1
|
Kunikullaya U K. An integrated approach to understanding the effects of exposome on neuroplasticity. Behav Brain Res 2025; 485:115516. [PMID: 40024484 DOI: 10.1016/j.bbr.2025.115516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/08/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Anthropogenic factors are those that occur due to human activities. The exposome is proposed to complement the genome, wherein an individual's exposure begins before birth. The range of exposures includes physical, chemical, dietary, lifestyle, biological, and occupational sources. Exposome has a positive or negative influence on neuroplasticity during different stages of life. A comprehensive study of the exposome is thus necessary to incorporate these factors and their influence on the individual, community, and the population as a whole. Exposomic research and global health present significant opportunities for interdisciplinary research. This review gives an overview of the exposome and its influence on neuroplasticity. It proposes methods to study the exposome on neuroplasticity across the lifespan of the individual. This is possible with the use of self-reported data, large-scale cohort formation, physiological sensors, neuroimaging, omics, molecular biology, and systems approaches. These approaches aim to provide a holistic understanding of an individual's neurological well-being and its implications for the population at large. This will also enable the designing of novel preventive and treatment strategies for managing neurological disorders.
Collapse
Affiliation(s)
- Kirthana Kunikullaya U
- MeDH, Department of Medicine, Huddinge, Karolinska Universitetssjukhuset Huddinge, Stockholm 14186, Sweden.
| |
Collapse
|
2
|
Wan M, Simonin EM, Johnson MM, Zhang X, Lin X, Gao P, Patel CJ, Yousuf A, Snyder MP, Hong X, Wang X, Sampath V, Nadeau KC. Exposomics: a review of methodologies, applications, and future directions in molecular medicine. EMBO Mol Med 2025; 17:599-608. [PMID: 39870881 PMCID: PMC11982546 DOI: 10.1038/s44321-025-00191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/06/2024] [Accepted: 12/24/2024] [Indexed: 01/29/2025] Open
Abstract
The exposome is the measure of all the exposures of an individual in a lifetime and how those exposures relate to health. Exposomics is the emerging field of research to measure and study the totality of the exposome. Exposomics can assist with molecular medicine by furthering our understanding of how the exposome influences cellular and molecular processes such as gene expression, epigenetic modifications, metabolic pathways, and immune responses. These molecular alterations can aid as biomarkers for the diagnosis, disease prediction, early detection, and treatment and offering new avenues for personalized medicine. Advances in high throughput omics and other technologies as well as increased computational analytics is enabling comprehensive measurement and sophisticated analysis of the exposome to elucidate their cumulative and combined impacts on health, which can enable individuals, communities, and policymakers to create programs, policies, and protections that promote healthier environments and people. This review provides an overview of the potential role of exposomics in molecular medicine, covering its history, methodologies, current research and applications, and future directions.
Collapse
Grants
- UM1 AI109565 NIAID NIH HHS
- R21 AI149277 NIAID NIH HHS
- R01 HL141851 NHLBI NIH HHS
- R01 AI125567 NIAID NIH HHS
- P01 HL152953 NHLBI NIH HHS
- P01 HL152953,R01 HL141851 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 ES032253 NIEHS NIH HHS
- U01 AI140498 NIAID NIH HHS
- R21AI1492771,R21EB030643,U01AI140498,U01 AI147462,R01AI140134,UM1AI109565,UM2AI130836,P01AI15 HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- R21 EB030643 NIBIB NIH HHS
- P01 AI153559 NIAID NIH HHS
- R01 AI140134 NIAID NIH HHS
- R21ES03304901,R01ES032253 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- U19 AI167903 NIAID NIH HHS
- UM2 AI130836 NIAID NIH HHS
- U01 AI147462 NIAID NIH HHS
Collapse
Affiliation(s)
- Melissa Wan
- Harvard Chan Occupational and Environmental Medicine, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Elisabeth M Simonin
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Mary Margaret Johnson
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Xinyue Zhang
- Cardiovascular Institute Operations, Stanford University, Palo Alto, CA, 94305, USA
| | - Xiangping Lin
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Peng Gao
- School of Public Health, University of Pittsburg, Pittsburgh, PA, 15261, USA
| | | | | | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Xiumei Hong
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, John Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xiaobin Wang
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, John Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Vanitha Sampath
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Brial F, Puel G, Gonzalez L, Russick J, Auld D, Lathrop M, Poirier R, Matsuda F, Gauguier D. Stimulation of insulin secretion induced by low 4-cresol dose involves the RPS6KA3 signalling pathway. PLoS One 2024; 19:e0310370. [PMID: 39446839 PMCID: PMC11500888 DOI: 10.1371/journal.pone.0310370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/29/2024] [Indexed: 10/26/2024] Open
Abstract
4-cresol (4-methylphenol, p-cresol) is a xenobiotic substance negatively correlated with type 2 diabetes and associated with health improvement in preclinical models of diabetes. We aimed at refining our understanding of the physiological role of this metabolite and identifying potential signalling mechanisms. Functional studies revealed that 4-cresol does not deteriorate insulin sensitivity in human primary adipocytes and exhibits an additive effect to that of insulin on insulin sensitivity in mouse C2C12 myoblasts. Experiments in mouse isolated islets showed that 4-cresol potentiates glucose induced insulin secretion. We demonstrated the absence of off target effects of 4-cresol on a panel of 44 pharmacological compounds. Screening large panels of 241 G protein-coupled receptors (GPCRs) and 468 kinases identified binding of 4-cresol only to TNK1, EIF2AK4 (GCN2) and RPS6KA3 (RSK2), a kinase strongly expressed in human and rat pancreatic islets. Islet expression of RPS6KA3 is reduced in spontaneously diabetic rats chronically treated with 4-cresol and Rps6ka3 deficient mice exhibit reduction in both body weight and fasting glycemia, modest improvement in glycemic control and enhanced insulin release in vivo. Similar to low doses of 4-cresol, incubation of isolated rat islets with low concentrations of the RPS6KA3 inhibitor BIX 02565 stimulates both glucose induced insulin secretion and β-cell proliferation. These results provide further information on the role of low 4-cresol doses in the regulation of insulin secretion.
Collapse
Affiliation(s)
- François Brial
- Université Paris Cité, INSERM U1132 Biologie de l’os et du cartilage (BIOSCAR), Paris, France
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Laurine Gonzalez
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
| | - Jules Russick
- Université Paris Cité, INSERM UMR 1124, Paris, France
| | - Daniel Auld
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, QC, Canada
- Metabolica Drug Discovery Inc., Montreal, QC, Canada
| | - Mark Lathrop
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, QC, Canada
| | - Roseline Poirier
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Dominique Gauguier
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Université Paris Cité, INSERM UMR 1124, Paris, France
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Azoulay C. [Climate and environmental crisis impacts on women's health: What specificities? What can be done?]. GYNECOLOGIE, OBSTETRIQUE, FERTILITE & SENOLOGIE 2024; 52:524-532. [PMID: 38492742 DOI: 10.1016/j.gofs.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/12/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE Pollution is one of the world's largest risk factors for disease and premature death. In Europe, it is responsible for approximately 20% of mortality. Chemicals exposure can occur by inhalation, ingestion or skin contact and begins in utero. Pollutants can be divided into three categories: endocrine disruptors (pesticides, PFAS, plastics, dioxins, etc.), heavy metals (cadmium, mercury and lead…) and nanomaterials. Climate change and air pollution are other main health threats. METHODS Literature review using PubMed and ResearchGate databases and institutional websites. RESULTS Endocrine disruptors are identified as significant risk factors for the reproductive health with negative documented impacts following prenatal or adult exposure. Climate change and air pollution can cause gender-based health disparities. Numerous scientific arguments show that chemical pollution and climate change disproportionately impact women, both on a social and biological level. Populations in precarious situations among which women are over-represented suffer the most severe social consequences including in France. There are several gender-specific domestic or occupational exposures to pollutants, most often to the disadvantage of women compared to men. Finally, although very few gendered data exist in environmental health, there are sexual-based physiological vulnerabilities concerning the metabolism of pollutants and the capacity to adapt to heat. CONCLUSION Facing this threat of gender inequity in sexual and reproductive health and rights' width, women's health professionals have a major role to play in initiating new ways to assess and reduce the environmental health burden in women.
