1
|
Idensohn PJ, Gilbert K, Boodhoo K, Howard K, van de Vyver M. The Prevalence, Aetiology and Healing Trajectories of Hard-To-Heal Wounds in South Africa. Int Wound J 2025; 22:e70155. [PMID: 40068966 PMCID: PMC11896689 DOI: 10.1111/iwj.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 03/15/2025] Open
Abstract
The incidence of hard-to-heal wounds is rising globally with adverse effects on quality of life. Yet, there is no reliable data available on hard-to-heal wound prevalence, aetiology, and outcomes in a low-to-middle income country without improper care being a confounding factor. In this retrospective study of 460 individuals (876 wounds) that received appropriate standard of care at a specialised wound care clinic in the Kwazulu-Natal province of South Africa, acute/traumatic wounds were most prevalent (230/460, 50%) followed by ulcers (173/460, 38%) (DFUs 13%, VLUs 12%, PIs 11%, MLUs < 1%, ALUs < 1%) and atypical wounds (55/460, 12%) (atypical wounds 8%, vectors 4%). Definitions for wound aetiologies are provided. Delayed referral for specialised wound care was evident for individuals with ulcers. 103/460 (22%) individuals did not respond to the standard of care and were classified as hard-to-heal (< 40% wound closure after 4 weeks and/or > 12 weeks of the standard of care). Diabetes mellitus (45/103, 44%) and wound infection (44/103, 43%) accounted for poor healing trajectories in the hard-to-heal cohort, whereas 14/103 (13%) individuals had other comorbidities. High prevalence rates of hard-to-heal wounds in the heterogenous South African population necessitate recognition of wound management as a specialty in South Africa.
Collapse
Affiliation(s)
| | - Keenen Gilbert
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Kiara Boodhoo
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Kayla Howard
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Mari van de Vyver
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|
2
|
Daryanti Saragih I, Susanto H, Lin HC, Lee BO. Vibration therapy for patients with hard-to-heal wounds: A systematic review and meta-analysis of experimental studies. J Tissue Viability 2025; 34:100852. [PMID: 39733510 DOI: 10.1016/j.jtv.2024.100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024]
Abstract
INTRODUCTION Hard-to-heal wounds lead to functional loss, decreased quality of life, and prolonged hospitalization due to delayed healing. The healthcare costs of managing such wounds are substantial. Vibration therapy has been proposed as an alternative treatment for hard-to-heal wounds but no comprehensive reviews have quantitatively analyzed its efficacy. MATERIALS AND METHODS Six databases were systematically searched for relevant articles on August 1, 2024. The methodologies of the studies included in the analysis were assessed using Version 2 of the Cochrane Risk of Bias tool for randomized trials and ROBINS-I tool for non-randomized studies. A random-effects model was applied to aggregate the pooled effect size. Heterogeneity was assessed using I2. A forest plot was generated for meta-analysis. RESULTS Ten studies were included in the meta-analysis. Vibration therapy significantly reduced neuropathy (pooled standardized mean difference [SMD] = -0.79; 95 % CI = -1.51 to -0.07; p = 0.03; I2 = 61.40 %) and enhanced the ulcer healing area (pooled SMD = 0.92; 95 % CI = 0.60 to 1.23; p < 0.001; I2 = 0.00 %) of patients with hard-to-heal wounds. However, the intervention did not significantly alleviate pain (pooled SMD = -0.51; 95 % CI = -1.38 to 0.36; p = 0.25; I2 = 74.15 %). Significant heterogeneity was identified in the pooled result for pain and neuropathy. CONCLUSIONS Vibration therapy appears to enhance ulcer healing and reduce neuropathy. These results may help researchers and healthcare providers to further develop vibration therapy to address the underlying requirements for bridging the evidence-practice gap in wound care. Future studies should consider the safety and potential adverse outcomes of vibration therapy to ensure its appropriate application for treating hard-to-heal wounds.
