1
|
Wei Q, Lv Y, Chen M, Wei Y, Huang Z, Xu W, Zhang W, Guang C, Ni D, Mu W. Mining and identifying a D-mannose isomerase with high fructose isomerization activity and its expression in Bacillus subtilis for D-mannose production. Int J Biol Macromol 2025; 311:143724. [PMID: 40315667 DOI: 10.1016/j.ijbiomac.2025.143724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/10/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
D-mannose is a functional monosaccharide with numerous positive physiological effects and holds significant commercial potential in the pharmaceutical, nutraceutical, and food industries. In this study, a hypothetical AGE family epimerase/isomerase from Stenotrophomonas maltophilia was identified and characterized as a D-mannose isomerase, named Stma-MIase, capable of efficiently converting d-fructose into D-mannose. Stma-MIase exhibited optimal activity at pH 8.5 and 60 °C, with a denaturation temperature (Tm) of 61.2 °C. The enzyme displayed a half-life of 11.1 h and 0.996 h at 50 and 55 °C, respectively. The recombinant Stma-MIase demonstrated the highest substrate affinity (Km) and catalytic efficiency (kcat/Km) among other reported MIases, which was further supported by molecular dynamics simulations based on binding free energy and distance distribution. Additionally, the expression of Stma-MIase in Bacillus subtilis yielded a fermentation volume activity of 76.1 U/mL through shake-flask fermentation. Whole-cell catalysis using 500 g/L of d-fructose as substrate resulted in a conversion rate of 26.0 %. This study not only uncovers a promising Stma-MIase with high fructose isomerization efficiency but also emphasizes its potential for industrial-scale D-mannose production.
Collapse
Affiliation(s)
- Qiang Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yizheng Lv
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maiqi Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuhan Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Pang B, Yang J, Song M, Zhang W, Qian S, Xu M, Chen X, Huang Y, Gu R, Wang K. Advances and prospects on production of lactulose and epilactose by cellobiose 2-epimerases: A review. Int J Biol Macromol 2025; 305:141283. [PMID: 39984086 DOI: 10.1016/j.ijbiomac.2025.141283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
Lactulose and epilactose are nondigestible disaccharides with a wide range of applications in clinical medicine, nutrition, and the food industry due to their health-benefiting properties. Their chemical synthesis typically involves stringent catalytic conditions and intricate reaction procedures, resulting in elevated production costs and challenges in product separation. Cellobiose 2-epimerases (CEs) facilitate the isomerization and epimerization of lactose to produce lactulose and epilactose directly, without the need for co-substrates. This enzymatic process offers advantages such as mild reaction conditions, straightforward operation, high conversion efficiency, and reduced by-product formation. Recently, numerous CE genes have been identified and characterized, with their enzymatic properties undergoing extensive analysis. This review consolidates information on the properties of CEs from various sources and examines their catalytic mechanisms based on crystal structure data. Additionally, the current research progress in the enzymatic synthesis of lactulose and epilactose is comprehensively reviewed. The future direction of CE research is discussed, highlighting the potential for large-scale production of lactulose and epilactose through environmentally sustainable enzymatic methods.
Collapse
Affiliation(s)
- Bo Pang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jiahao Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Manxi Song
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Wenxin Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Shiqi Qian
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Mingfang Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Xia Chen
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yujun Huang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Ruixia Gu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Kai Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
3
|
Feng Y, Lyu X, Cong Y, Miao T, Fang B, Zhang C, Shen Q, Matthews M, Fisher AJ, Zhang JZH, Zhang L, Yang R. A precise swaying map for how promiscuous cellobiose-2-epimerase operate bi-reaction. Int J Biol Macromol 2023; 253:127093. [PMID: 37758108 DOI: 10.1016/j.ijbiomac.2023.127093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Promiscuous enzymes play a crucial role in organism survival and new reaction mining. However, comprehensive mapping of the catalytic and regulatory mechanisms hasn't been well studied due to the characteristic complexity. The cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE) with complex epimerization and isomerization was chosen to comprehensively investigate the promiscuous mechanisms. Here, the catalytic frame of ring-opening, cis-enediol mediated catalysis and ring-closing was firstly determined. To map the full view of promiscuous CE, the structure of CsCE complex with the isomerized product glucopyranosyl-β1,4-fructose was determined. Combined with computational calculation, the promiscuity was proved a precise cooperation of the double subsites, loop rearrangement, and intermediate swaying. The flexible loop was like a gear, whose structural reshaping regulates the sway of the intermediates between the two subsites of H377-H188 and H377-H247, and thus regulates the catalytic directions. The different protonated states of cis-enediol intermediate catalyzed by H188 were the key point for the catalysis. The promiscuous enzyme tends to utilize all elements at hand to carry out the promiscuous functions.
