1 lymphocytes in the pathogenesis of L. amazonensis infection. We found that infection resulted in a decrease in the number of B-1a lymphocytes and increase in B-1b lymphocytes in the peritoneal cavity of WT BALB/c mice but not in B lymphocyte deficient mice (BALB/Xid) mice. In vitro interaction between B-1 lymphocytes and L. amazonensis showed that the amastigote form of the parasite was able to induce higher levels of IL-10 in B-1 lymphocytes derived from infected BALB/c mice than the promastigote. Moreover, B-1 lymphocytes derived from infected mice produced more IL-10 than B-1 lymphocytes derived from naïve mice under amastigote interaction. However, the repopulation of BALB/Xid mice with B-1 lymphocytes from WT BALB/c mice did not affect the lesion development. Together, these results suggest that although B-1 lymphocytes are able to produce IL-10 during in vitro interaction with L. amazonensis, they are not directly related to pathogenesis in vivo.
Collapse
|
14
|
Santos-de-Souza R, Souza-Silva F, de Albuquerque-Melo BC, Ribeiro-Guimarães ML, de Castro Côrtes LM, Pereira BAS, Silva-Almeida M, Cysne-Finkelstein L, de Oliveira Junior FOR, Pereira MCDS, Alves CR. Insights into the tracking of the cysteine proteinase B COOH-terminal polypeptide of Leishmania (Leishmania) amazonensis by surface plasmon resonance. Parasitol Res 2019; 118:1249-1259. [PMID: 30747292 DOI: 10.1007/s00436-019-06238-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 01/25/2019] [Indexed: 02/06/2023]
Abstract
Leishmania (Leishmania) amazonensis has adaptive mechanisms to the host environment that are guided by its proteinases, including cysteine proteinase B (CPB), and primarily its COOH-terminal region (Cyspep). This work aimed to track the fate of Cyspep by surface plasmon resonance (SPR) of promastigotes and amastigotes to gain a greater understanding of the adaptation of this parasite in both hosts. This strategy consisted of antibody immobilization on a COOH1 surface, followed by interaction with parasite proteins and epoxysuccinyl-L-leucylamido(4-guanidino)butane (E-64). Pro-CPB and Cyspep were detected using specific polyclonal antibodies against a recombinant Cyspep in both parasite forms. The parasitic supernatants from amastigotes and promastigotes exhibited higher anti-Cyspep recognition compared with that in the subcellular fractions. As the supernatant of the promastigote cultures exhibited resonance unit values indicative of an effective with to E-64, this result was assumed to be Pro-CPB detection. Finally, after using three sequential SPR assay steps, we propose that amastigotes and promastigotes release Cyspep into the extracellular environment, but only promastigotes release this polypeptide as Pro-CPB.
Collapse
Affiliation(s)
- Raquel Santos-de-Souza
- Laboratório de Biologia Molecular e Doenças Endêmicas, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Franklin Souza-Silva
- Laboratório de Biologia Molecular e Doenças Endêmicas, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Barbara Cristina de Albuquerque-Melo
- Laboratório de Biologia Molecular e Doenças Endêmicas, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Michelle Lopes Ribeiro-Guimarães
- Laboratório de Biologia Molecular e Doenças Endêmicas, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Luzia Monteiro de Castro Côrtes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Bernardo Acácio Santini Pereira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Mariana Silva-Almeida
- Laboratório de Biologia Molecular e Doenças Endêmicas, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Léa Cysne-Finkelstein
- Laboratório de Imunoparasitologia, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | | | - Mirian Claudia de Souza Pereira
- Laboratório de Ultraestrutura Celular, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Carlos Roberto Alves
- Laboratório de Biologia Molecular e Doenças Endêmicas, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil.