Collapse
Affiliation(s)
| | - Herry Susanto
- Faculty of Nursing, Universitas Islam Sultan Agung, Semarang, Indonesia.
| | - Hsiao-Ching Lin
- School of Nursing, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Bih-O Lee
- College of Nursing, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Dhanraj P, Boodhoo K, van de Vyver M. Delayed Immune Response Upon Injury in Diabetic Wounds Impedes Healing. Immun Inflamm Dis 2025; 13:e70142. [PMID: 39891428 PMCID: PMC11786017 DOI: 10.1002/iid3.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Chronic wounds are a severe complication of diabetes. Dysregulated inflammatory signalling is thought to underly the poor healing outcomes. Yet, there is little information available on the acute response following injury and its impact on healing. METHODS Using a murine full thickness excisional wound model, the current study therefore assessed the expression of pro-inflammatory and pro-resolving lipid mediators during the early stages post injury in acute and diabetic wounds and compared the timeframe for transitioning through the phases of healing. Tissue eicosanoid (LTB4, PGE2, TxA2, MaR1, RvE1, RvD1, PD) and MMP-9 levels were assessed at 6 h post wounding using ELISAs. Wound closure, healing dynamics (histology), cellular infiltration and MPO, TNF-α expression (IHC) were assessed at 6 h, day2, day7 post wounding. RESULTS Eicosanoid expression did not differ between groups (LTB4 24-125 pg/mL, PGE2 63-177 pg/mL, TxA2 529-1184 pg/mL, MaR1 365-2052 pg/mL, RvE1 43-1157 pg/mL, RvD1 1.5-69 pg/mL, PD1 11.5-4.9 ng/mL). An inverse relationship (p < 0.05) between MMP-9 and eicosanoids were however only evident in acute and not in diabetic wounds. Diminished cellular infiltration (x5 fold) (p < 0.05) in diabetic wounds coincided with a significant delay in the expression of TNF-α (pro-inflammatory cytokine) and MPO (neutrophil marker). A significant difference in the expression of TNF-α (C 1.8 ± 0.6; DM 0.7 ± 0.1 MFI) and MPO (C 4.9 ± 1.9; DM 0.9 ± 0.4 MFI) (p < 0.05) was observed as early as 6 h post wounding, with histology parameters supporting the notion that the onset of the acute inflammatory response is delayed in diabetic wounds. CONCLUSION These observations imply that the immune cells are unresponsive to the initial eicosanoid expression in the diabetic wound tissue.
Collapse
Affiliation(s)
- Priyanka Dhanraj
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownWestern CapeSouth Africa
| | - Kiara Boodhoo
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownWestern CapeSouth Africa
| | - Mari van de Vyver
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownWestern CapeSouth Africa
| |
Collapse
|
4
|
Kumar R, Igwegbe CA, Khandel SK. Nanotherapeutic and Nano-Bio Interface for Regeneration and Healing. Biomedicines 2024; 12:2927. [PMID: 39767834 PMCID: PMC11673698 DOI: 10.3390/biomedicines12122927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/13/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Wound and injury healing processes are intricate and multifaceted, involving a sequence of events from coagulation to scar tissue formation. Effective wound management is crucial for achieving favorable clinical outcomes. Understanding the cellular and molecular mechanisms underlying wound healing, inflammation, and regeneration is essential for developing innovative therapeutics. This review explored the interplay of cellular and molecular processes contributing to wound healing, focusing on inflammation, innervation, angiogenesis, and the role of cell surface adhesion molecules. Additionally, it delved into the significance of calcium signaling in skeletal muscle regeneration and its implications for regenerative medicine. Furthermore, the therapeutic targeting of cellular senescence for long-term wound healing was discussed. The integration of cutting-edge technologies, such as quantitative imaging and computational modeling, has revolutionized the current approach of wound healing dynamics. The review also highlighted the role of nanotechnology in tissue engineering and regenerative medicine, particularly in the development of nanomaterials and nano-bio tools for promoting wound regeneration. Moreover, emerging nano-bio interfaces facilitate the efficient transport of biomolecules crucial for regeneration. Overall, this review provided insights into the cellular and molecular mechanisms of wound healing and regeneration, emphasizing the significance of interdisciplinary approaches and innovative technologies in advancing regenerative therapies. Through harnessing the potential of nanoparticles, bio-mimetic matrices, and scaffolds, regenerative medicine offers promising avenues for restoring damaged tissues with unparalleled precision and efficacy. This pursuit marks a significant departure from traditional approaches, offering promising avenues for addressing longstanding challenges in cellular and tissue repair, thereby significantly contributing to the advancement of regenerative medicine.