Collapse
Affiliation(s)
- Yinghui Feng
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Xiaomei Lyu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yalong Cong
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Tingwei Miao
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bohuan Fang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanxi Zhang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Shen
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Melissa Matthews
- Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan; Department of Chemistry, University of California Davis, Davis, CA 95616, United States; Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, United States
| | - Andrew J Fisher
- Department of Chemistry, University of California Davis, Davis, CA 95616, United States; Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, United States
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China; Department of Chemistry, New York University, New York, NY 10003, United States
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Wang L, Gu J, Zhao W, Wang M, Ng KR, Lyu X, Yang R. Reshaping the Binding Pocket of Cellobiose 2-Epimerase for Improved Substrate Affinity and Isomerization Activity for Enabling Green Synthesis of Lactulose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15879-15893. [PMID: 36475670 DOI: 10.1021/acs.jafc.2c06980] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Enzymatic isomerization of lactose into lactulose via cellobiose 2-epimerase (CE) could provide an eco-friendly route for the industrial production of lactulose, a valuable food prebiotic. However, poor substrate affinity for lactose and preference for epimerization over isomerization hinder this application. Previous studies on CE improvement have focused on random mutagenesis or active site rational design; little is known about the relationship between substrate binding and enzyme efficacy, which was hence the subject of this study. First, residues 372W and 308W were identified as key for disaccharide recognition in CEs based on crystal structure alignment of the N-acetyl-glucosamine 2-epimerase superfamily and site-directed mutation. This binding domain was then reshaped through site saturation mutagenesis, resulting in seven mutants with enhanced isomerization activity. The optimal mutant CsCE/Q371E had significantly enhanced substrate affinity (Km, 269.65 mM vs Km, 417.5 mM), reduced epimerization activity, and 3.3-fold increased isomerization activity over the original CsCE. Molecular dynamics simulation further revealed that substituting Gln-371 with Glu strengthened the hydrogen-bonding network and altered the active site-substrate interactions, increasing the substrate stability and shifting the catalytic direction. This study uncovered new information about the substrate binding region and its mechanisms and impact on CE catalytic performance, paving the way for potential commercial applications.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jiali Gu
- College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Kuan Rei Ng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Xiaomei Lyu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Li YX, Hua XH, Yan QJ, Jin Y, Jiang ZQ. One-Pot Three-Enzyme System for Production of a Novel Prebiotic Mannosyl-β-(1 → 4)-Fructose Using a d-Mannose Isomerase from Xanthomonas phaseoli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12117-12127. [PMID: 36121717 DOI: 10.1021/acs.jafc.2c04649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present supply of prebiotics is entirely inadequate to meet their demand. To produce novel prebiotics, a d-mannose isomerase (XpMIaseA) from Xanthomonas phaseoli was first produced in Komagataella phaffii (Pichia pastoris). XpMIaseA shared the highest amino acid sequence identity (58.0%) with the enzyme from Marinomonas mediterranea. Efficient secretory production of XpMIaseA (282.0 U mL-1) was achieved using high cell density fermentation. The optimal conditions of XpMIaseA were pH 7.5 and 55 °C. It showed a broad substrate specificity, which isomerized d-mannose, d-talose, mannobiose, epilactose, and mannotriose. XpMIaseA was employed to construct a one-pot three-enzyme system for the production of mannosyl-β-(1 → 4)-fructose (MF) using mannan (5%, w/v) as the substrate. The equilibrium yield of MF was 58.2%. In in vitro fermentations, MF significantly stimulated (≤3.2-fold) the growth of 12 among 15 tested Bifidobacterium and Lactobacillus strains compared with fructo-oligosaccharides. Thus, the novel d-mannose isomerase provides a one-pot bioconversion strategy for efficiently producing novel prebiotics.
