1
|
Maghsoudi H, Sheikhnia F, Hajmalek N, Gholipour FD, Alipour S, Ghorbanpour M, Farzanegan S, Mir SM, Memar MY. Multifaceted roles of melatonin in oncology: an insight into its therapeutic potential in cancer management. Inflammopharmacology 2025:10.1007/s10787-025-01751-9. [PMID: 40263172 DOI: 10.1007/s10787-025-01751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
Cancer remains the leading cause of death worldwide. The treatment of cancer has become increasing complex. Current treatment options for cancer include surgical resection, chemotherapy, radiotherapy, nanomedicine, and immunotherapy. Recent experimental and clinical studies have provided substantial evidence supporting the potential use of melatonin as a preventive and therapeutic agent in oncology. Melatonin (N-acetyl-5-methoxy-tryptamine), a pleiotropic and multitasking molecule, is secreted from the pineal gland during the night under normal light-dark conditions. Beyond its role in circadian regulation, melatonin exhibits antioxidant, anti-aging, immunomodulatory, and anti-cancer properties. Melatonin exerts significant apoptotic, angiogenic, oncostatic, and anti-proliferative effects on a variety of cancer cells. This review discusses the influence of melatonin on cancer cells through mechanisms involving cell cycle regulation, stimulation of apoptosis, autophagy induction, epigenetic modification, and transcriptional regulation.
Collapse
Affiliation(s)
- Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, 57147-83734, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57147-83734, Iran
| | - Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, 57147-83734, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57147-83734, Iran
| | - Nooshin Hajmalek
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, 47176-47754, Iran
| | - Fatemeh Dadash Gholipour
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, 47176-47754, Iran
- Student Research Committee, Babol University of Medical Sciences, Babol, 47176-47754, Iran
| | - Shahriar Alipour
- Student Research Committee, Urmia University of Medical Sciences, Urmia, 57147-83734, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57147-83734, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-88349, Iran
| | - Sara Farzanegan
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Mostafa Mir
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Yang R, Jin H, Zhao C, Wang W, Li WY. Oral Cancer and Sleep Disturbances: A Narrative Review on Exploring the Bidirectional Relationship. Cancers (Basel) 2025; 17:1262. [PMID: 40282437 PMCID: PMC12025584 DOI: 10.3390/cancers17081262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/15/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Oral cancer is a common malignant tumor, and its incidence has steadily increased in recent years. Sleep disturbances, including insomnia and obstructive sleep apnea, are prevalent among patients with oral cancer and significantly impact their quality of life. Emerging research suggests a bidirectional relationship between oral cancer and sleep disorders. This article reviews how oral cancer induces or exacerbates sleep disorders, particularly obstructive sleep apnea (OSA), through factors such as pain, psychological stress, and treatment-related side effects (e.g., upper airway damage caused by chemotherapy, radiotherapy, or surgical interventions). Furthermore, it analyzes how sleep disorders may promote oral cancer progression via chronic inflammation, intermittent hypoxia, oxidative stress, and disruption of circadian rhythms. By elucidating these interactions, this review provides a theoretical foundation for optimizing clinical treatment plans through a holistic understanding of their shared pathophysiological mechanisms.
Collapse
Affiliation(s)
- Runhua Yang
- Respiratory and Critical Care Department, The First Hospital of China Medical University, Shenyang 110001, China; (R.Y.); (W.W.)
| | - Hongyu Jin
- Respiratory and Critical Care Department, The First Hospital of China Medical University, Shenyang 110001, China; (R.Y.); (W.W.)
| | - Chenyu Zhao
- Department of China Medical University-The Queen’s University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110052, China;
| | - Wei Wang
- Respiratory and Critical Care Department, The First Hospital of China Medical University, Shenyang 110001, China; (R.Y.); (W.W.)
| | - Wen-Yang Li
- Respiratory and Critical Care Department, The First Hospital of China Medical University, Shenyang 110001, China; (R.Y.); (W.W.)