Collapse
Affiliation(s)
- Rajiv Kumar
- Faculty of Science, University of Delhi, Delhi 110007, India
| | - Chinenye Adaobi Igwegbe
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka 420218, Nigeria;
- Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
| | - Shri Krishna Khandel
- Clinical Diagnosis and Investigation (Rognidan), National Institute of Ayurveda, Jaipur 302002, India;
| |
Collapse
|
5
|
Montague C, Holt Y, Vlok M, Dhanraj P, Boodhoo K, Maartens M, Buthelezi K, Niesler CU, van de Vyver M. Combined therapeutic use of umbilical cord blood serum and amniotic membrane in diabetic wounds. Biochimie 2024; 227:193-204. [PMID: 39043358 DOI: 10.1016/j.biochi.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
Diabetic wounds are hard-to-heal due to complex multifactorial dysregulation within the micro-environment, necessitating the development of novel regenerative approaches to stimulate healing. This study investigated whether the combined therapeutic application of two novel cellular tissue products, namely a decellularized collagen-rich amniotic membrane (AmR) and growth factor-rich umbilical cord blood serum (UCBS) could have a positive synergistic effect on long-term healing outcomes by stimulating both superficial wound closure and wound bed regeneration. Full thickness excisional wounds were induced on obese diabetic mice (B6.Cg-lepob/J, ob/ob, n = 23) and treated with either: 1) Standard wound care (control); 2) UCBS; 3) AmR or 4) UCBS + AmR. Macroscopic wound closure was assessed on days 0, 3, 7, 10 and 14 post wounding. To determine the potential impact on wound recurrence, endpoint analysis was performed to determine both the overall quality of healing histologically as well as the molecular state of the wounds on day 14 via proteomic analysis. The data demonstrated the presence of both healers and non-healers. Re-epithelization took place in the healers of all treatment groups, but underlying tissue regeneration was far more pronounced following application of the combined treatment (UCBS + AmR), suggesting improved quality of healing and potentially a reduced change of recurrence long term. In non-healers, wounds failed to heal due to excessive slough formation and a reduction in LTB4 expression, suggesting impaired antimicrobial activity. Care should thus be taken since the cellular tissue product therapy could pose an increased risk for infection in some patients.
Collapse
Affiliation(s)
| | - Y Holt
- Next Biosciences, Midrand, South Africa
| | - M Vlok
- Central Analytical Facility, Stellenbosch University, Cape Town, South Africa
| | - P Dhanraj
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - K Boodhoo
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - M Maartens
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - C U Niesler
- Next Biosciences, Midrand, South Africa; Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (UKZN), Pietermaritzburg, South Africa
| | - M van de Vyver
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
6
|
Cui M, Zhang J, Han P, Shi L, Li X, Zhang Z, Bao H, Ma Y, Tao Z, Dong X, Fu L, Wu Y. Two-dimensional nanomaterials: A multifunctional approach for robust for diabetic wound repair. Mater Today Bio 2024; 28:101186. [PMID: 39221220 PMCID: PMC11364902 DOI: 10.1016/j.mtbio.2024.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Diabetic wounds pose a clinical challenge due to persistent inflammation, severe bacterial infections, inadequate vascularization, and pronounced oxidative stress. Current therapeutic modalities fail to provide satisfactory outcomes in managing these conditions, resulting in considerable patient distress. Two-dimensional nanomaterials (2DNMs), characterized by their unique nanosheet structures, expansive surface areas, and remarkable physicochemical properties, have garnered considerable attention for their potential in therapeutic applications. Emerging 2DNMs can be loaded with various pharmacological agents, including small molecules, metal ions, and liposomes. Moreover, they can be integrated with various biomaterials such as hydrogels, microneedles, and microspheres, thus demonstrating unprecedented advantages in expediting the healing process of diabetic wounds. Moreover, 2DNMs exhibit exceptional performance characteristics, including high biocompatibility, effective antimicrobial properties, optimal phototherapeutic effects, and enhanced electrostimulation capabilities. These properties enable them to modulate the wound microenvironment, leading to widespread application in tissue repair with remarkable outcomes. This review delineates several emerging 2DNMs, such as graphene and its derivatives, black phosphorus, MXenes, and transition metal dichalcogenides, in the context of diabetic wound repair. Furthermore, it elucidates the translational challenges and future perspectives of 2DNMs in wound healing treatments. Overall, 2DNMs present a highly promising strategy for ameliorating diabetic wounds, thus providing novel avenues for diagnostic and therapeutic strategies in diabetic wound management.