Collapse
Affiliation(s)
- Yan-Xiao Li
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Xiao-Han Hua
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Qiao-Juan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yan Jin
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Zheng-Qiang Jiang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| |
Collapse
|
6
|
Wang M, Wang L, Lyu X, Hua X, Goddard JM, Yang R. Lactulose production from lactose isomerization by chemo-catalysts and enzymes: Current status and future perspectives. Biotechnol Adv 2022; 60:108021. [PMID: 35901861 DOI: 10.1016/j.biotechadv.2022.108021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/02/2022] [Accepted: 07/17/2022] [Indexed: 11/29/2022]
Abstract
Lactulose, a semisynthetic nondigestive disaccharide with versatile applications in the food and pharmaceutical industries, has received increasing interest due to its significant health-promoting effects. Currently, industrial lactulose production is exclusively carried out by chemical isomerization of lactose via the Lobry de Bruyn-Alberda van Ekenstein (LA) rearrangement, and much work has been directed toward improving the conversion efficiency in terms of lactulose yield and purity by using new chemo-catalysts and integrated catalytic-purification systems. Lactulose can also be produced by an enzymatic route offering a potentially greener alternative to chemo-catalysis with fewer side products. Compared to the controlled trans-galactosylation by β-galactosidase, directed isomerization of lactose with high isomerization efficiency catalyzed by the most efficient lactulose-producing enzyme, cellobiose 2-epimerase (CE), has gained much attention in recent decades. To further facilitate the industrial translation of CE-based lactulose biotransformation, numerous studies have been reported on improving biocatalytic performance through enzyme mediated molecular modification. This review summarizes recent developments in the chemical and enzymatic production of lactulose. Related catalytic mechanisms are also highlighted and described in detail. Emerging techniques that aimed at advancing lactulose production, such as the boronate affinity-based technique and molecular biological techniques, are reviewed. Finally, perspectives on challenges and opportunities in lactulose production and purification are also discussed.
Collapse
Affiliation(s)
- Mingming Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China; College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China; Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Lu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Xiaomei Lyu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Xiao Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Julie M Goddard
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China.
| |
Collapse
|
7
|
Tian C, Yang J, Liu C, Chen P, Zhang T, Men Y, Ma H, Sun Y, Ma Y. Engineering substrate specificity of HAD phosphatases and multienzyme systems development for the thermodynamic-driven manufacturing sugars. Nat Commun 2022; 13:3582. [PMID: 35739124 PMCID: PMC9226320 DOI: 10.1038/s41467-022-31371-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
Naturally, haloacid dehalogenase superfamily phosphatases have been evolved with broad substrate promiscuity; however, strong specificity to a particular substrate is required for developing thermodynamically driven routes for manufacturing sugars. How to alter the intrinsic substrate promiscuity of phosphatases and fit the “one enzyme-one substrate” model remains a challenge. Herein, we report the structure-guided engineering of a phosphatase, and successfully provide variants with tailor-made preference for three widespread phosphorylated sugars, namely, glucose 6-phosphate, fructose 6-phosphate, and mannose 6-phosphate, while simultaneously enhancement in catalytic efficiency. A 12000-fold switch from unfavorite substrate to dedicated one is generated. Molecular dynamics simulations reveal the origin of improved activity and substrate specificity. Furthermore, we develop four coordinated multienzyme systems and accomplish the conversion of inexpensive sucrose and starch to fructose and mannose in excellent yield of 94–96%. This innovative sugar-biosynthesis strategy overcomes the reaction equilibrium of isomerization and provides the promise of high-yield manufacturing of other monosaccharides and polyols. Haloacid dehalogenase-like phosphatases are widespread across all domains of life and play a crucial role in the regulation of levels of sugar phosphate metabolites in cells. The authors report on the structure-guided engineering of phosphatases for dedicated substrate specificity for the conversion of sucrose and starch into fructose and mannose.
Collapse
Affiliation(s)
- Chaoyu Tian
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Jiangang Yang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Cui Liu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Peng Chen
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Tong Zhang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Yan Men
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Hongwu Ma
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
8
|
Adachi O, Kataoka N, Matsushita K, Akakabe Y, Harada T, Yakushi T. Membrane-bound D-mannose isomerase of acetic acid bacteria: finding, characterization, and application. Biosci Biotechnol Biochem 2022; 86:zbac049. [PMID: 35700128 DOI: 10.1093/bbb/zbac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
D-Mannose isomerase (EC 5.3.1.7) catalyzing reversible conversion between D-mannose and D-fructose was found in acetic acid bacteria. Cell fractionation confirmed the enzyme to be a typical membrane-bound enzyme, while all sugar isomerases so far reported are cytoplasmic. The optimal enzyme activity was found at pH 5.5, which was clear contrast to the cytoplasmic enzymes having alkaline optimal pH. The enzyme was heat stable and the optimal reaction temperature was observed at around 40 to 60˚C. Purified enzyme after solubilization from membrane fraction showed the total molecular mass of 196 kDa composing of identical four subunits of 48 kDa. Washed cells or immobilized cells were well functional at nearly 80% of conversion ratio from D-mannose to D-fructose and reversely 20-25% of D-fructose to D-mannose. Catalytic properties of the enzyme were discussed with respect to the biotechnological applications to high fructose syrup production from konjac taro.
