1
|
Shao Z, Wang L, Cao L, Chen T, Jia XM, Sun W, Gao C, Xiao H. The protein segregase VCP/p97 promotes host antifungal defense via regulation of SYK activation. PLoS Pathog 2024; 20:e1012674. [PMID: 39471181 PMCID: PMC11548748 DOI: 10.1371/journal.ppat.1012674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/08/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024] Open
Abstract
C-type lectin receptors (CLRs) are essential to execute host defense against fungal infection. Nevertheless, a comprehensive understanding of the molecular underpinnings of CLR signaling remains a work in progress. Here, we searched for yet-to-be-identified tyrosine-phosphorylated proteins in Dectin-1 signaling and linked the stress-response protein valosin containing protein (VCP)/p97 to Dectin-1 signaling. Knockdown of VCP expression or chemical inhibition of VCP's segregase activity dampened Dectin-1-elicited SYK activation in BMDMs and BMDCs, leading to attenuated expression of proinflammatory cytokines/chemokines such as TNF-α, IL-6 and CXCL1. Biochemical analyses demonstrated that VCP and its cofactor UFD1 form a complex with SYK and its phosphatase SHP-1 following Dectin-1 ligation, and knockdown of VCP led to a more prominent SYK and SHP-1 association. Further, SHP-1 became polyubiquitinated upon Dectin-1 activation, and VCP or UFD1 overexpression accelerated SHP-1 degradation. Conceivably, VCP may promote Dectin-1 signaling by pulling the ubiquitinated SHP-1 out of the SYK complex for degradation. Finally, genetic ablation of VCP in the neutrophil and macrophage compartment rendered the mice highly susceptible to infection by Candida albicans, an observation also phenocopied by administering the VCP inhibitor. These results collectively demonstrate that VCP is a previously unappreciated signal transducer of the Dectin-1 pathway and a crucial component of antifungal defense, and suggest a new mechanism regulating SYK activation.
Collapse
Affiliation(s)
- Zhugui Shao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Li Wang
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Limin Cao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Tian Chen
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P. R. China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Xin-Ming Jia
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Wanwei Sun
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Hui Xiao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| |
Collapse
|
2
|
Nandi P, DeVore K, Wang F, Li S, Walker JD, Truong TT, LaPorte MG, Wipf P, Schlager H, McCleerey J, Paquette W, Columbres RCA, Gan T, Poh YP, Fromme P, Flint AJ, Wolf M, Huryn DM, Chou TF, Chiu PL. Mechanism of allosteric inhibition of human p97/VCP ATPase and its disease mutant by triazole inhibitors. Commun Chem 2024; 7:177. [PMID: 39122922 PMCID: PMC11316111 DOI: 10.1038/s42004-024-01267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Human p97 ATPase is crucial in various cellular processes, making it a target for inhibitors to treat cancers, neurological, and infectious diseases. Triazole allosteric p97 inhibitors have been demonstrated to match the efficacy of CB-5083, an ATP-competitive inhibitor, in cellular models. However, the mechanism is not well understood. This study systematically investigates the structures of new triazole inhibitors bound to both wild-type and disease mutant forms of p97 and measures their effects on function. These inhibitors bind at the interface of the D1 and D2 domains of each p97 subunit, shifting surrounding helices and altering the loop structures near the C-terminal α2 G helix to modulate domain-domain communications. A key structural moiety of the inhibitor affects the rotameric conformations of interacting side chains, indirectly modulating the N-terminal domain conformation in p97 R155H mutant. The differential effects of inhibitor binding to wild-type and mutant p97 provide insights into drug design with enhanced specificity, particularly for oncology applications.
Collapse
Affiliation(s)
- Purbasha Nandi
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Kira DeVore
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
| | - Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Joel D Walker
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thanh Tung Truong
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
- Faculty of Pharmacy, Phenikaa University, Hanoi, Vietnam
| | - Matthew G LaPorte
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Wipf
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - John McCleerey
- Curia Global, Albany, NY, USA
- Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
| | | | - Rod Carlo A Columbres
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Taiping Gan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yu-Ping Poh
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Mechanism of Evolution, Arizona State University, Tempe, AZ, USA
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
| | - Andrew J Flint
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Donna M Huryn
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA.