Collapse
Affiliation(s)
- Mingming Cui
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Jin Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
- Clinical Laboratory, Zhejiang Medical & Health Group Quzhou Hospital, Quzhou, 324004, China
| | - Pengfei Han
- Clinical Laboratory, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Ling Shi
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xing Li
- Department of Clinical Laboratory, The Quzhou Afiliated Hospital of Wenzhou Medical University (Quzhou People's Hospital), Quzhou, 324000, China
| | - Zhe Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Haihua Bao
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yubo Ma
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Ziwei Tao
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xianghui Dong
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Li Fu
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| |
Collapse
|
7
|
Yue Y, Liu Y, Lin Y, Guo F, Cai K, Chen S, Zhang W, Tang S. A carboxymethyl chitosan/oxidized hyaluronic acid composite hydrogel dressing loading with stem cell exosome for chronic inflammation wounds healing. Int J Biol Macromol 2024; 257:128534. [PMID: 38048924 DOI: 10.1016/j.ijbiomac.2023.128534] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/14/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Stem cell exosomes (Exo) play an important role in the transformation of macrophages, but the rapid clearance of Exo in vivo limits their therapeutic effects for chronic inflammation wounds healing. Here, stem cell Exo was isolated and introduced to a composite hydrogel including carboxymethyl chitosan (CMCS) and oxidized hyaluronic acid (OHA) through chemical cross-linking, which formed an Exo-loaded (CMCS/OHA/Exo) hydrogel. The CMCS/OHA/Exo hydrogel exhibited a function of Exo sustained release and an Exo protection within 6 days. This CMCS/OHA/Exo hydrogel was much better than CMCS/OHA hydrogel or Exo solution in macrophage cell phagocytosis, proliferation and migration in vitro, especially, played an obviously positive role in the transformation of macrophages compared with the reference groups. For the treatment of the chronic inflammation wounds in vivo, the CMCS/OHA/Exo hydrogel had the best results at wound heal rate and inhibiting the secretion of inflammatory factors, and it was far superior to reference groups in wound re-epithelization and collagen production. CMCS/OHA/Exo hydrogels can promote Exo release based on hydrogel degradation to regulate macrophages transformation and accelerate chronic wound healing. The study offers a method for preparing Exo-loaded hydrogels that effectively promote the transformation of macrophages and accelerate chronic inflammatory wound healing.
Collapse
Affiliation(s)
- Yan Yue
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China.
| | - Yukai Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Fengbiao Guo
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Kun Cai
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Shengqin Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou University, Shantou, Guangdong 515063, PR China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou University, Shantou, Guangdong 515063, PR China
| |
Collapse
|
8
|
Beeckman D, Cooper M, Greenstein E, Idensohn P, Klein RJ, Kolbig N, LeBlanc K, Milne C, Treadwell T, Weir D, White W. The role community-based healthcare providers play in managing hard-to-heal wounds. Int Wound J 2024; 21:e14402. [PMID: 37715348 PMCID: PMC10788587 DOI: 10.1111/iwj.14402] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023] Open
Abstract
It is common for community-based healthcare providers (CHPs)-many of whom have not received specialised training in wound care-to deliver initial and ongoing management for various wound types and diverse populations. Wounds in any setting can rapidly transition to a stalled, hard-to-heal wound (HTHW) that is not following a normal healing trajectory. Failure to recognise or address issues that cause delayed healing can lead to increased costs, healthcare utilisation and suffering. To encourage early intervention by CHPs, a panel of wound care experts developed actionable evidence-based recommendations for CHPs delineating characteristics and appropriate care in identifying and treating HTHWs. A HTHW is a wound that fails to progress towards healing with standard therapy in an orderly and timely manner and should be referred to a qualified wound care provider (QWCP) for advanced assessment and diagnosis if not healed or reduced in size by 40%-50% within 4 weeks. HTHWs occur in patients with multiple comorbidities, and display increases in exudate, infection, devitalised tissue, maceration or pain, or no change in wound size. CHPs can play an important initial role by seeing the individual's HTHW risk, addressing local infection and providing an optimal wound environment. An easy-to-follow one-page table was developed for the CHP to systematically identify, evaluate and treat HTHWs, incorporating a basic toolkit with items easily obtainable in common office/clinic practice settings. A flow chart using visual HTHW clinical cues is also presented to address CHPs with different learning styles. These tools encourage delivery of appropriate early interventions that can improve overall healthcare efficiency and cost.