Collapse
Affiliation(s)
- Osao Adachi
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi University, Yamaguchi, Japan
| | - Naoya Kataoka
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi University, Yamaguchi, Japan
| | - Kazunobu Matsushita
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi University, Yamaguchi, Japan
| | - Yoshihiko Akakabe
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi University, Yamaguchi, Japan
| | | | - Toshiharu Yakushi
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
9
|
Wu Y, Huang Z, Zhang W, Guang C, Chen Q, Mu W. Characterization of a Novel Mannose Isomerase from Stenotrophomonas rhizophila and Identification of Its Possible Catalytic Residues. Mol Biotechnol 2022; 64:650-659. [PMID: 35048315 DOI: 10.1007/s12033-021-00437-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022]
Abstract
D-Mannose has great value in the treatment of chronic diseases. D-Mannose isomerase can catalyze the bioconversion of D-fructose to D-mannose. Therefore, a novel D-mannose isomerase gene (Strh-MIase) from Stenotrophomonas rhizophila strain IS26 was expressed, purified, and characterized for the industrial production of D-mannose. The specific activities of the Strh-MIase for D-mannose and D-fructose were 437.5 ± 0.8 U/mg and 267.2 ± 0.7 U/mg. Its optimal temperature and pH were 50 °C and 7.0. The enzymatic bioconversion produced 25 g/L D-mannose from concentration D-fructose (100 g/L) in 6 h by recombinant Strh-MIase, resulting in a final yield of 25%. Sodium phosphate inhibition has little influence on D-mannose production when a high concentration of D-fructose is used as substrate. We demonstrate that the metal ions improve the efficiency of D-mannose isomerase because of the enhancement of its thermostability. Moreover, the possible catalytic residues of Strh-MIase were identified by site-directed mutagenesis.
Collapse
Affiliation(s)
- Yanchang Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
10
|
Wang P, Zheng Y, Li Y, Shen J, Dan M, Wang D. Recent advances in biotransformation, extraction and green production of D-mannose. Curr Res Food Sci 2022; 5:49-56. [PMID: 35005631 PMCID: PMC8718577 DOI: 10.1016/j.crfs.2021.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/10/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022] Open
Abstract
D-mannose is a natural and biologically active monosaccharide. It is the C-2 epimer of glucose and a component of a variety of polysaccharides in plants. In addition, D-mannose also naturally exists in some cells of the human body and participates in the immune regulation of cells as a prebiotic. Its good physiological benefits to human health and wide application in the food and pharmaceutical industries have attracted widespread attention. Therefore, in-depth research on preparation methods of D-mannose has been widely developed. This article summarizes the main production methods of D-mannose in recent years, especially the in-depth excavation from biomass raw materials such as coffee grounds, konjac flour, acai berry, etc., to provide new ideas for the green manufacture of D-mannose. Various methods of recent mannose production were comprehensively summarized. The new technical progress of obtaining mannose from biomass as emphatically discussed. Discuss various preparation methods including different pretreatments, enzymatic hydrolysis, etc.