| | - Po-Lin Chiu
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
3
|
LaPorte M, Alverez C, Chatterley A, Kovaliov M, Carder EJ, Houghton MJ, Lim C, Miller ER, Samankumara LP, Liang M, Kerrigan K, Yue Z, Li S, Tomaino F, Wang F, Green N, Stott GM, Srivastava A, Chou TF, Wipf P, Huryn DM. Optimization of 1,2,4-Triazole-Based p97 Inhibitors for the Treatment of Cancer. ACS Med Chem Lett 2023; 14:977-985. [PMID: 37465292 PMCID: PMC10351062 DOI: 10.1021/acsmedchemlett.3c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
The AAA+ ATPase p97 (valosin-containing protein, VCP) is a master regulator of protein homeostasis and therefore represents a novel target for cancer therapy. Starting from a known allosteric inhibitor, NMS-873, we systematically optimized this scaffold, in particular, by applying a benzene-to-acetylene isosteric replacement strategy, specific incorporation of F, and eutomer/distomer identification, which led to compounds that exhibited nanomolar biochemical and cell-based potency. In cellular pharmacodynamic assays, robust effects on biomarkers of p97 inhibition and apoptosis, including increased levels of ubiquitinated proteins, CHOP and cleaved caspase 3, were observed. Compound (R)-29 (UPCDC-30766) represents the most potent allosteric inhibitor of p97 reported to date.
Collapse
Affiliation(s)
- Matthew
G. LaPorte
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Celeste Alverez
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmaceutical Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Chatterley
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Marina Kovaliov
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Evan J. Carder
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael J. Houghton
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Chaemin Lim
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Eric R. Miller
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Lalith P. Samankumara
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Mary Liang
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmaceutical Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kaylan Kerrigan
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zhizhou Yue
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Shan Li
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Francesca Tomaino
- Leidos
Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Feng Wang
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Neal Green
- Leidos
Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Gordon M. Stott
- Leidos
Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Apurva Srivastava
- Leidos
Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Tsui-Fen Chou
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Peter Wipf
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmaceutical Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Donna M. Huryn
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmaceutical Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
4
|
Zhou Y, Zou J, Xu J, Zhou Y, Cen X, Zhao Y. Recent advances of mitochondrial complex I inhibitors for cancer therapy: Current status and future perspectives. Eur J Med Chem 2023; 251:115219. [PMID: 36893622 DOI: 10.1016/j.ejmech.2023.115219] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Mitochondrial complex I (CI) as a critical multifunctional respiratory complex of electron transport chain (ETC) in mitochondrial oxidative phosphorylation has been identified as vital and essence in ATP production, biosynthesis and redox balance. Recent progress in targeting CI has provided both insight and inspiration for oncotherapy, highlighting that the development of CI-targeting inhibitors is a promising therapeutic approach to fight cancer. Natural products possessing of ample scaffold diversity and structural complexity are the majority source of CI inhibitors, although low specificity and safety hinder their extensive application. Along with the gradual deepening in understanding of CI structure and function, significant progress has been achieved in exploiting novel and selective small molecules targeting CI. Among them, IACS-010759 had been approved by FDA for phase I trial in advanced cancers. Moreover, drug repurposing represents an effective and prospective strategy for CI inhibitor discovery. In this review, we mainly elaborate the biological function of CI in tumor progression, summarize the CI inhibitors reported in recent years and discuss the further perspectives for CI inhibitor application, expecting this work may provide insights into innovative discovery of CI-targeting drugs for cancer treatment.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| | - Jiao Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China; National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Sun RC, Hu JH, Li XH, Liu CC, Liu YY, Chen J, Yang YC, Zhou B. Valosin-containing protein (VCP/p97) is responsible for the endocytotic trafficking of classical swine fever virus. Vet Microbiol 2022; 272:109511. [PMID: 35849988 DOI: 10.1016/j.vetmic.2022.109511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 11/25/2022]
Abstract
Classical swine fever virus (CSFV), a member of the Flaviviridae enveloped RNA virus family, results in an epidemic disease that brings serious economic losses to the pig industry worldwide. Valosin-containing protein (VCP/p97), a multifunctional active protein in cells, is related to the life activities of many viruses. However, the role of VCP in CSFV infection remains unknown. In this study, it was first found that treatment of VCP inhibitors impaired CSFV propagation. Furthermore, overexpression or knockdown of VCP showed that it was essential for CSFV infection. Moreover, confocal microscopy and immunoprecipitation assay showed that VCP was recruited for intracellular transport from early endosomes to lysosomes. Importantly, knockdown of VCP prevented CSFV to release from early endosomes, suggesting that VCP is a key factor for CSFV trafficking. Taken together, our findings first demonstrate that the endocytosis of CSFV into PK-15 cells requires the participation of VCP, providing the alternative approach for the discovery of novel anti-flaviviridae drugs.