Collapse
Affiliation(s)
- Dimitri Beeckman
- Skin Integrity Research Group (SKINT), University Centre for Nursing and Midwifery, Department of Public Health and Primary CareGhent UniversityGhentBelgium
- Swedish Centre for Skin and Wound Research (SCENTR), School of Health SciencesÖrebro UniversityÖrebroSweden
| | | | | | | | - Robert J. Klein
- Department of SurgeryUniversity of South Carolina School of MedicineGreenvilleSouth CarolinaUSA
| | | | | | - Catherine Milne
- Connecticut Clinical Nursing Associates, LLCBristolConnecticutUSA
| | | | - Dot Weir
- Saratoga Hospital Center for Wound Healing and Hyperbaric MedicineSaratoga SpringsNew YorkUSA
| | - Wendy White
- Wendy White WoundCareMurwillumbahNew South WalesAustralia
| |
Collapse
|
9
|
Romano E, Campagnuolo C, Palladino R, Schiavo G, Maglione B, Luceri C, Mennini N. Technical Evaluation of a New Medical Device Based on Rigenase in the Treatment of Chronic Skin Lesions. Bioengineering (Basel) 2023; 10:1022. [PMID: 37760124 PMCID: PMC10526047 DOI: 10.3390/bioengineering10091022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic wound is characterized by slow healing time, persistence, and abnormal healing progress. Therefore, serious complications can lead at worst to the tissue removal. In this scenario, there is an urgent need for an ideal dressing capable of high absorbency, moisture retention and antimicrobial properties. Herein we investigate the technical properties of a novel advanced non-woven triple layer gauze imbibed with a cream containing Rigenase, an aqueous extract of Triticum vulgare used for the treatment of skin injuries. To assess the applicability of this system we analyzed the dressing properties by wettability, dehydration, absorbency, Water Vapor Transmission Rate (WVTR), lateral diffusion and microbiological tests. The dressing showed an exudate absorption up to 50%. It created a most environment allowing a proper gaseous exchange as attested by the WVTR and a controlled dehydration rate. The results candidate the new dressing as an ideal medical device for the treatment of the chronic wound repairing process. It acts as a mechanical barrier providing a good management of the bacterial load and proper absorption of abundant wound exudate. Finally, its vertical transmission minimizes horizontal diffusion and side effects on perilesional skin as maceration and bacterial infection.
Collapse
Affiliation(s)
- Eugenia Romano
- Farmaceutici Damor S.p.A., Via E. Scaglione 27, 80125 Napoli, Italy; (E.R.); (C.C.); (R.P.); (G.S.)
| | - Claudio Campagnuolo
- Farmaceutici Damor S.p.A., Via E. Scaglione 27, 80125 Napoli, Italy; (E.R.); (C.C.); (R.P.); (G.S.)
| | - Roberta Palladino
- Farmaceutici Damor S.p.A., Via E. Scaglione 27, 80125 Napoli, Italy; (E.R.); (C.C.); (R.P.); (G.S.)
| | - Giulia Schiavo
- Farmaceutici Damor S.p.A., Via E. Scaglione 27, 80125 Napoli, Italy; (E.R.); (C.C.); (R.P.); (G.S.)
| | - Barbara Maglione
- Farmaceutici Damor S.p.A., Via E. Scaglione 27, 80125 Napoli, Italy; (E.R.); (C.C.); (R.P.); (G.S.)
| | - Cristina Luceri
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy; (C.L.); (N.M.)
| | - Natascia Mennini
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy; (C.L.); (N.M.)
| |
Collapse
|
10
|
Ramklowan DSH, Snyman C, van de Vyver M, Niesler CU. Establishment of fibroblast and myofibroblast phenotypes for use in in vitro co-culture models. Biochimie 2023; 207:96-101. [PMID: 36343754 DOI: 10.1016/j.biochi.2022.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Fibroblasts function to secrete and modify components of the extracellular matrix. During wound healing, fibroblasts migrate to the site of injury and differentiate into contractile myofibroblasts; this differentiation is characterised by an increased contractile capacity. Fully differentiated myofibroblasts can be distinguished from fibroblasts via the higher expression of α-smooth muscle actin as well as a denser cytoskeleton. Impaired wound healing has been characterised by a lack of myofibroblasts; as a result, tissue does not fully regain its strength and function. Under pathological conditions, this may be associated with the effect that a pro-inflammatory microenvironment has on fibroblast and skeletal muscle progenitor cell migration and differentiation. Given their distinct roles in tissue maintenance and repair, the communication between fibroblasts versus myofibroblasts with other cellular mediators of repair is likely to influence cell behaviour and the outcome of wound repair. An in vitro test model is required to investigate this intercellular influence, but the establishment of such a model is hampered by the difficulty in retaining the dedifferentiated fibroblastic phenotype under regular serum-containing cell culture conditions. We present a model that supports the establishment and retention in culture of fibroblast and myofibroblast phenotypes for use in a simple, inexpensive, yet relevant in vitro 2D assay. This model is then applied in a co-culture setting to determine whether the presence of myoblasts affects the ability of fibroblasts versus myofibroblasts to close an in vitro wound. Our results emphasize the importance of considering the impact of paracrine communication between all cells during wound healing.