Collapse
Affiliation(s)
- Catherine Azoulay
- Collectif Femmes de Santé, chez Hkind (Les arches citoyennes), 3, avenue Victoria, 75004 Paris, France.
| |
Collapse
|
5
|
Di Renzo L, Gualtieri P, Frank G, Cianci R, Caldarelli M, Leggeri G, Raffaelli G, Pizzocaro E, Cirillo M, De Lorenzo A. Exploring the Exposome Spectrum: Unveiling Endogenous and Exogenous Factors in Non-Communicable Chronic Diseases. Diseases 2024; 12:176. [PMID: 39195175 DOI: 10.3390/diseases12080176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
The exposome encompasses all endogenous and exogenous exposure individuals encounter throughout their lives, including biological, chemical, physical, psychological, relational, and socioeconomic factors. It examines the duration and intensity of these types of exposure and their complex interactions over time. This interdisciplinary approach involves various scientific disciplines, particularly toxicology, to understand the long-term effects of toxic exposure on health. Factors like air pollution, racial background, and socioeconomic status significantly contribute to diseases such as metabolic, cardiovascular, neurodegenerative diseases, infertility, and cancer. Advanced analytical methods measure contaminants in biofluids, food, air, water, and soil, but often overlook the cumulative risk of multiple chemicals. An exposome analysis necessitates sophisticated tools and methodologies to understand health interactions and integrate findings into precision medicine for better disease diagnosis and treatment. Chronic exposure to environmental and biological stimuli can lead to persistent low-grade inflammation, which is a key factor in chronic non-communicable diseases (NCDs), such as obesity, cardiometabolic disorders, cancer, respiratory diseases, autoimmune conditions, and depression. These NCDs are influenced by smoking, unhealthy diets, physical inactivity, and alcohol abuse, all shaped by genetic, environmental, and social factors. Dietary patterns, especially ultra-processed foods, can exacerbate inflammation and alter gut microbiota. This study investigates the exposome's role in the prevention, development, and progression of NCDs, focusing on endogenous and exogenous factors.
Collapse
Affiliation(s)
- Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Giulia Frank
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Giulia Leggeri
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Glauco Raffaelli
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Erica Pizzocaro
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Michela Cirillo
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
6
|
Barouki R. A toxicological perspective on climate change and the exposome. Front Public Health 2024; 12:1361274. [PMID: 38651121 PMCID: PMC11033471 DOI: 10.3389/fpubh.2024.1361274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Climate change is accompanied by changes in the exposome, including increased heat, ground-level ozone, and other air pollutants, infectious agents, pollens, and psychosocial stress. These exposures alter the internal component of the exposome and account for some of the health effects of climate change. The adverse outcome pathways describe biological events leading to an unfavorable health outcome. In this perspective study, I propose to use this toxicological framework to better describe the biological steps linking a stressor associated with climate change to an adverse outcome. Such a framework also allows for better identification of possible interactions between stressors related to climate change and others, such as chemical pollution. More generally, I call for the incorporation of climate change as part of the exposome and for improved identification of the biological pathways involved in its health effects.
Collapse
Affiliation(s)
- Robert Barouki
- Université Paris Cité, INSERM U 1124 (T3S), Paris, France
| |
Collapse
|
7
|
Sharma T, Kumar R, Mukherjee S. Neuronal Vulnerability to Degeneration in Parkinson's Disease and Therapeutic Approaches. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:715-730. [PMID: 37185323 DOI: 10.2174/1871527322666230426155432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 05/17/2023]
Abstract
Parkinson's disease is the second most common neurodegenerative disease affecting millions of people worldwide. Despite the crucial threat it poses, currently, no specific therapy exists that can completely reverse or halt the progression of the disease. Parkinson's disease pathology is driven by neurodegeneration caused by the intraneuronal accumulation of alpha-synuclein (α-syn) aggregates in Lewy bodies in the substantia nigra region of the brain. Parkinson's disease is a multiorgan disease affecting the central nervous system (CNS) as well as the autonomic nervous system. A bidirectional route of spreading α-syn from the gut to CNS through the vagus nerve and vice versa has also been reported. Despite our understanding of the molecular and pathophysiological aspects of Parkinson's disease, many questions remain unanswered regarding the selective vulnerability of neuronal populations, the neuromodulatory role of the locus coeruleus, and alpha-synuclein aggregation. This review article aims to describe the probable factors that contribute to selective neuronal vulnerability in Parkinson's disease, such as genetic predisposition, bioenergetics, and the physiology of neurons, as well as the interplay of environmental and exogenous modulators. This review also highlights various therapeutic strategies with cell transplants, through viral gene delivery, by targeting α-synuclein and aquaporin protein or epidermal growth factor receptors for the treatment of Parkinson's disease. The application of regenerative medicine and patient-specific personalized approaches have also been explored as promising strategies in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Tanushree Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
- Molecular and Human Genetics, Banaras Hindu University Varanasi, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
Martens M, Stierum R, Schymanski EL, Evelo CT, Aalizadeh R, Aladjov H, Arturi K, Audouze K, Babica P, Berka K, Bessems J, Blaha L, Bolton EE, Cases M, Damalas DΕ, Dave K, Dilger M, Exner T, Geerke DP, Grafström R, Gray A, Hancock JM, Hollert H, Jeliazkova N, Jennen D, Jourdan F, Kahlem P, Klanova J, Kleinjans J, Kondic T, Kone B, Lynch I, Maran U, Martinez Cuesta S, Ménager H, Neumann S, Nymark P, Oberacher H, Ramirez N, Remy S, Rocca-Serra P, Salek RM, Sallach B, Sansone SA, Sanz F, Sarimveis H, Sarntivijai S, Schulze T, Slobodnik J, Spjuth O, Tedds J, Thomaidis N, Weber RJ, van Westen GJ, Wheelock CE, Williams AJ, Witters H, Zdrazil B, Županič A, Willighagen EL. ELIXIR and Toxicology: a community in development. F1000Res 2023; 10:ELIXIR-1129. [PMID: 37842337 PMCID: PMC10568213 DOI: 10.12688/f1000research.74502.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 02/01/2025] Open
Abstract
Toxicology has been an active research field for many decades, with academic, industrial and government involvement. Modern omics and computational approaches are changing the field, from merely disease-specific observational models into target-specific predictive models. Traditionally, toxicology has strong links with other fields such as biology, chemistry, pharmacology and medicine. With the rise of synthetic and new engineered materials, alongside ongoing prioritisation needs in chemical risk assessment for existing chemicals, early predictive evaluations are becoming of utmost importance to both scientific and regulatory purposes. ELIXIR is an intergovernmental organisation that brings together life science resources from across Europe. To coordinate the linkage of various life science efforts around modern predictive toxicology, the establishment of a new ELIXIR Community is seen as instrumental. In the past few years, joint efforts, building on incidental overlap, have been piloted in the context of ELIXIR. For example, the EU-ToxRisk, diXa, HeCaToS, transQST, and the nanotoxicology community have worked with the ELIXIR TeSS, Bioschemas, and Compute Platforms and activities. In 2018, a core group of interested parties wrote a proposal, outlining a sketch of what this new ELIXIR Toxicology Community would look like. A recent workshop (held September 30th to October 1st, 2020) extended this into an ELIXIR Toxicology roadmap and a shortlist of limited investment-high gain collaborations to give body to this new community. This Whitepaper outlines the results of these efforts and defines our vision of the ELIXIR Toxicology Community and how it complements other ELIXIR activities.