| |
Collapse
|
3
|
Bargunam S, Roy R, Shetty D, H AS, V S S, Babu VS. Melatonin-governed growth and metabolome divergence: Circadian and stress responses in key plant species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109635. [PMID: 39952162 DOI: 10.1016/j.plaphy.2025.109635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/15/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Melatonin, a versatile biomolecule, profoundly influences plant growth and resilience through its intricate regulation of metabolic pathways, circadian rhythms, and cellular processes. The current study elucidates melatonin's concentration-dependent biphasic effects on growth dynamics in Arabidopsis thaliana and Brassica nigra. While 50 μM melatonin optimized biomass accumulation and root elongation, higher concentrations (100 μM) elicited stress responses, underscoring its dual role as a growth promoter and stress modulator. Melatonin extended photosynthetic efficiency by modulating chlorophyll and carotenoid synthesis diurnally, offering protection against photodamage. Divergent responses between the two species, driven by species-specific metabolic reprogramming, were evident in pigment biosynthesis and antioxidant pathways. B. nigra displayed robust activation of flavonoid and phenylpropanoid pathways, cytokinin signaling, and enhanced oxidative defenses, contrasting with A. thaliana, where melatonin suppressed pigment precursors and antioxidant activation. Metabolomic analysis revealed melatonin's orchestration of hormonal crosstalk, involving auxins, gibberellins, and jasmonates, to fine-tune growth and stress adaptation. Stomatal dynamics and cell wall fortification in B. nigra highlighted melatonin's role in optimizing water-use efficiency and structural resilience under abiotic stress. Cytogenetic studies confirmed melatonin's role in safeguarding genomic integrity, regulating chromatin remodeling, and promoting DNA repair mechanisms, with B. nigra demonstrating adaptive genomic strategies under stress. Moreover, melatonin influenced critical metabolic pathways, including polyamine biosynthesis, sulfur metabolism, and nucleotide regulation, emphasizing its multifaceted impact on cellular homeostasis. These findings position melatonin as a cornerstone molecule in plant biotechnology, with potential applications in enhancing crop resilience and productivity under fluctuating environmental conditions.
Collapse
Affiliation(s)
- Soundaryaa Bargunam
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Riyan Roy
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Devika Shetty
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Amisha S H
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shukla V S
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vidhu Sankar Babu
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
4
|
Yaghoobi A, Rezaee M, Hedayati N, Keshavarzmotamed A, Khalilzad MA, Russel R, Asemi Z, Rajabi Moghadam H, Mafi A. Insight into the cardioprotective effects of melatonin: shining a spotlight on intercellular Sirt signaling communication. Mol Cell Biochem 2025; 480:799-823. [PMID: 38980593 DOI: 10.1007/s11010-024-05002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/25/2024] [Indexed: 07/10/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death and illness worldwide. While there have been advancements in the treatment of CVDs using medication and medical procedures, these conventional methods have limited effectiveness in halting the progression of heart diseases to complete heart failure. However, in recent years, the hormone melatonin has shown promise as a protective agent for the heart. Melatonin, which is secreted by the pineal gland and regulates our sleep-wake cycle, plays a role in various biological processes including oxidative stress, mitochondrial function, and cell death. The Sirtuin (Sirt) family of proteins has gained attention for their involvement in many cellular functions related to heart health. It has been well established that melatonin activates the Sirt signaling pathways, leading to several beneficial effects on the heart. These include preserving mitochondrial function, reducing oxidative stress, decreasing inflammation, preventing cell death, and regulating autophagy in cardiac cells. Therefore, melatonin could play crucial roles in ameliorating various cardiovascular pathologies, such as sepsis, drug toxicity-induced myocardial injury, myocardial ischemia-reperfusion injury, hypertension, heart failure, and diabetic cardiomyopathy. These effects may be partly attributed to the modulation of different Sirt family members by melatonin. This review summarizes the existing body of literature highlighting the cardioprotective effects of melatonin, specifically the ones including modulation of Sirt signaling pathways. Also, we discuss the potential use of melatonin-Sirt interactions as a forthcoming therapeutic target for managing and preventing CVDs.