Collapse
Affiliation(s)
- Peiyao Wang
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yuting Zheng
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yanping Li
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Ji Shen
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Meiling Dan
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing, 400715, China
| |
Collapse
|
11
|
Biochemical Properties of a Novel D-Mannose Isomerase from Pseudomonas syringae for D-Mannose Production. Appl Biochem Biotechnol 2021; 193:1482-1495. [PMID: 33484446 DOI: 10.1007/s12010-021-03487-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/07/2021] [Indexed: 12/24/2022]
Abstract
D-Mannose isomerase can reversibly catalyze D-fructose to D-mannose which has various beneficial effects. A novel D-mannose isomerase gene (PsMIaseA) from Pseudomonas syringae was cloned and expressed in Escherichia coli. The recombinant D-mannose isomerase (PsMIaseA) showed the highest amino acid sequence homogeneity of 50% with ManI from Thermobifda fusca. PsMIaseA was purified through Ni-NTA chromatography, and its specific activity was 818.6 U mg-1. The optimal pH and temperature of PsMIaseA were pH 7.5 and 45 °C, respectively. The enzyme was stable within a wide pH range from 5.0 to 10.0. It could efficiently convert D-fructose to D-mannose without any metal ions. When PsMIaseA was incubated with 600 g/L D-fructose for 6 h, the space-time yield of D-mannose reached 27.2 g L-1 h-1 with a maximum conversion ratio of 27%. Therefore, the D-mannose isomerase may be suitable for green production of D-mannose.
Collapse
|
12
|
Chen Q, Wu Y, Huang Z, Zhang W. Kinetic study and molecular dynamics simulation of two novel mannose isomerases. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00577d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The enzymatic properties of two novel mannose isomerases were characterized. The binding manners of substrates in mannose isomerases were further studied using molecular dynamics simulation and binding free energy calculation.
Collapse
Affiliation(s)
- Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yanchang Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
13
|
Jin P, Wang Y, Liang Z, Yuan M, Li H, Du Q. Efficient bioconversion of high-concentration d-fructose into d-mannose by a novel N-acyl- d-glucosamine 2-epimerase from Thermobifida halotolerans. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01915a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel N-acyl-d-glucosamine 2-epimerase ThMI exhibits high mannose isomerase activity with a maximum bioconversion ratio of 35.8% in 500 g L−1d-fructose. Whole-cell biocatalyst produced 157 g L−1d-mannose from 500 g L−1d-fructose in 60 min.
Collapse
Affiliation(s)
- Peng Jin
- College of Agricultural and Food Sciences
- Zhejiang A & F University
- Hangzhou
- China
| | - Yuanyuan Wang
- College of Agricultural and Food Sciences
- Zhejiang A & F University
- Hangzhou
- China
| | - Zhengang Liang
- Technology Center of Haikou Customs District China
- Haikou 570311
- China
| | - Miao Yuan
- College of Agricultural and Food Sciences
- Zhejiang A & F University
- Hangzhou
- China
| | - Hua Li
- Institute of Microbial Engineering
- Henan University
- Kaifeng 475001
- China
| | - Qizhen Du
- College of Agricultural and Food Sciences
- Zhejiang A & F University
- Hangzhou
- China
| |
Collapse
|
14
|
Feng Y, Hua X, Shen Q, Matthews M, Zhang Y, Fisher AJ, Lyu X, Yang R. Insight into the potential factors influencing the catalytic direction in cellobiose 2-epimerase by crystallization and mutagenesis. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:1104-1113. [PMID: 33135681 DOI: 10.1107/s205979832001222x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/03/2020] [Indexed: 11/10/2022]
Abstract
Cellobiose 2-epimerase (CE) is commonly recognized as an epimerase as most CEs mainly exhibit an epimerization activity towards disaccharides. In recent years, several CEs have been found to possess bifunctional epimerization and isomerization activities. They can convert lactose into lactulose, a high-value disaccharide that is widely used in the food and pharmaceutical industries. However, the factors that determine the catalytic direction in CEs are still not clear. In this study, the crystal structures of three newly discovered CEs, CsCE (a bifunctional CE from Caldicellulosiruptor saccharolyticus), StCE (a bifunctional CE from Spirochaeta thermophila DSM 6578) and BtCE (a monofunctional CE from Bacillus thermoamylovorans B4166), were determined at 1.54, 2.05 and 1.80 Å resolution, respectively, in order to search for structural clues to their monofunctional/bifunctional properties. A comparative analysis of the hydrogen-bond networks in the active pockets of diverse CEs, YihS and mannose isomerase suggested that the histidine corresponding to His188 in CsCE is uniquely required to catalyse isomerization. By alignment of the apo and ligand-bound structures of diverse CEs, it was found that bifunctional CEs tend to have more flexible loops and a larger entrance around the active site, and that the flexible loop 148-181 in CsCE displays obvious conformational changes during ligand binding. It was speculated that the reconstructed molecular interactions of the flexible loop during ligand binding helped to motivate the ligands to stretch in a manner beneficial for isomerization. Further site-directed mutagenesis analysis of the flexible loop in CsCE indicated that the residue composition of the flexible loop did not greatly impact epimerization but affects isomerization. In particular, V177D and I178D mutants showed a 50% and 80% increase in isomerization activity over the wild type. This study provides new information about the structural characteristics involved in the catalytic properties of CEs, which can be used to guide future molecular modifications.