Collapse
Affiliation(s)
- Marvin Martens
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Rob Stierum
- Risk Analysis for Products In Development (RAPID), Netherlands Organisation for applied scientific research TNO, Utrecht, 3584 CB, The Netherlands
| | - Emma L. Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Chris T. Evelo
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, 6229 ER, The Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, 6229 EN, The Netherlands
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Hristo Aladjov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | - Kasia Arturi
- Department Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, 8600, Switzerland
| | | | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Berka
- Department of Physical Chemistry, Palacky University Olomouc, Olomouc, 77146, Czech Republic
| | | | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Evan E. Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Dimitrios Ε. Damalas
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Kirtan Dave
- School of Science, GSFC University, Gujarat, 391750, India
| | - Marco Dilger
- Forschungs- und Beratungsinstitut Gefahrstoffe (FoBiG) GmbH, Freiburg im Breisgau, 79106, Germany
| | | | - Daan P. Geerke
- AIMMS Division of Molecular Toxicology, Vrije Universiteit, Amsterdam, 1081 HZ, The Netherlands
| | - Roland Grafström
- Department of Toxicology, Misvik Biology, Turku, 20520, Finland
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, 17177, Sweden
| | - Alasdair Gray
- Department of Computer Science, Heriot-Watt University, Edinburgh, UK
| | | | - Henner Hollert
- Department Evolutionary Ecology & Environmental Toxicology (E3T), Goethe-University, Frankfurt, D-60438, Germany
| | | | - Danyel Jennen
- Department of Toxicogenomics, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Fabien Jourdan
- MetaboHUB, French metabolomics infrastructure in Metabolomics and Fluxomics, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, Toulouse, France
| | - Pascal Kahlem
- Scientific Network Management SL, Barcelona, 08015, Spain
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Todor Kondic
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Boï Kone
- Faculty of Pharmacy, Malaria Research and Training Center, Bamako, BP:1805, Mali
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Uko Maran
- Institute of Chemistry, University of Tartu, Tartu, 50411, Estonia
| | | | - Hervé Ménager
- Institut Français de Bioinformatique, Evry, F-91000, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Paris, F-75015, France
| | - Steffen Neumann
- Research group Bioinformatics and Scientific Data, Leibniz Institute of Plant Biochemistry, Halle, 06120, Germany
| | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, 17177, Sweden
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, A-6020, Austria
| | - Noelia Ramirez
- Institut d'Investigacio Sanitaria Pere Virgili-Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | | | - Philippe Rocca-Serra
- Data Readiness Group, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Reza M. Salek
- International Agency for Research on Cancer, World Health Organisation, Lyon, 69372, France
| | - Brett Sallach
- Department of Environment and Geography, University of York, UK, York, YO10 5NG, UK
| | | | - Ferran Sanz
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, 08003, Spain
| | | | | | - Tobias Schulze
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, 04318, Germany
| | | | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Uppsala, SE-75124, Sweden
| | - Jonathan Tedds
- ELIXIR Hub, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Ralf J.M. Weber
- School of Biosciences, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Gerard J.P. van Westen
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden, 2333 CC, The Netherlands
| | - Craig E. Wheelock
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm SE-141-86, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Antony J. Williams
- Center for Computational Toxicology and Exposure, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | - Barbara Zdrazil
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria
| | - Anže Županič
- Department Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Egon L. Willighagen
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
9
|
Martens M, Stierum R, Schymanski EL, Evelo CT, Aalizadeh R, Aladjov H, Arturi K, Audouze K, Babica P, Berka K, Bessems J, Blaha L, Bolton EE, Cases M, Damalas DΕ, Dave K, Dilger M, Exner T, Geerke DP, Grafström R, Gray A, Hancock JM, Hollert H, Jeliazkova N, Jennen D, Jourdan F, Kahlem P, Klanova J, Kleinjans J, Kondic T, Kone B, Lynch I, Maran U, Martinez Cuesta S, Ménager H, Neumann S, Nymark P, Oberacher H, Ramirez N, Remy S, Rocca-Serra P, Salek RM, Sallach B, Sansone SA, Sanz F, Sarimveis H, Sarntivijai S, Schulze T, Slobodnik J, Spjuth O, Tedds J, Thomaidis N, Weber RJ, van Westen GJ, Wheelock CE, Williams AJ, Witters H, Zdrazil B, Županič A, Willighagen EL. ELIXIR and Toxicology: a community in development. F1000Res 2023; 10:ELIXIR-1129. [PMID: 37842337 PMCID: PMC10568213 DOI: 10.12688/f1000research.74502.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
Toxicology has been an active research field for many decades, with academic, industrial and government involvement. Modern omics and computational approaches are changing the field, from merely disease-specific observational models into target-specific predictive models. Traditionally, toxicology has strong links with other fields such as biology, chemistry, pharmacology and medicine. With the rise of synthetic and new engineered materials, alongside ongoing prioritisation needs in chemical risk assessment for existing chemicals, early predictive evaluations are becoming of utmost importance to both scientific and regulatory purposes. ELIXIR is an intergovernmental organisation that brings together life science resources from across Europe. To coordinate the linkage of various life science efforts around modern predictive toxicology, the establishment of a new ELIXIR Community is seen as instrumental. In the past few years, joint efforts, building on incidental overlap, have been piloted in the context of ELIXIR. For example, the EU-ToxRisk, diXa, HeCaToS, transQST, and the nanotoxicology community have worked with the ELIXIR TeSS, Bioschemas, and Compute Platforms and activities. In 2018, a core group of interested parties wrote a proposal, outlining a sketch of what this new ELIXIR Toxicology Community would look like. A recent workshop (held September 30th to October 1st, 2020) extended this into an ELIXIR Toxicology roadmap and a shortlist of limited investment-high gain collaborations to give body to this new community. This Whitepaper outlines the results of these efforts and defines our vision of the ELIXIR Toxicology Community and how it complements other ELIXIR activities.
Collapse
Affiliation(s)
- Marvin Martens
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Rob Stierum
- Risk Analysis for Products In Development (RAPID), Netherlands Organisation for applied scientific research TNO, Utrecht, 3584 CB, The Netherlands
| | - Emma L. Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Chris T. Evelo
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, 6229 ER, The Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, 6229 EN, The Netherlands
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Hristo Aladjov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | - Kasia Arturi
- Department Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, 8600, Switzerland
| | | | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Berka
- Department of Physical Chemistry, Palacky University Olomouc, Olomouc, 77146, Czech Republic
| | | | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Evan E. Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Dimitrios Ε. Damalas
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Kirtan Dave
- School of Science, GSFC University, Gujarat, 391750, India
| | - Marco Dilger
- Forschungs- und Beratungsinstitut Gefahrstoffe (FoBiG) GmbH, Freiburg im Breisgau, 79106, Germany
| | | | - Daan P. Geerke
- AIMMS Division of Molecular Toxicology, Vrije Universiteit, Amsterdam, 1081 HZ, The Netherlands
| | - Roland Grafström
- Department of Toxicology, Misvik Biology, Turku, 20520, Finland
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, 17177, Sweden
| | - Alasdair Gray
- Department of Computer Science, Heriot-Watt University, Edinburgh, UK
| | | | - Henner Hollert
- Department Evolutionary Ecology & Environmental Toxicology (E3T), Goethe-University, Frankfurt, D-60438, Germany
| | | | - Danyel Jennen
- Department of Toxicogenomics, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Fabien Jourdan
- MetaboHUB, French metabolomics infrastructure in Metabolomics and Fluxomics, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, Toulouse, France
| | - Pascal Kahlem
- Scientific Network Management SL, Barcelona, 08015, Spain
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Todor Kondic
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Boï Kone
- Faculty of Pharmacy, Malaria Research and Training Center, Bamako, BP:1805, Mali
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Uko Maran
- Institute of Chemistry, University of Tartu, Tartu, 50411, Estonia
| | | | - Hervé Ménager
- Institut Français de Bioinformatique, Evry, F-91000, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Paris, F-75015, France
| | - Steffen Neumann
- Research group Bioinformatics and Scientific Data, Leibniz Institute of Plant Biochemistry, Halle, 06120, Germany
| | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, 17177, Sweden
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, A-6020, Austria
| | - Noelia Ramirez
- Institut d'Investigacio Sanitaria Pere Virgili-Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | | | - Philippe Rocca-Serra
- Data Readiness Group, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Reza M. Salek
- International Agency for Research on Cancer, World Health Organisation, Lyon, 69372, France
| | - Brett Sallach
- Department of Environment and Geography, University of York, UK, York, YO10 5NG, UK
| | | | - Ferran Sanz
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, 08003, Spain
| | | | | | - Tobias Schulze
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, 04318, Germany
| | | | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Uppsala, SE-75124, Sweden
| | - Jonathan Tedds
- ELIXIR Hub, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Ralf J.M. Weber
- School of Biosciences, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Gerard J.P. van Westen
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden, 2333 CC, The Netherlands
| | - Craig E. Wheelock
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm SE-141-86, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Antony J. Williams
- Center for Computational Toxicology and Exposure, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | - Barbara Zdrazil
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria
| | - Anže Županič
- Department Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Egon L. Willighagen
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
10
|
Barouki R, Samson M, Blanc EB, Colombo M, Zucman-Rossi J, Lazaridis KN, Miller GW, Coumoul X. The exposome and liver disease - how environmental factors affect liver health. J Hepatol 2023; 79:492-505. [PMID: 36889360 PMCID: PMC10448911 DOI: 10.1016/j.jhep.2023.02.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/10/2023]
Abstract
Since the initial development of the exposome concept, much effort has been devoted to the characterisation of the exposome through analytical, epidemiological, and toxicological/mechanistic studies. There is now an urgent need to link the exposome to human diseases and to include exposomics in the characterisation of environment-linked pathologies together with genomics and other omics. Liver diseases are particularly well suited for such studies since major functions of the liver include the detection, detoxification, and elimination of xenobiotics, as well as inflammatory responses. It is well known that several liver diseases are associated with i) addictive behaviours such as alcohol consumption, smoking, and to a certain extent dietary imbalance and obesity, ii) viral and parasitic infections, and iii) exposure to toxins and occupational chemicals. Recent studies indicate that environmental exposures are also significantly associated with liver diseases, and these include air pollution (particulate matter and volatile chemicals), contaminants such as polyaromatic hydrocarbons, bisphenol A and per-and poly-fluorinated substances, and physical stressors such as radiation. Furthermore, microbial metabolites and the "gut-liver" axis play a major role in liver diseases. Exposomics is poised to play a major role in the field of liver pathology. Methodological advances such as the exposomics-metabolomics framework, the determination of risk factors' genomic and epigenomic signatures, and cross-species biological pathway analysis should further delineate the impact of the exposome on the liver, opening the way for improved prevention, as well as the identification of new biomarkers of exposure and effects, and additional therapeutic targets.