Collapse
Affiliation(s)
- Alireza Yaghoobi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | | | | | - Reitel Russel
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hasan Rajabi Moghadam
- Department of Cardiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Long Y, Shi H, Ye J, Qi X. Exploring Strategies to Prevent and Treat Ovarian Cancer in Terms of Oxidative Stress and Antioxidants. Antioxidants (Basel) 2025; 14:114. [PMID: 39857448 PMCID: PMC11762571 DOI: 10.3390/antiox14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress is a state of imbalance between the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and the antioxidant defence system in the body. Oxidative stress may be associated with a variety of diseases, such as ovarian cancer, diabetes mellitus, and neurodegeneration. The generation of oxidative stress in ovarian cancer, one of the common and refractory malignancies among gynaecological tumours, may be associated with several factors. On the one hand, the increased metabolism of ovarian cancer cells can lead to the increased production of ROS, and on the other hand, the impaired antioxidant defence system of ovarian cancer cells is not able to effectively scavenge the excessive ROS. In addition, chemotherapy and radiotherapy may elevate the oxidative stress in ovarian cancer cells. Oxidative stress can cause oxidative damage, promote the development of ovarian cancer, and even result in drug resistance. Therefore, studying oxidative stress in ovarian cancer is important for the prevention and treatment of ovarian cancer. Antioxidants, important markers of oxidative stress, might serve as one of the strategies for preventing and treating ovarian cancer. In this review, we will discuss the complex relationship between oxidative stress and ovarian cancer, as well as the role and therapeutic potential of antioxidants in ovarian cancer, thus guiding future research and clinical interventions.
Collapse
Affiliation(s)
| | | | | | - Xiaorong Qi
- Key Laboratory of Birth, Defects and Related Diseases of Women and Children, Department of Gynecology and Obstetrics, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (H.S.); (J.Y.)
| |
Collapse
|
6
|
Sohn EH, Kim SN, Lee SR. Melatonin's Impact on Wound Healing. Antioxidants (Basel) 2024; 13:1197. [PMID: 39456451 PMCID: PMC11504849 DOI: 10.3390/antiox13101197] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Melatonin (5-methoxy-N-acetyltryptamine) is an indoleamine compound that plays a critical role in the regulation of circadian rhythms. While melatonin is primarily synthesized from the amino acid tryptophan in the pineal gland of the brain, it can also be produced locally in various tissues, such as the skin and intestines. Melatonin's effects in target tissues can be mediated through receptor-dependent mechanisms. Additionally, melatonin exerts various actions via receptor-independent pathways. In biological systems, melatonin and its endogenous metabolites often produce similar effects. While injuries are common in daily life, promoting optimal wound healing is essential for patient well-being and healthcare outcomes. Beyond regulating circadian rhythms as a neuroendocrine hormone, melatonin may enhance wound healing through (1) potent antioxidant properties, (2) anti-inflammatory actions, (3) infection control, (4) regulation of vascular reactivity and angiogenesis, (5) analgesic (pain-relieving) effects, and (6) anti-pruritic (anti-itch) effects. This review aims to provide a comprehensive overview of scientific studies that demonstrate melatonin's potential roles in supporting effective wound healing.
Collapse
Affiliation(s)
- Eun-Hwa Sohn
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Sung-Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
| |
Collapse
|
7
|
Jan A, Shah M, Shah SA, Habib SH, Ehtesham E, Ahmed N. Melatonin rescues pregnant female mice and their juvenile offspring from high fat diet-induced alzheimer disease neuropathy. Heliyon 2024; 10:e36921. [PMID: 39281480 PMCID: PMC11395765 DOI: 10.1016/j.heliyon.2024.e36921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
High fat diet (HFD) is a prime factor, which contributes to the present epidemic of metabolic syndrome. Prolonged intake of HFD induces oxidative stress (OS) that in turn causes neuroinflammation, neurodegeneration, insulin resistance, amyloid burden, synaptic dysfunction and cognitive impairment hence leading to Alzheimer's disease neuropathy. Melatonin (secreted by the Pineal gland) has the potential to nullify the toxic effects of reactive oxygen species (ROS) and have been shown to ameliorate various complications induced by HFD in rodent models. This study aimed to assess the neurotherapeutic effects of melatonin on HFD-induced neuroinflammation and neurodegeneration mediated by OS in pregnant female mice and their offspring. Western blotting, immunohistochemistry and antioxidant enzyme assays were used for quantification of samples from the hippocampal region of the brain of pregnant albino mice and their offspring. Short- and long-term memory was assessed by Y-maze and Morris Water Maze tests. HFD significantly induced OS leading to AD like neuropathology in the pregnant mice and their offspring while melatonin administration simultaneously with the HFD significantly prevented this neuropathy. This study reports that melatonin exerts these effects through the stimulation of SIRT1/Nrf2/HO-1 pathway that in turn reduces the HFD-induced OS and its downstream signaling. In conclusion melatonin prevents HFD-induced multiple complications that ultimately leads to the memory dysfunction in pregnant female mice and their successive generation via activation of SIRT1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Amin Jan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Mohsin Shah