Collapse
Affiliation(s)
- Yinghui Feng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiao Hua
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Qiuyun Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Melissa Matthews
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| | - Yuzhu Zhang
- Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA
| | - Andrew J Fisher
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| | - Xiaomei Lyu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
15
|
Insight into the significant roles of the Trp372 and flexible loop in directing the catalytic direction and substrate specificity in AGE superfamily enzymes. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: Advances and perspectives. Biotechnol Adv 2019; 37:107406. [DOI: 10.1016/j.biotechadv.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023]
|
17
|
Recent studies on the biological production of D-mannose. Appl Microbiol Biotechnol 2019; 103:8753-8761. [DOI: 10.1007/s00253-019-10151-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023]
|
18
|
Saburi W, Sato S, Hashiguchi S, Muto H, Iizuka T, Mori H. Enzymatic characteristics of d-mannose 2-epimerase, a new member of the acylglucosamine 2-epimerase superfamily. Appl Microbiol Biotechnol 2019; 103:6559-6570. [DOI: 10.1007/s00253-019-09944-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/20/2019] [Accepted: 05/25/2019] [Indexed: 11/30/2022]
|
19
|
Ito M, Fujii N, Wittwer C, Sasaki A, Tanaka M, Bittner T, Jessen HJ, Saiardi A, Takizawa S, Nagata E. Hydrophilic interaction liquid chromatography-tandem mass spectrometry for the quantitative analysis of mammalian-derived inositol poly/pyrophosphates. J Chromatogr A 2018; 1573:87-97. [PMID: 30220429 DOI: 10.1016/j.chroma.2018.08.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/20/2018] [Accepted: 08/30/2018] [Indexed: 11/25/2022]
Abstract
Although myo-inositol pyrophosphates such as diphosphoinositol pentakisphosphate (InsP7) are important in biology, little quantitative information is available regarding their presence in mammalian organisms owing to the technical difficulties associated with accurately detecting these materials in biological samples. We have developed an analytical method whereby InsP7 and its precursor inositol hexakisphosphate (InsP6) are determined directly and sensitively using tandem mass spectrometry coupled with hydrophilic interaction liquid chromatography (HILIC). InsP6 and InsP7 peak symmetry is influenced greatly by the buffer salt composition and pH of the mobile phase used in HILIC analysis. The use of 300 mM ammonium carbonate (pH 10.5) as an aqueous mobile phase resolves InsP6 and InsP7 on a polymer-based amino HILIC column with minimal peak tailing. Method validation shows that InsP6 and InsP7 can be quantitated from 20-500 pmol with minimal intra-day/inter-day variance in peak area and retention time. The concentration of InsP6 in C57BL/6J mouse brain (40.68 ± 3.84 pmol/mg wet weight) is successfully determined. HILIC‒MS/MS analysis using HEK293 culture cells confirms previous observations that InsP7 is induced by NaF treatment and ectopic expression of InsP6K2, a primary kinase for InsP7 synthesis. Furthermore, this analysis reveals the abundance of InsP6 (50.46 ± 18.57 pmol/106 cells) and scarcity of InsP7 in human blood cells. The results demonstrate that HILIC‒MS/MS analysis can quantitate endogenous InsP6 and InsP7 in mouse and human samples, and we expect that the method will contribute to further understanding of InsP7 functions in mammalian pathobiology.
Collapse
Affiliation(s)
- Masatoshi Ito
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa 259‒1193, Japan
| | - Natsuko Fujii
- Department of Neurology, Tokai University School of Medicine, Isehara, Kanagawa 259‒1193, Japan
| | - Christopher Wittwer
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Ayumi Sasaki
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa 259‒1193, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa 259‒1193, Japan
| | - Tamara Bittner
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, and Department of Cell and Developmental Biology, University College London, WC1E 6BT, United Kingdom
| | - Shunya Takizawa
- Department of Neurology, Tokai University School of Medicine, Isehara, Kanagawa 259‒1193, Japan
| | - Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, Isehara, Kanagawa 259‒1193, Japan.
| |
Collapse
|