Collapse
Affiliation(s)
| | - Michel Samson
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | | | - Massimo Colombo
- San Raffaele Hospital, Liver Center, Via Olgettina 60, 20132, Milan, Italy
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, AP-HP, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, F-75006, Paris, France
| | | | - Gary W Miller
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10032, USA
| | | |
Collapse
|
11
|
Fernández-Carrión R, Sorlí JV, Asensio EM, Pascual EC, Portolés O, Alvarez-Sala A, Francès F, Ramírez-Sabio JB, Pérez-Fidalgo A, Villamil LV, Tinahones FJ, Estruch R, Ordovas JM, Coltell O, Corella D. DNA-Methylation Signatures of Tobacco Smoking in a High Cardiovascular Risk Population: Modulation by the Mediterranean Diet. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3635. [PMID: 36834337 PMCID: PMC9964856 DOI: 10.3390/ijerph20043635] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Biomarkers based on DNA methylation are relevant in the field of environmental health for precision health. Although tobacco smoking is one of the factors with a strong and consistent impact on DNA methylation, there are very few studies analyzing its methylation signature in southern European populations and none examining its modulation by the Mediterranean diet at the epigenome-wide level. We examined blood methylation smoking signatures on the EPIC 850 K array in this population (n = 414 high cardiovascular risk subjects). Epigenome-wide methylation studies (EWASs) were performed analyzing differential methylation CpG sites by smoking status (never, former, and current smokers) and the modulation by adherence to a Mediterranean diet score was explored. Gene-set enrichment analysis was performed for biological and functional interpretation. The predictive value of the top differentially methylated CpGs was analyzed using receiver operative curves. We characterized the DNA methylation signature of smoking in this Mediterranean population by identifying 46 differentially methylated CpGs at the EWAS level in the whole population. The strongest association was observed at the cg21566642 (p = 2.2 × 10-32) in the 2q37.1 region. We also detected other CpGs that have been consistently reported in prior research and discovered some novel differentially methylated CpG sites in subgroup analyses. In addition, we found distinct methylation profiles based on the adherence to the Mediterranean diet. Particularly, we obtained a significant interaction between smoking and diet modulating the cg5575921 methylation in the AHRR gene. In conclusion, we have characterized biomarkers of the methylation signature of tobacco smoking in this population, and suggest that the Mediterranean diet can increase methylation of certain hypomethylated sites.
Collapse
Affiliation(s)
- Rebeca Fernández-Carrión
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José V. Sorlí
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Eva M. Asensio
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Eva C. Pascual
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Olga Portolés
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andrea Alvarez-Sala
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Francesc Francès
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Alejandro Pérez-Fidalgo
- Department of Medical Oncology, University Clinic Hospital of Valencia, 46010 Valencia, Spain
- Biomedical Research Networking Centre on Cancer (CIBERONC), Health Institute Carlos III, 28029 Madrid, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Laura V. Villamil
- Department of Physiology, School of Medicine, University Antonio Nariño, Bogotá 111511, Colombia
| | - Francisco J. Tinahones
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Málaga, 29590 Málaga, Spain
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Internal Medicine, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Jose M. Ordovas
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain
| | - Oscar Coltell
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castellón, Spain
| | - Dolores Corella
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
12
|
Francis BM, Sundaram A, Manavalan RK, Peng WK, Zhang H, Ponraj JS, Chander Dhanabalan S. Two-dimensional nanostructures based '-onics' and '-omics' in personalized medicine. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:5019-5039. [PMID: 39634291 PMCID: PMC11501768 DOI: 10.1515/nanoph-2022-0439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 12/07/2024]
Abstract
With the maturing techniques for advanced synthesis and engineering of two-dimensional (2D) materials, its nanocomposites, hybrid nanostructures, alloys, and heterostructures, researchers have been able to create materials with improved as well as novel functionalities. One of the major applications that have been taking advantage of these materials with unique properties is biomedical devices, which currently prefer to be decentralized and highly personalized with good precision. The unique properties of these materials, such as high surface to volume ratio, a large number of active sites, tunable bandgap, nonlinear optical properties, and high carrier mobility is a boon to 'onics' (photonics/electronics) and 'omics' (genomics/exposomics) technologies for developing personalized, low-cost, feasible, decentralized, and highly accurate medical devices. This review aims to unfold the developments in point-of-care technology, the application of 'onics' and 'omics' in point-of-care medicine, and the part of two-dimensional materials. We have discussed the prospects of photonic devices based on 2D materials in personalized medicine and briefly discussed electronic devices for the same.
Collapse
Affiliation(s)
- Bibi Mary Francis
- Center for Advanced Materials, Aaivalayam-DIRAC Institute, Coimbatore, Tamil Nadu, India
| | - Aravindkumar Sundaram
- Institute of Natural Science and Mathematics, Ural Federal University, 620002Yekaterinburg, Russia
| | - Rajesh Kumar Manavalan
- Institute of Natural Science and Mathematics, Ural Federal University, 620002Yekaterinburg, Russia
| | - Weng Kung Peng
- Songshan Lake Materials Laboratory, Innovation Park, 523808Dongguan, China
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Shenzhen University, Shenzhen518060, China
| | - Joice Sophia Ponraj
- Center for Advanced Materials, Aaivalayam-DIRAC Institute, Coimbatore, Tamil Nadu, India
| | | |
Collapse
|
13
|
Ding E, Wang Y, Liu J, Tang S, Shi X. A review on the application of the exposome paradigm to unveil the environmental determinants of age-related diseases. Hum Genomics 2022; 16:54. [DOI: 10.1186/s40246-022-00428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractAge-related diseases account for almost half of all diseases among adults worldwide, and their incidence is substantially affected by the exposome, which is the sum of all exogenous and endogenous environmental exposures and the human body’s response to these exposures throughout the entire lifespan. Herein, we perform a comprehensive review of the epidemiological literature to determine the key elements of the exposome that affect the development of age-related diseases and the roles of aging hallmarks in this process. We find that most exposure assessments in previous aging studies have used a reductionist approach, whereby the effect of only a single environmental factor or a specific class of environmental factors on the development of age-related diseases has been examined. As such, there is a lack of a holistic and unbiased understanding of the effect of multiple environmental factors on the development of age-related diseases. To address this, we propose several research strategies based on an exposomic framework that could advance our understanding—in particular, from a mechanistic perspective—of how environmental factors affect the development of age-related diseases. We discuss the statistical methods and other methods that have been used in exposome-wide association studies, with a particular focus on multiomics technologies. We also address future challenges and opportunities in the realm of multidisciplinary approaches and genome–exposome epidemiology. Furthermore, we provide perspectives on precise public health services for vulnerable populations, public communications, the integration of risk exposure information, and the bench-to-bedside translation of research on age-related diseases.