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shahid Ali Shah
- Department of Biochemistry, Haripur University, Haripur, Pakistan
| | - Syed Hamid Habib
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Ehtesham Ehtesham
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Naseer Ahmed
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
8
|
Vivarelli S, Spatari G, Costa C, Giambò F, Fenga C. Computational Analyses Reveal Deregulated Clock Genes Associated with Breast Cancer Development in Night Shift Workers. Int J Mol Sci 2024; 25:8659. [PMID: 39201344 PMCID: PMC11355052 DOI: 10.3390/ijms25168659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Breast cancer (BC) is the leading cause of cancer death among women worldwide. Women employed in shift jobs face heightened BC risk due to prolonged exposure to night shift work (NSW), classified as potentially carcinogenic by the International Agency for Research on Cancer (IARC). This risk is linked to disruptions in circadian rhythms governed by clock genes at the cellular level. However, the molecular mechanisms are unclear. This study aimed to assess clock genes as potential BC biomarkers among women exposed to long-term NSW. Clock gene expression was analysed in paired BC and normal breast tissues within Nurses' Health Studies I and II GEO datasets. Validation was performed on additional gene expression datasets from healthy night shift workers and women with varying BC susceptibility, as well as single-cell sequencing datasets. Post-transcriptional regulators of clock genes were identified through miRNA analyses. Significant alterations in clock gene expression in BC compared to normal tissues were found. BHLHE40, CIART, CLOCK, PDPK1, and TIMELESS were over-expressed, while HLF, NFIL3, NPAS3, PER1, PER3, SIM1, and TEF were under-expressed. The downregulation of PER1 and TEF and upregulation of CLOCK correlated with increased BC risk in healthy women. Also, twenty-six miRNAs, including miR-10a, miR-21, miR-107, and miR-34, were identified as potential post-transcriptional regulators influenced by NSW. In conclusion, a panel of clock genes and circadian miRNAs are suggested as BC susceptibility biomarkers among night shift workers, supporting implications for risk stratification and early detection strategies.
Collapse
Affiliation(s)
- Silvia Vivarelli
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 78712 Messina, Italy; (G.S.); (F.G.); (C.F.)
| | - Giovanna Spatari
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 78712 Messina, Italy; (G.S.); (F.G.); (C.F.)
| | - Chiara Costa
- Department of Clinical and Experimental Medicine, University of Messina, 78712 Messina, Italy;
| | - Federica Giambò
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 78712 Messina, Italy; (G.S.); (F.G.); (C.F.)
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 78712 Messina, Italy; (G.S.); (F.G.); (C.F.)
| |
Collapse
|
9
|
Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, Gkika E, Kubatka P. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation. EPMA J 2024; 15:163-205. [PMID: 38841620 PMCID: PMC11148002 DOI: 10.1007/s13167-024-00358-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Andrea Kapinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Luisa Heinrich
- Institute of General Medicine, University of Leipzig, Leipzig, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
10
|
Hosseinzadeh A, Alinaghian N, Sheibani M, Seirafianpour F, Naeini AJ, Mehrzadi S. Melatonin: Current evidence on protective and therapeutic roles in gynecological diseases. Life Sci 2024; 344:122557. [PMID: 38479596 DOI: 10.1016/j.lfs.2024.122557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Melatonin, a potent antioxidant and free radical scavenger, has been demonstrated to be effective in gynecological conditions and female reproductive cancers. This review consolidates the accumulating evidence on melatonin's multifaceted protective effects in different pathological contexts. In gynecological conditions such as endometriosis, polycystic ovary syndrome (PCOS), and uterine leiomyoma, melatonin has shown promising effects in reducing oxidative stress, inflammation, and hormonal imbalances. It inhibits adhesion molecules' production, and potentially mitigates leukocyte adherence and inflammatory responses. Melatonin's regulatory effects on hormone production and insulin sensitivity in PCOS individuals make it a promising candidate for improving oocyte quality and menstrual irregularities. Moreover, melatonin exhibits significant antitumor effects by modulating various signaling pathways, promoting apoptosis, and suppressing metastasis in breast cancers and gynecological cancers, including ovarian, endometrial, and cervical cancers. Furthermore, melatonin's protective effects are suggested to be mediated by interactions with its receptors, estrogen receptors and other nuclear receptors. The regulation of clock-related genes and circadian clock systems may also contribute to its inhibitory effects on cancer cell growth. However, more comprehensive research is warranted to fully elucidate the underlying molecular mechanisms and establish melatonin as a potential therapeutic agent for these conditions.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nazila Alinaghian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