Collapse
Affiliation(s)
- D S H Ramklowan
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu Natal, Scottsville, South Africa
| | - C Snyman
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu Natal, Scottsville, South Africa
| | - M van de Vyver
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - C U Niesler
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu Natal, Scottsville, South Africa.
| |
Collapse
|
11
|
Liu WS, Liu Y, Gao J, Zheng H, Lu ZM, Li M. Biomembrane-Based Nanostructure- and Microstructure-Loaded Hydrogels for Promoting Chronic Wound Healing. Int J Nanomedicine 2023; 18:385-411. [PMID: 36703725 PMCID: PMC9871051 DOI: 10.2147/ijn.s387382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Wound healing is a complex and dynamic process, and metabolic disturbances in the microenvironment of chronic wounds and the severe symptoms they cause remain major challenges to be addressed. The inherent properties of hydrogels make them promising wound dressings. In addition, biomembrane-based nanostructures and microstructures (such as liposomes, exosomes, membrane-coated nanostructures, bacteria and algae) have significant advantages in the promotion of wound healing, including special biological activities, flexible drug loading and targeting. Therefore, biomembrane-based nanostructure- and microstructure-loaded hydrogels can compensate for their respective disadvantages and combine the advantages of both to significantly promote chronic wound healing. In this review, we outline the loading strategies, mechanisms of action and applications of different types of biomembrane-based nanostructure- and microstructure-loaded hydrogels in chronic wound healing.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Yu Liu
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Hao Zheng
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Zheng-Mao Lu
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China,Zheng-Mao Lu, Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China, Tel +086-13651688596, Fax +086-021-31161589, Email
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China,Correspondence: Meng Li, Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China, Tel +086-15000879978, Fax +086-021-23271699, Email
| |
Collapse
|
12
|
Ahmad N. In Vitro and In Vivo Characterization Methods for Evaluation of Modern Wound Dressings. Pharmaceutics 2022; 15:42. [PMID: 36678671 PMCID: PMC9864730 DOI: 10.3390/pharmaceutics15010042] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Chronic wound management represents a major challenge in the healthcare sector owing to its delayed wound-healing process progression and huge financial burden. In this regard, wound dressings provide an appropriate platform for facilitating wound healing for several decades. However, adherent traditional wound dressings do not provide effective wound healing for highly exudating chronic wounds and need the development of newer and innovative wound dressings to facilitate accelerated wound healing. In addition, these dressings need frequent changing, resulting in more pain and discomfort. In order to overcome these issues, a wide range of affordable and innovative modern wound dressings have been developed and explored recently to accelerate and improve the wound healing process. However, a comprehensive understanding of various in vitro and in vivo characterization methods being utilized for the evaluation of different modern wound dressings is lacking. In this context, an overview of modern dressings and their complete in vitro and in vivo characterization methods for wound healing assessment is provided in this review. Herein, various emerging modern wound dressings with advantages and challenges have also been reviewed. Furthermore, different in vitro wound healing assays and in vivo wound models being utilized for the evaluation of wound healing progression and wound healing rate using wound dressings are discussed in detail. Finally, a summary of modern wound dressings with challenges and the future outlook is highlighted.
Collapse
Affiliation(s)
- Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| |
Collapse
|
13
|
|
14
|
Niesler CU, van de Vyver M. Editorial Regeneration in Health and Disease. Biochimie 2022; 196:121-122. [PMID: 35358661 DOI: 10.1016/j.biochi.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Carola U Niesler
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu Natal, Scottsville, South Africa.
| | - Mari van de Vyver
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|