Collapse
|
14
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
15
|
Barouki R, Audouze K, Becker C, Blaha L, Coumoul X, Karakitsios S, Klanova J, Miller GW, Price EJ, Sarigiannis D. The Exposome and Toxicology: A Win-Win Collaboration. Toxicol Sci 2022; 186:1-11. [PMID: 34878125 PMCID: PMC9019839 DOI: 10.1093/toxsci/kfab149] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The development of the exposome concept has been one of the hallmarks of environmental and health research for the last decade. The exposome encompasses the life course environmental exposures including lifestyle factors from the prenatal period onwards. It has inspired many research programs and is expected to influence environmental and health research, practices, and policies. Yet, the links bridging toxicology and the exposome concept have not been well developed. In this review, we describe how the exposome framework can interface with and influence the field of toxicology, as well as how the field of toxicology can help advance the exposome field by providing the needed mechanistic understanding of the exposome impacts on health. Indeed, exposome-informed toxicology is expected to emphasize several orientations including (1) developing approaches integrating multiple stressors, in particular chemical mixtures, as well as the interaction of chemicals with other stressors, (2) using mechanistic frameworks such as the adverse outcome pathways to link the different stressors with toxicity outcomes, (3) characterizing the mechanistic basis of long-term effects by distinguishing different patterns of exposures and further exploring the environment-DNA interface through genetic and epigenetic studies, and (4) improving the links between environmental and human health, in particular through a stronger connection between alterations in our ecosystems and human toxicology. The exposome concept provides the linkage between the complex environment and contemporary mechanistic toxicology. What toxicology can bring to exposome characterization is a needed framework for mechanistic understanding and regulatory outcomes in risk assessment.
Collapse
Affiliation(s)
- Robert Barouki
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
- Service de Biochimie métabolomique et protéomique, Hôpital Necker enfants malades, AP-HP, Paris, France
| | - Karine Audouze
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
| | - Christel Becker
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Brno 60200, Czech Republic
| | - Xavier Coumoul
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
| | - Spyros Karakitsios
- Center for Interdisciplinary Research and Innovation, HERACLES Research Center on the Exposome and Health, Aristotle University of Thessaloniki, Thessaloniki 57001, Greece
- Enve.X, Thessaloniki 55133, Greece
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Brno 60200, Czech Republic
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Elliott J Price
- RECETOX, Faculty of Science, Masaryk University, Brno 60200, Czech Republic
- Faculty of Sports Studies, Masaryk University, Brno 62500, Czech Republic
| | - Denis Sarigiannis
- Center for Interdisciplinary Research and Innovation, HERACLES Research Center on the Exposome and Health, Aristotle University of Thessaloniki, Thessaloniki 57001, Greece
- Enve.X, Thessaloniki 55133, Greece
| |
Collapse
|
16
|
Moore TM, Visoki E, Argabright ST, Didomenico GE, Sotelo I, Wortzel JD, Naeem A, Gur RC, Gur RE, Warrier V, Guloksuz S, Barzilay R. Modeling environment through a general exposome factor in two independent adolescent cohorts. EXPOSOME 2022; 2:osac010. [PMID: 36606125 PMCID: PMC9798749 DOI: 10.1093/exposome/osac010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Exposures to perinatal, familial, social, and physical environmental stimuli can have substantial effects on human development. We aimed to generate a single measure that capture's the complex network structure of the environment (ie, exposome) using multi-level data (participant's report, parent report, and geocoded measures) of environmental exposures (primarily from the psychosocial environment) in two independent adolescent cohorts: The Adolescent Brain Cognitive Development Study (ABCD Study, N = 11 235; mean age, 10.9 years; 47.7% females) and an age- and sex-matched sample from the Philadelphia Neurodevelopmental Cohort (PNC, N = 4993). We conducted a series of data-driven iterative factor analyses and bifactor modeling in the ABCD Study, reducing dimensionality from 348 variables tapping to environment to six orthogonal exposome subfactors and a general (adverse) exposome factor. The general exposome factor was associated with overall psychopathology (B = 0.28, 95% CI, 0.26-0.3) and key health-related outcomes: obesity (odds ratio [OR] , 1.4; 95% CI, 1.3-1.5) and advanced pubertal development (OR, 1.3; 95% CI, 1.2-1.5). A similar approach in PNC reduced dimensionality of environment from 29 variables to 4 exposome subfactors and a general exposome factor. PNC analyses yielded consistent associations of the general exposome factor with psychopathology (B = 0.15; 95% CI, 0.13-0.17), obesity (OR, 1.4; 95% CI, 1.3-1.6), and advanced pubertal development (OR, 1.3; 95% CI, 1-1.6). In both cohorts, inclusion of exposome factors greatly increased variance explained in overall psychopathology compared with models relying solely on demographics and parental education (from <4% to >38% in ABCD; from <4% to >18.5% in PNC). Findings suggest that a general exposome factor capturing multi-level environmental exposures can be derived and can consistently explain variance in youth's mental and general health.
Collapse
Affiliation(s)
- Tyler M Moore
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Lifespan Brain Institute of the Children's Hospital of Philadelphia (CHOP) and Penn Medicine, Philadelphia, PA, USA
| | - Elina Visoki
- Lifespan Brain Institute of the Children's Hospital of Philadelphia (CHOP) and Penn Medicine, Philadelphia, PA, USA
| | - Stirling T Argabright
- Lifespan Brain Institute of the Children's Hospital of Philadelphia (CHOP) and Penn Medicine, Philadelphia, PA, USA
| | - Grace E Didomenico
- Lifespan Brain Institute of the Children's Hospital of Philadelphia (CHOP) and Penn Medicine, Philadelphia, PA, USA
| | - Ingrid Sotelo
- Lifespan Brain Institute of the Children's Hospital of Philadelphia (CHOP) and Penn Medicine, Philadelphia, PA, USA
| | - Jeremy D Wortzel
- Lifespan Brain Institute of the Children's Hospital of Philadelphia (CHOP) and Penn Medicine, Philadelphia, PA, USA
| | - Areebah Naeem
- Lifespan Brain Institute of the Children's Hospital of Philadelphia (CHOP) and Penn Medicine, Philadelphia, PA, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Lifespan Brain Institute of the Children's Hospital of Philadelphia (CHOP) and Penn Medicine, Philadelphia, PA, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Lifespan Brain Institute of the Children's Hospital of Philadelphia (CHOP) and Penn Medicine, Philadelphia, PA, USA
| | - Varun Warrier
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Sinan Guloksuz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ran Barzilay
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Lifespan Brain Institute of the Children's Hospital of Philadelphia (CHOP) and Penn Medicine, Philadelphia, PA, USA.,Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| |
Collapse
|
17
|
Wu Q, Bagdad Y, Taboureau O, Audouze K. Capturing a Comprehensive Picture of Biological Events From Adverse Outcome Pathways in the Drug Exposome. Front Public Health 2021; 9:763962. [PMID: 34976924 PMCID: PMC8718398 DOI: 10.3389/fpubh.2021.763962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The chemical part of the exposome, including drugs, may explain the increase of health effects with outcomes such as infertility, allergies, metabolic disorders, which cannot be only explained by the genetic changes. To better understand how drug exposure can impact human health, the concepts of adverse outcome pathways (AOPs) and AOP networks (AONs), which are representations of causally linked events at different biological levels leading to adverse health, could be used for drug safety assessment.Methods: To explore the action of drugs across multiple scales of the biological organization, we investigated the use of a network-based approach in the known AOP space. Considering the drugs and their associations to biological events, such as molecular initiating event and key event, a bipartite network was developed. This bipartite network was projected into a monopartite network capturing the event–event linkages. Nevertheless, such transformation of a bipartite network to a monopartite network had a huge risk of information loss. A way to solve this problem is to quantify the network reduction. We calculated two scoring systems, one measuring the uncertainty and a second one describing the loss of coverage on the developed event–event network to better investigate events from AOPs linked to drugs.Results: This AON analysis allowed us to identify biological events that are highly connected to drugs, such as events involving nuclear receptors (ER, AR, and PXR/SXR). Furthermore, we observed that the number of events involved in a linkage pattern with drugs is a key factor that influences information loss during monopartite network projection. Such scores have the potential to quantify the uncertainty of an event involved in an AON, and could be valuable for the weight of evidence assessment of AOPs. A case study related to infertility, more specifically to “decrease, male agenital distance” is presented.Conclusion: This study highlights that computational approaches based on network science may help to understand the complexity of drug health effects, with the aim to support drug safety assessment.