de Morais JMB, Cruz EMS, Concato VM, de Souza MC, Santos YM, Quadreli DH, Inoue FSR, Ferreira FB, Fernandes GSA, Bidóia DL, Machado RRB, Chuffa LGA, Pavanelli WR, Seiva FRF. Unraveling the impact of melatonin treatment: Oxidative stress, metabolic responses, and morphological changes in HuH7.5 hepatocellular carcinoma cells. Pathol Res Pract 2024; 253:155056. [PMID: 38183817 DOI: 10.1016/j.prp.2023.155056] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
In addition to its highly aggressive nature and late diagnosis, hepatocellular carcinoma (HCC) does not respond effectively to available chemotherapeutic agents. The search is on for an ideal and effective compound with low cost and minimal side effects that can be used as an adjunct to chemotherapeutic regimens. One of the mechanisms involved in the pathology of HCC is the oxidative stress, which plays a critical role in tumor survival and dissemination. Our group has already demonstrated the antitumor potential of melatonin against HuH 7.5 cells. In the present study, we focused on the effects of melatonin on oxidative stress parameters and their consequences on cell metabolism. HuH 7.5 cells were treated with 2 and 4 mM of melatonin for 24 and 48 h. Oxidative stress biomarkers, antioxidant enzyme, mitochondrial membrane potential, formation of lipid bodies and autophagic vacuoles, cell cycle progression, cell death rate and ultrastructural cell alterations were evaluated. The treatment with melatonin increased oxidative stress biomarkers and reduced antioxidant enzyme activities of HuH 7.5 cells. Additionally, melatonin treatment damaged the mitochondrial membrane and increased lipid bodies and autophagic vacuole formation. Melatonin triggered cell cycle arrest and induced cell death by apoptosis. Our results indicate that the treatment of HuH 7.5 cells with melatonin impaired antioxidant defense systems, inhibited cell cycle progression, and caused metabolic stress, culminating in tumor cell death.
Collapse
Affiliation(s)
- Juliana M B de Morais
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Ellen M S Cruz
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Virgínia M Concato
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Milena C de Souza
- North of Paraná State University (UENP), Biological Science Center, Bandeirantes, PR, Brazil
| | - Yasmin M Santos
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Débora H Quadreli
- General Biology Department, Biological Sciences Center, State University of Londrina, Londrina (UEL), PR, Brazil
| | - Fabrício S R Inoue
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Francielle B Ferreira
- North of Paraná State University (UENP), Biological Science Center, Bandeirantes, PR, Brazil
| | - Glaura S A Fernandes
- General Biology Department, Biological Sciences Center, State University of Londrina, Londrina (UEL), PR, Brazil
| | | | | | - Luiz Gustavo A Chuffa
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Bioscience, Botucatu, SP, Brazil
| | - Wander R Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Fábio R F Seiva
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Institute of Bioscience, Botucatu, SP, Brazil.
| |
Collapse
|
12
|
Frias-Gomez J, Alemany L, Benavente Y, Clarke MA, de Francisco J, De Vivo I, Du M, Goodman MT, Lacey J, Liao LM, Lipworth L, Lu L, Merritt MA, Michels KA, O'Connell K, Paytubi S, Pelegrina B, Peremiquel-Trillas P, Petruzella S, Ponce J, Risch H, Setiawan VW, Schouten LJ, Shu XO, Trabert B, Van den Brandt PA, Wentzensen N, Wilkens LR, Yu H, Costas L. Night shift work, sleep duration and endometrial cancer risk: A pooled analysis from the Epidemiology of Endometrial Cancer Consortium (E2C2). Sleep Med Rev 2023; 72:101848. [PMID: 37716022 PMCID: PMC10840870 DOI: 10.1016/j.smrv.2023.101848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Data on the role of circadian related factors in the etiology of endometrial cancer are scarce. We collected individual data on night shift work or daily sleep duration from 7,207 cases and 22,027 controls participating in 11 studies from the Epidemiology of Endometrial Cancer Consortium (E2C2). Main analyses were performed among postmenopausal women: 6,335 endometrial cancer cases and 18,453 controls. Using individual data, study-specific odd ratios (ORs) and their corresponding 95% confidence intervals (CIs) were estimated with logistic regression and pooled analyses were conducted using random-effects meta-analyses. A non-significant inverse association was observed between endometrial cancer and night shift work (OR=0.89, 95%CI=0.72-1.09; I2=0.0%, Pheterogeneity=0.676). Associations did not vary by shift type (permanent or rotating), or duration of night work. Categorizations of short (<7h) or long (≥9h) sleep duration were not associated with endometrial cancer risk (ORshort=1.02, 95%CI=0.95-1.10; I2=55.3%, Pheterogeneity=0.022; ORlong=0.93, 95%CI=0.81-1.06; I2=11.5%, Pheterogeneity=0.339). No associations were observed per 1-h increment of sleep (OR=0.98, 95%CI=0.95-1.01; I2=46.1%, Pheterogeneity=0.063), but an inverse association was identified among obese women (OR=0.93, 95%CI=0.89-0.98 per 1-h increment; I2=12.7%, Pheterogeneity=0.329). Overall, these pooled analyses provide evidence that night shift work and sleep duration are not strong risk factors for endometrial cancer in postmenopausal women.