Collapse
Affiliation(s)
- Rui-Cong Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jia-Huan Hu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Han Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chun-Chun Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ya-Yun Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yi-Chen Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
6
|
Johnson MA, Klickstein JA, Khanna R, Gou Y, Raman M. The Cure VCP Scientific Conference 2021: Molecular and clinical insights into neurodegeneration and myopathy linked to multisystem proteinopathy-1 (MSP-1). Neurobiol Dis 2022; 169:105722. [PMID: 35405261 PMCID: PMC9169230 DOI: 10.1016/j.nbd.2022.105722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 12/17/2022] Open
Abstract
The 2021 VCP Scientific Conference took place virtually from September 9–10, 2021. This conference, planned and organized by the nonprofit patient advocacy group Cure VCP Disease, Inc. (https://www.curevcp.org), was the first VCP focused meeting since the 215th ENMC International Workshop VCP-related multi-system proteinopathy in 2016 (Evangelista et al., 2016). Mutations in VCP cause a complex and heterogenous disease termed inclusion body myopathy (IBM) with Paget’s disease of the bone (PDB) and frontotemporal dementia (FTD) (IBMPFD), or multisystem proteinopathy 1 (MSP-1) Kimonis (n.d.), Kovach et al. (2001), Kimonis et al. (2000). In addition, VCP mutations also cause other age-related neurodegenerative disorders including amyptrophic lateral sclerosis (ALS), Parkinsonism, Charcot-Marie type II-B, vacuolar tauopathy among others (Korb et al., 2022). The objectives of this conference were as follows: (1) to provide a forum that facilitates sharing of published and unpublished information on physiological roles of p97/VCP, and on how mutations of VCP lead to diseases; (2) to bolster understanding of mechanisms involved in p97/VCP-relevant diseases and to enable identification of therapeutics to treat these conditions; (3) to identify gaps and barriers of further discoveries and translational research in the p97/VCP field; (4) to set a concrete basic and translational research agenda for future studies including crucial discussions on biomarker discoveries and patient longitudinal studies to facilitate near-term clinical trials; (5) to accelerate cross-disciplinary research collaborations among p97/VCP researchers; (6) to enable attendees to learn about new tools and reagents with the potential to facilitate p97/VCP research; (7) to assist trainees in propelling their research and to foster mentorship from leaders in the field; and (8) to promote diversity and inclusion of under-represented minorities in p97/VCP research as diversity is critically important for strong scientific research. Given the range of topics, the VCP Scientific Conference brought together over one hundred and forty individuals representing a diverse group of research scientists, trainees, medical practitioners, industry representatives, and patient advocates. Twenty-five institutions with individuals from thirteen countries attended this virtual meeting. In this report, we summarize the major topics presented at this conference by a range of experts.
Collapse
Affiliation(s)
- Michelle A Johnson
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Jacob A Klickstein
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Richa Khanna
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Yunzi Gou
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, United States of America
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States of America.
| |
Collapse
|
7
|
NMS-873 Leads to Dysfunctional Glycometabolism in A p97-Independent Manner in HCT116 Colon Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14040764. [PMID: 35456598 PMCID: PMC9024726 DOI: 10.3390/pharmaceutics14040764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/28/2022] Open
Abstract
Adenosine triphosphate (ATP)–competitive p97 inhibitor CB-5339, the successor of CB-5083, is being evaluated in Phase 1 clinical trials for anti-cancer therapy. Different modes-of-action p97 inhibitors such as allosteric inhibitors are useful to overcome drug-induced resistance, one of the major problems of targeted therapy. We previously demonstrated that allosteric p97 inhibitor NMS-873 can overcome CB-5083-induced resistance in HCT116. Here we employed chemical proteomics and drug-induced thermal proteome changes to identify drug targets, in combination with drug-resistant cell lines to dissect on- and off-target effects. We found that NMS-873 but not CB-5083 affected glycometabolism. By establishing NMS-873-resistant HCT116 cell lines and performing both cell-based and proteomic analysis, we confirmed that NMS-873 dysregulates glycometabolism in a p97-independent manner. We then used proteome integral solubility alteration with a temperature-based method (PISA T) to identify NDUFAF5 as one of the potential targets of NMS-873 in the mitochondrial complex I. We also demonstrated that glycolysis inhibitor 2-DG enhanced the anti-proliferative effect of NMS-873. The polypharmacology of NMS-873 can be advantageous for anti-cancer therapy for colon cancer.