Collapse
Affiliation(s)
- Qier Wu
- INSERM U1124, CNRS ERL3649, Université de Paris, Paris, France
| | - Youcef Bagdad
- INSERM U1124, CNRS ERL3649, Université de Paris, Paris, France
| | | | - Karine Audouze
- INSERM U1124, CNRS ERL3649, Université de Paris, Paris, France
- *Correspondence: Karine Audouze
| |
Collapse
|
18
|
Tolani P, Gupta S, Yadav K, Aggarwal S, Yadav AK. Big data, integrative omics and network biology. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:127-160. [PMID: 34340766 DOI: 10.1016/bs.apcsb.2021.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A cell integrates various signals through a network of biomolecules that crosstalk to synergistically regulate the replication, transcription, translation and other metabolic activities of a cell. These networks regulate signal perception and processing that drives biological functions. The biological complexity cannot be fully captured by a single -omics discipline. The holistic study of an organism-in health, perturbation, exposure to environment and disease, is studied under systems biology. The bottom-up molecular approaches (genes, mRNA, protein, metabolite, etc.) have laid the foundation of current biological knowledge covering the horizon from viruses, bacteria, fungi, plants and animals. Yet, these techniques provide a rather myopic view of biology at the molecular level. To understand how the interconnected molecular components are formed and rewired in disease or exposure to environmental stimuli is the holy grail of modern biology. The omics era was heralded by the genomics revolution but advanced sequencing techniques are now also ubiquitous in transcriptomics, proteomics, metabolomics and lipidomics. Multi-omics data analysis and integration techniques are driving the quest for deeper insights into how the different layers of biomolecules talk to each other in diverse contexts.
Collapse
Affiliation(s)
- Priya Tolani
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Srishti Gupta
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Kirti Yadav
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India; Department of Pharmaceutical Biotechnology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Suruchi Aggarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India; Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, India
| | - Amit Kumar Yadav
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
19
|
Kovanda A, Zimani AN, Peterlin B. How to design a national genomic project-a systematic review of active projects. Hum Genomics 2021; 15:20. [PMID: 33761998 PMCID: PMC7988644 DOI: 10.1186/s40246-021-00315-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/23/2021] [Indexed: 01/18/2023] Open
Abstract
An increasing number of countries are investing efforts to exploit the human genome, in order to improve genetic diagnostics and to pave the way for the integration of precision medicine into health systems. The expected benefits include improved understanding of normal and pathological genomic variation, shorter time-to-diagnosis, cost-effective diagnostics, targeted prevention and treatment, and research advances.We review the 41 currently active individual national projects concerning their aims and scope, the number and age structure of included subjects, funding, data sharing goals and methods, and linkage with biobanks, medical data, and non-medical data (exposome). The main aims of ongoing projects were to determine normal genomic variation (90%), determine pathological genomic variation (rare disease, complex diseases, cancer, etc.) (71%), improve infrastructure (59%), and enable personalized medicine (37%). Numbers of subjects to be sequenced ranges substantially, from a hundred to over a million, representing in some cases a significant portion of the population. Approximately half of the projects report public funding, with the rest having various mixed or private funding arrangements. 90% of projects report data sharing (public, academic, and/or commercial with various levels of access) and plan on linking genomic data and medical data (78%), existing biobanks (44%), and/or non-medical data (24%) as the basis for enabling personal/precision medicine in the future.Our results show substantial diversity in the analysed categories of 41 ongoing national projects. The overview of current designs will hopefully inform national initiatives in designing new genomic projects and contribute to standardisation and international collaboration.
Collapse
Affiliation(s)
- Anja Kovanda
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Slajmerjeva 4, Ljubljana, Slovenia
| | - Ana Nyasha Zimani
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Slajmerjeva 4, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Slajmerjeva 4, Ljubljana, Slovenia.
| |
Collapse
|
20
|
Savoska S, Fdez-Arroyabe P, Cifra M, Kourtidis K, Rozanov E, Nicoll K, Dragovic S, Mir LM. Toward the creation of an ontology for the coupling of atmospheric electricity with biological systems. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:31-44. [PMID: 33236243 DOI: 10.1007/s00484-020-02051-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric electric fields (AEFs) are produced by both natural processes and electrical infrastructure and are increasingly recognized to influence and interfere with various organisms and biological processes, including human well-being. Atmospheric electric fields, in particular electromagnetic fields (EMFs), currently attract a lot of scientific attention due to emerging technologies such as 5G and satellite internet. However, a broader retrospective analysis of available data for both natural and artificial AEFs and EMFs is hampered due to a lack of a semantic approach, preventing data sharing and advancing our understanding of its intrinsic links. Therefore, here we create an ontology (ENET_Ont) for existing (big) data on AEFs within the context of biological systems that is derived from different disciplines that are distributed over many databases. Establishing an environment for data sharing provided by the proposed ontology approach will increase the value of existing data and facilitate reusability for other communities, especially those focusing on public health, ecology, environmental health, biology, climatology as well as bioinformatics.
Collapse
Affiliation(s)
- Snezana Savoska
- University St. Kliment Ohridski Bitola, Bitola, Republic of North Macedonia.
| | - P Fdez-Arroyabe
- Geography and Planning Department, Universidad de Cantabria, 39005, Santander, Spain
| | - M Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czechia
| | - K Kourtidis
- Environmental and Networking Technologies and Applications Unit (ENTA), Athena Research and Innovation Center, Xanthi, Greece
- Demokritus University of Thrace, Xanthi, Greece
| | - E Rozanov
- PMOD/WRC and IAC ETHZ, Davos, Switzerland
| | - K Nicoll
- Department of Meteorology, University of Reading, Reading, UK
| | - S Dragovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - L M Mir
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Metabolic and systemic aspects of oncogenesis (METSY), 94805, Villejuif, France, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
21
|
Burkett JP, Miller GW. Using the exposome to understand environmental contributors to psychiatric disorders. Neuropsychopharmacology 2021; 46:263-264. [PMID: 32913344 PMCID: PMC7689472 DOI: 10.1038/s41386-020-00851-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- James P Burkett
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Department of Molecular Pharmacology and Therapeutics and Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
22
|
Al Hageh C, Rahy R, Khazen G, Brial F, Khnayzer RS, Gauguier D, Zalloua PA. Plasma and urine metabolomic analyses in aortic valve stenosis reveal shared and biofluid-specific changes in metabolite levels. PLoS One 2020; 15:e0242019. [PMID: 33237940 PMCID: PMC7688110 DOI: 10.1371/journal.pone.0242019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/24/2020] [Indexed: 01/04/2023] Open
Abstract
Aortic valve stenosis (AVS) is a prevalent condition among the elderly population that eventually requires aortic valve replacement. The lack of reliable biomarkers for AVS poses a challenge for its early diagnosis and the application of preventive measures. Untargeted gas chromatography mass spectrometry (GC-MS) metabolomics was applied in 46 AVS cases and 46 controls to identify plasma and urine metabolites underlying AVS risk. Multivariate data analyses were performed on pre-processed data (e.g. spectral peak alignment), in order to detect changes in metabolite levels in AVS patients and to evaluate their performance in group separation and sensitivity of AVS prediction, followed by regression analyses to test for their association with AVS. Through untargeted analysis of 190 urine and 130 plasma features that could be detected and quantified in the GC-MS spectra, we identified contrasting levels of 22 urine and 21 plasma features between AVS patients and control subjects. Following metabolite assignment, we observed significant changes in the concentration of known metabolites in urine (n = 14) and plasma (n = 15) that distinguish the metabolomic profiles of AVS patients from healthy controls. Associations with AVS were replicated in both plasma and urine for about half of these metabolites. Among these, 2-Oxovaleric acid, elaidic acid, myristic acid, palmitic acid, estrone, myo-inositol showed contrasting trends of regulation in the two biofluids. Only trans-Aconitic acid and 2,4-Di-tert-butylphenol showed consistent patterns of regulation in both plasma and urine. These results illustrate the power of metabolomics in identifying potential disease-associated biomarkers and provide a foundation for further studies towards early diagnostic applications in severe heart conditions that may prevent surgery in the elderly.