| |
Collapse
|
15
|
Dagger F, Bengio C, Martinez A, Ayesta C. Leishmania mexicana differentiation involves a selective plasma membrane autophagic-like process. Cell Stress Chaperones 2018; 23:783-789. [PMID: 29170928 PMCID: PMC6045536 DOI: 10.1007/s12192-017-0864-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 10/18/2022] Open
Abstract
Parasites of the Leishmania genus, which are the causative agents of leishmaniasis, display a complex life cycle, from a flagellated form (promastigotes) residing in the midgut of the phlebotomine vector to a non-flagellated form (amastigote) invading the mammalian host. The cellular process for the conversion between these forms is an interesting biological phenomenon involving modulation of the plasma membrane. In this study, we describe a selective autophagic-like process during the in vitro differentiation of Leishmania mexicana promastigote to amastigote-like cells. This process is responsible for size reduction and shape change of the promastigote (15-20 μm long) to the rounded amastigote-like form (4-5 μm long), identical to the one that infects host macrophages. This autophagic-like process is characterized by a profound folding of the plasma membrane and the presence of abundant cytoplasmic lipid droplets that may be the product of changes in the lipid metabolism. The key feature for the differentiation process at either pH 7.0 or pH 5.5 is the shift in temperature from 25 to 35 °C. Flagella shortening during the differentiation process appears as the product of continuous flagellar microtubular disassembly that is also accompanied by changes in mitochondrion localization. Drugs directed at blocking the parasite autophagic-like process could be important as new strategies to fight the disease.
Collapse
Affiliation(s)
- Francehuli Dagger
- Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela.
| | - Camila Bengio
- Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
| | - Angel Martinez
- Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
| | - Carlos Ayesta
- Laboratorio de Fotografía, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
16
|
Understanding serine proteases implications on Leishmania spp lifecycle. Exp Parasitol 2018; 184:67-81. [DOI: 10.1016/j.exppara.2017.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022]
|
17
|
Cysne-Finkelstein L, Silva-Almeida M, Pereira BAS, Dos Santos Charret K, Bertho ÁL, Bastos LS, de Oliveira Pinto L, de Oliveira FOR, da Souza Pereira MC, Alves CR. Evidence of Subpopulations with Distinct Biological Features Within a Leishmania (Viannia) braziliensis Strain. Protist 2017; 169:107-121. [PMID: 29482071 DOI: 10.1016/j.protis.2017.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
The present study demonstrates that the Leishmania (Viannia) braziliensis strain MCAN/BR/1998/R619 is composed of multiple subpopulations with measurable distinctions. Single parasites were separated from a culture of promastigotes in stationary phase by cell sorting and then cultivated as subpopulations. Subsequently, these subpopulations were evaluated for features of in vitro growth, infectivity to murine macrophages and proteinase gene expression. The first evidence of distinct characteristics was observed during the in vitro cultivation of isolated subpopulations, as distinct clusters of patterns were formed among the cultures, indicating the existence of quantifiable fluctuations in metrics. Further, when infecting murine macrophages, the subpopulations induced distinct patterns of production of immune response mediators. While some subpopulations mainly induced the production of IL-1β, IL-6 and TNF-α, others induced the production of IL-12p70 and nitric oxide. Finally, amastigotes of these subpopulations had higher expression of proteinase genes than promastigotes. Additionally, cysteine proteinase, serine proteinase, metalloproteinase and aspartic proteinases were differentially expressed in promastigote and amastigote forms. These data suggest the existence of distinct profiles for the L. (V.) braziliensis MCAN/BR/1998/R619 strain and subpopulations that could drive the success of parasite adaptation to the environments that they inhabit.
Collapse
Affiliation(s)
- Léa Cysne-Finkelstein
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Imunoparasitologia - Instituto Oswaldo Cruz - Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Mariana Silva-Almeida
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas - Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Bernardo Acácio Santini Pereira
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas - Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Karen Dos Santos Charret
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas - Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Álvaro Luiz Bertho
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Imunoparasitologia - Instituto Oswaldo Cruz - Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Leonardo Soares Bastos
- Fundação Oswaldo Cruz, Programa de Computação Científica - Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Luzia de Oliveira Pinto
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Imunologia Viral - Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Francisco Odêncio Rodrigues de Oliveira
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz - Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Mirian Cláudia da Souza Pereira
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz - Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Carlos Roberto Alves
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas - Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|