Collapse
|
8
|
Leo IR, Aswad L, Stahl M, Kunold E, Post F, Erkers T, Struyf N, Mermelekas G, Joshi RN, Gracia-Villacampa E, Östling P, Kallioniemi OP, Tamm KP, Siavelis I, Lehtiö J, Vesterlund M, Jafari R. Integrative multi-omics and drug response profiling of childhood acute lymphoblastic leukemia cell lines. Nat Commun 2022; 13:1691. [PMID: 35354797 PMCID: PMC8967900 DOI: 10.1038/s41467-022-29224-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Although standard-of-care chemotherapeutics are sufficient for most ALL cases, there are subsets of patients with poor response who relapse in disease. The biology underlying differences between subtypes and their response to therapy has only partially been explained by genetic and transcriptomic profiling. Here, we perform comprehensive multi-omic analyses of 49 readily available childhood ALL cell lines, using proteomics, transcriptomics, and pharmacoproteomic characterization. We connect the molecular phenotypes with drug responses to 528 oncology drugs, identifying drug correlations as well as lineage-dependent correlations. We also identify the diacylglycerol-analog bryostatin-1 as a therapeutic candidate in the MEF2D-HNRNPUL1 fusion high-risk subtype, for which this drug activates pro-apoptotic ERK signaling associated with molecular mediators of pre-B cell negative selection. Our data is the foundation for the interactive online Functional Omics Resource of ALL (FORALL) with navigable proteomics, transcriptomics, and drug sensitivity profiles at https://proteomics.se/forall. Childhood acute lymphoblastic leukemia is characterised by a range of genetic aberrations. Here, the authors use multi-omics profiling of ALL cell lines to connect molecular phenotypes and drug responses to provide an interactive resource of drug sensitivity.
Collapse
Affiliation(s)
- Isabelle Rose Leo
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Luay Aswad
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Matthias Stahl
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Elena Kunold
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Frederik Post
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden.,Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149, Muenster, Germany
| | - Tom Erkers
- Molecular Precision Medicine, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Nona Struyf
- Molecular Precision Medicine, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Georgios Mermelekas
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Rubin Narayan Joshi
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Eva Gracia-Villacampa
- Division of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Päivi Östling
- Molecular Precision Medicine, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Olli P Kallioniemi
- Molecular Precision Medicine, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Katja Pokrovskaja Tamm
- Department of Oncology-Pathology, Karolinska Institutet, J6:140 BioClinicum, Akademiska stråket 1, 171 64, Solna, Sweden
| | - Ioannis Siavelis
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Janne Lehtiö
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Mattias Vesterlund
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Rozbeh Jafari
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden.
| |
Collapse
|
9
|
Wang F, Li S, Cheng KW, Rosencrans WM, Chou TF. The p97 Inhibitor UPCDC-30245 Blocks Endo-Lysosomal Degradation. Pharmaceuticals (Basel) 2022; 15:ph15020204. [PMID: 35215314 PMCID: PMC8880557 DOI: 10.3390/ph15020204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
The diverse modes of action of small molecule inhibitors provide versatile tools to investigate basic biology and develop therapeutics. However, it remains a challenging task to evaluate their exact mechanisms of action. We identified two classes of inhibitors for the p97 ATPase: ATP competitive and allosteric. We showed that the allosteric p97 inhibitor, UPCDC-30245, does not affect two well-known cellular functions of p97, endoplasmic-reticulum-associated protein degradation and the unfolded protein response pathway; instead, it strongly increases the lipidated form of microtubule-associated proteins 1A/1B light chain 3B (LC3-II), suggesting an alteration of autophagic pathways. To evaluate the molecular mechanism, we performed proteomic analysis of UPCDC-30245 treated cells. Our results revealed that UPCDC-30245 blocks endo-lysosomal degradation by inhibiting the formation of early endosome and reducing the acidity of the lysosome, an effect not observed with the potent p97 inhibitor CB-5083. This unique effect allows us to demonstrate UPCDC-30245 exhibits antiviral effects against coronavirus by blocking viral entry.
Collapse
Affiliation(s)
- Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (K.-W.C.); (W.M.R.)
- Correspondence: (F.W.); (T.-F.C.); Tel.: +1 626-395-6772 (T.-F.C.)
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (K.-W.C.); (W.M.R.)
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (K.-W.C.); (W.M.R.)
| | - William M. Rosencrans
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (K.-W.C.); (W.M.R.)
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (K.-W.C.); (W.M.R.)
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
- Correspondence: (F.W.); (T.-F.C.); Tel.: +1 626-395-6772 (T.-F.C.)
| |
Collapse
|