Collapse
Affiliation(s)
- Cynthia Al Hageh
- Université de Paris, INSERM UMRS 1124, Paris, France
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Ryan Rahy
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Georges Khazen
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | | | - Rony S. Khnayzer
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
- * E-mail: (DG); (RSK); (PAZ)
| | - Dominique Gauguier
- Université de Paris, INSERM UMRS 1124, Paris, France
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
- * E-mail: (DG); (RSK); (PAZ)
| | - Pierre A. Zalloua
- School of Medicine, University of Balamand, Amioun, Lebanon
- * E-mail: (DG); (RSK); (PAZ)
| |
Collapse
|
23
|
Domenick TM, Gill EL, Vedam-Mai V, Yost RA. Mass Spectrometry-Based Cellular Metabolomics: Current Approaches, Applications, and Future Directions. Anal Chem 2020; 93:546-566. [PMID: 33146525 DOI: 10.1021/acs.analchem.0c04363] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Taylor M Domenick
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Emily L Gill
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4283, United States.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-4283, United States
| | - Vinata Vedam-Mai
- Department of Neurology, University of Florida, Gainesville, Florida 32610, United States
| | - Richard A Yost
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
24
|
Taboureau O, El M'Selmi W, Audouze K. Integrative systems toxicology to predict human biological systems affected by exposure to environmental chemicals. Toxicol Appl Pharmacol 2020; 405:115210. [DOI: 10.1016/j.taap.2020.115210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/01/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022]
|
25
|
Balcerczyk A, Damblon C, Elena-Herrmann B, Panthu B, Rautureau GJP. Metabolomic Approaches to Study Chemical Exposure-Related Metabolism Alterations in Mammalian Cell Cultures. Int J Mol Sci 2020; 21:E6843. [PMID: 32961865 PMCID: PMC7554780 DOI: 10.3390/ijms21186843] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Biological organisms are constantly exposed to an immense repertoire of molecules that cover environmental or food-derived molecules and drugs, triggering a continuous flow of stimuli-dependent adaptations. The diversity of these chemicals as well as their concentrations contribute to the multiplicity of induced effects, including activation, stimulation, or inhibition of physiological processes and toxicity. Metabolism, as the foremost phenotype and manifestation of life, has proven to be immensely sensitive and highly adaptive to chemical stimuli. Therefore, studying the effect of endo- or xenobiotics over cellular metabolism delivers valuable knowledge to apprehend potential cellular activity of individual molecules and evaluate their acute or chronic benefits and toxicity. The development of modern metabolomics technologies such as mass spectrometry or nuclear magnetic resonance spectroscopy now offers unprecedented solutions for the rapid and efficient determination of metabolic profiles of cells and more complex biological systems. Combined with the availability of well-established cell culture techniques, these analytical methods appear perfectly suited to determine the biological activity and estimate the positive and negative effects of chemicals in a variety of cell types and models, even at hardly detectable concentrations. Metabolic phenotypes can be estimated from studying intracellular metabolites at homeostasis in vivo, while in vitro cell cultures provide additional access to metabolites exchanged with growth media. This article discusses analytical solutions available for metabolic phenotyping of cell culture metabolism as well as the general metabolomics workflow suitable for testing the biological activity of molecular compounds. We emphasize how metabolic profiling of cell supernatants and intracellular extracts can deliver valuable and complementary insights for evaluating the effects of xenobiotics on cellular metabolism. We note that the concepts and methods discussed primarily for xenobiotics exposure are widely applicable to drug testing in general, including endobiotics that cover active metabolites, nutrients, peptides and proteins, cytokines, hormones, vitamins, etc.
Collapse
Affiliation(s)
- Aneta Balcerczyk
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Christian Damblon
- Unité de Recherche MolSys, Faculté des sciences, Université de Liège, 4000 Liège, Belgium;
| | | | - Baptiste Panthu
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Univ Lyon, Université Claude Bernard Lyon 1, 69921 Oullins CEDEX, France;
- Hospices Civils de Lyon, Faculté de Médecine, Hôpital Lyon Sud, 69921 Oullins CEDEX, France
| | - Gilles J. P. Rautureau
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (CRMN FRE 2034 CNRS, UCBL, ENS Lyon), Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| |
Collapse
|
26
|
Lermen D, Gwinner F, Bartel-Steinbach M, Mueller SC, Habermann JK, Balwir MB, Smits E, Virgolino A, Fiddicke U, Berglund M, Åkesson A, Bergstrom A, Leander K, Horvat M, Snoj Tratnik J, Posada de la Paz M, Castaño Calvo A, Esteban López M, von Briesen H, Zimmermann H, Kolossa-Gehring M. Towards Harmonized Biobanking for Biomonitoring: A Comparison of Human Biomonitoring-Related and Clinical Biorepositories. Biopreserv Biobank 2020; 18:122-135. [PMID: 32281895 PMCID: PMC7185365 DOI: 10.1089/bio.2019.0092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human biomonitoring (HBM) depends on high-quality human samples to identify status and trends in exposure and ensure comparability of results. In this context, much effort has been put into the development of standardized processes and quality assurance for sampling and chemical analysis, while effects of sample storage and shipment on sample quality have been less thoroughly addressed. To characterize the currently applied storage and shipment procedures within the consortium of the European Human Biomonitoring Initiative (HBM4EU), which aims at harmonization of HBM in Europe, a requirement analysis based on data from an online survey was conducted. In addition, the online survey was addressed to professionals in clinical biobanking represented by members of the European, Middle Eastern and African Society for Biopreservation and Biobanking (ESBB) to identify the current state-of-the-art in terms of sample storage and shipment. Results of this survey conducted in these two networks were compared to detect processes with potential for optimization and harmonization. In general, many similarities exist in sample storage and shipment procedures applied by ESBB members and HBM4EU partners and many requirements for ensuring sample quality are already met also by HBM4EU partners. Nevertheless, a need for improvement was identified for individual steps in sample storage, shipment, and related data management with potential impact on sample and data quality for HBM purposes. Based on these findings, recommendations for crucial first steps to further strengthen sample quality, and thus foster advancement in HBM on a pan-European level are given.
Collapse
Affiliation(s)
- Dominik Lermen
- Fraunhofer Institute for Biomedical Engineering IBMT, Biomonitoring & Biobanks, Sulzbach, Germany
- European, Middle Eastern & African Society for Biopreservation and Biobanking, Brussels, Belgium
- The European Human-Biomonitoring Initiative HBM4EU
| | - Frederik Gwinner
- Fraunhofer Institute for Biomedical Engineering IBMT, Biomonitoring & Biobanks, Sulzbach, Germany
- The European Human-Biomonitoring Initiative HBM4EU
| | - Martina Bartel-Steinbach
- Fraunhofer Institute for Biomedical Engineering IBMT, Biomonitoring & Biobanks, Sulzbach, Germany
- The European Human-Biomonitoring Initiative HBM4EU
| | - Sabine C. Mueller
- Fraunhofer Institute for Biomedical Engineering IBMT, Biomonitoring & Biobanks, Sulzbach, Germany
- The European Human-Biomonitoring Initiative HBM4EU
| | - Jens K. Habermann
- European, Middle Eastern & African Society for Biopreservation and Biobanking, Brussels, Belgium
- University Clinical Center Schleswig-Holstein, University of Luebeck, Translational Surgical Oncology and Biobanking, Luebeck, Germany
| | - Matharoo-Ball Balwir
- European, Middle Eastern & African Society for Biopreservation and Biobanking, Brussels, Belgium
- Nottingham University Hospital, Translational Research and Nottingham Health Science Biobank (NHSB), Nottingham, United Kingdom
| | - Elke Smits
- European, Middle Eastern & African Society for Biopreservation and Biobanking, Brussels, Belgium
- Antwerp University Hospital, University of Antwerp, Division of Medical Director, Edegem, Belgium
| | - Ana Virgolino
- The European Human-Biomonitoring Initiative HBM4EU
- Faculdade de Medicina, Instituto de Saúde Ambiental, Universidade de Lisboa, Lisboa, Portugal
| | - Ulrike Fiddicke
- The European Human-Biomonitoring Initiative HBM4EU
- German Environment Agency (Umweltbundesamt), Berlin, Germany
| | - Marika Berglund
- The European Human-Biomonitoring Initiative HBM4EU
- Institute of Environmental Medicine, Karolinska Institute, Institute of Environmental Medicine (IMM), Stockholm, Sweden
| | - Agneta Åkesson
- The European Human-Biomonitoring Initiative HBM4EU
- Institute of Environmental Medicine, Karolinska Institute, Institute of Environmental Medicine (IMM), Stockholm, Sweden
| | - Anna Bergstrom
- The European Human-Biomonitoring Initiative HBM4EU
- Institute of Environmental Medicine, Karolinska Institute, Institute of Environmental Medicine (IMM), Stockholm, Sweden
| | - Karin Leander
- The European Human-Biomonitoring Initiative HBM4EU
- Institute of Environmental Medicine, Karolinska Institute, Institute of Environmental Medicine (IMM), Stockholm, Sweden
| | - Milena Horvat
- The European Human-Biomonitoring Initiative HBM4EU
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia
| | - Janja Snoj Tratnik
- The European Human-Biomonitoring Initiative HBM4EU
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia
| | - Manuel Posada de la Paz
- The European Human-Biomonitoring Initiative HBM4EU
- Institute of Rare Diseases Research, CIBERER, EuroBiobanK, Instituto de Salud Carlos III, Madrid, Spain
| | - Argelia Castaño Calvo
- The European Human-Biomonitoring Initiative HBM4EU
- Centro Nacional de Sanidad Ambiental CNSA, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Marta Esteban López
- The European Human-Biomonitoring Initiative HBM4EU
- Centro Nacional de Sanidad Ambiental CNSA, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Hagen von Briesen
- Fraunhofer Institute for Biomedical Engineering IBMT, Biomonitoring & Biobanks, Sulzbach, Germany
- The European Human-Biomonitoring Initiative HBM4EU
| | - Heiko Zimmermann
- Fraunhofer Institute for Biomedical Engineering IBMT, Biomonitoring & Biobanks, Sulzbach, Germany
- The European Human-Biomonitoring Initiative HBM4EU
| | - Marike Kolossa-Gehring
- The European Human-Biomonitoring Initiative HBM4EU
- German Environment Agency (Umweltbundesamt), Berlin, Germany
| |
Collapse
|
27
|
Brial F, Alzaid F, Sonomura K, Kamatani Y, Meneyrol K, Le Lay A, Péan N, Hedjazi L, Sato TA, Venteclef N, Magnan C, Lathrop M, Dumas ME, Matsuda F, Zalloua P, Gauguier D. The Natural Metabolite 4-Cresol Improves Glucose Homeostasis and Enhances β-Cell Function. Cell Rep 2020; 30:2306-2320.e5. [PMID: 32075738 DOI: 10.1016/j.celrep.2020.01.066] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 10/26/2019] [Accepted: 01/22/2020] [Indexed: 02/09/2023] Open
Abstract
Exposure to natural metabolites contributes to the risk of cardiometabolic diseases (CMDs). Through metabolome profiling, we identify the inverse correlation between serum concentrations of 4-cresol and type 2 diabetes. The chronic administration of non-toxic doses of 4-cresol in complementary preclinical models of CMD reduces adiposity, glucose intolerance, and liver triglycerides, enhances insulin secretion in vivo, stimulates islet density and size, and pancreatic β-cell proliferation, and increases vascularization, suggesting activated islet enlargement. In vivo insulin sensitivity is not affected by 4-cresol. The incubation of mouse isolated islets with 4-cresol results in enhanced insulin secretion, insulin content, and β-cell proliferation of a magnitude similar to that induced by GLP-1. In both CMD models and isolated islets, 4-cresol is associated with the downregulated expression of the kinase DYRK1A, which may mediate its biological effects. Our findings identify 4-cresol as an effective regulator of β-cell function, which opens up perspectives for therapeutic applications in syndromes of insulin deficiency.
Collapse
Affiliation(s)
- Francois Brial
- Université de Paris, INSERM UMR 1124, 75006 Paris, France
| | - Fawaz Alzaid
- Sorbonne Université, Université Paris Descartes, INSERM UMR_S 1138, Cordeliers Research Centre, 75006 Paris, France
| | - Kazuhiro Sonomura
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Life Science Research Center, Technology Research Laboratory, Shimadzu, Kyoto 604-8511, Japan
| | - Yoichiro Kamatani
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Kelly Meneyrol
- Université de Paris, Unit of Functional and Adaptive Biology, UMR 8251, CNRS, 4 rue Marie Andrée Lagroua Weill-Halle, 75013 Paris, France
| | - Aurélie Le Lay
- Université de Paris, INSERM UMR 1124, 75006 Paris, France
| | - Noémie Péan
- Université de Paris, INSERM UMR 1124, 75006 Paris, France
| | | | - Taka-Aki Sato
- Life Science Research Center, Technology Research Laboratory, Shimadzu, Kyoto 604-8511, Japan
| | - Nicolas Venteclef
- Sorbonne Université, Université Paris Descartes, INSERM UMR_S 1138, Cordeliers Research Centre, 75006 Paris, France
| | - Christophe Magnan
- Université de Paris, Unit of Functional and Adaptive Biology, UMR 8251, CNRS, 4 rue Marie Andrée Lagroua Weill-Halle, 75013 Paris, France
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC H3A 0G1, Canada
| | - Marc-Emmanuel Dumas
- Imperial College London, Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Pierre Zalloua
- Lebanese American University, School of Medicine, Beirut 1102 2801, Lebanon.
| | - Dominique Gauguier
- Université de Paris, INSERM UMR 1124, 75006 Paris, France; Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
28
|
Iarkov A, Barreto GE, Grizzell JA, Echeverria V. Strategies for the Treatment of Parkinson's Disease: Beyond Dopamine. Front Aging Neurosci 2020; 12:4. [PMID: 32076403 PMCID: PMC7006457 DOI: 10.3389/fnagi.2020.00004] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is the second-leading cause of dementia and is characterized by a progressive loss of dopaminergic neurons in the substantia nigra alongside the presence of intraneuronal α-synuclein-positive inclusions. Therapies to date have been directed to the restoration of the dopaminergic system, and the prevention of dopaminergic neuronal cell death in the midbrain. This review discusses the physiological mechanisms involved in PD as well as new and prospective therapies for the disease. The current data suggest that prevention or early treatment of PD may be the most effective therapeutic strategy. New advances in the understanding of the underlying mechanisms of PD predict the development of more personalized and integral therapies in the years to come. Thus, the development of more reliable biomarkers at asymptomatic stages of the disease, and the use of genetic profiling of patients will surely permit a more effective treatment of PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - J Alex Grizzell
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
29
|
Finch CE, Kulminski AM. The Alzheimer's Disease Exposome. Alzheimers Dement 2019; 15:1123-1132. [PMID: 31519494 PMCID: PMC6788638 DOI: 10.1016/j.jalz.2019.06.3914] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Environmental factors are poorly understood in the etiology of Alzheimer's disease (AD) and related dementias. The importance of environmental factors in gene environment interactions (GxE) is suggested by wide individual differences in cognitive loss, even for carriers of AD-risk genetic variants. RESULTS AND DISCUSSION We propose the "AD exposome" to comprehensively assess the modifiable environmental factors relevant to genetic underpinnings of cognitive aging and AD. Analysis of endogenous and exogenous environmental factors requires multi-generational consideration of these interactions over age and time (GxExT). New computational approaches to the multi-level complexities may identify accessible interventions for individual brain aging. International collaborations on diverse populations are needed to identify the most relevant exposures over the life course for GxE interactions.
Collapse
Affiliation(s)
- Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
30
|
Boyles R, Thessen A, Waldrop A, Haendel M. Ontology-based data integration for advancing toxicological knowledge. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Bicuspid aortic valve, atherosclerosis and changes of lipid metabolism: Are there pathological molecular links? J Mol Cell Cardiol 2019; 129:231-235. [DOI: 10.1016/j.yjmcc.2019.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/03/2019] [Accepted: 03/07/2019] [Indexed: 12/19/2022]
|