Collapse
Affiliation(s)
- Jon Frias-Gomez
- Cancer Epidemiology Research Programme. IDIBELL. Catalan Institute of Oncology. Hospitalet de Llobregat, Barcelona, Spain; University of Barcelona (UB), Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Laia Alemany
- Cancer Epidemiology Research Programme. IDIBELL. Catalan Institute of Oncology. Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Yolanda Benavente
- Cancer Epidemiology Research Programme. IDIBELL. Catalan Institute of Oncology. Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Megan A Clarke
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Rockville, MD, USA
| | - Javier de Francisco
- Department of Anesthesiology. Hospital Universitari de Bellvitge, IDIBELL. Hospitalet de Llobregat, Barcelona, Spain
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Mengmeng Du
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc T Goodman
- Cedars-Sinai Cancer and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - James Lacey
- Division of Health Analytics, Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope National Medical Center, Duarte, CA, USA
| | - Linda M Liao
- Division of Cancer Epidemiology and Genetics, Metabolic Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Loren Lipworth
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lingeng Lu
- Chronic Disease Epidemiology Department, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Melissa A Merritt
- The Daffodil Centre, The University of Sydney, Joint Venture with Cancer Council NSW, Sydney, NSW, Australia; Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Kara A Michels
- Division of Cancer Epidemiology and Genetics, Metabolic Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kelli O'Connell
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sonia Paytubi
- Cancer Epidemiology Research Programme. IDIBELL. Catalan Institute of Oncology. Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Beatriz Pelegrina
- Cancer Epidemiology Research Programme. IDIBELL. Catalan Institute of Oncology. Hospitalet de Llobregat, Barcelona, Spain
| | - Paula Peremiquel-Trillas
- Cancer Epidemiology Research Programme. IDIBELL. Catalan Institute of Oncology. Hospitalet de Llobregat, Barcelona, Spain; University of Barcelona (UB), Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Stacey Petruzella
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jordi Ponce
- Department of Gynecology, Hospital Universitari de Bellvitge, IDIBELL. Hospitalet de Llobregat, Barcelona, Spain
| | - Harvey Risch
- Chronic Disease Epidemiology Department, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Veronica Wendy Setiawan
- Department of Preventive Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Leo J Schouten
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, the Netherlands
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Britton Trabert
- Department of Obstetrics and Gynecology, University of Utah, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, USA
| | - Piet A Van den Brandt
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, the Netherlands
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Rockville, MD, USA
| | - Lynne R Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Herbert Yu
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Laura Costas
- Cancer Epidemiology Research Programme. IDIBELL. Catalan Institute of Oncology. Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
13
|
Woldańska-Okońska M, Kubsik-Gidlewska A, Koszela K. Changes in Melatonin Concentration in a Clinical Observation Study under the Influence of Low-Frequency Magnetic Fields (Magnetic Stimulation in Men with Low Back Pain)-Results of Changes in an Eight-Point Circadian Profile. Int J Mol Sci 2023; 24:15860. [PMID: 37958842 PMCID: PMC10648269 DOI: 10.3390/ijms242115860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study was to assess the changes in melatonin concentration under the influence of magnetic stimulation in men with low back pain. A total of 15 men were used in this study, divided into two groups. In Group 1, consisting of seven men, the M1P1 Viofor JPS program was used twice a day for 8 min, at 08:00 and 13:00. In Group 2, consisting of eight men, the M2P2 Viofor JPS program was used once a day for 12 min at 10:00. The application was subjected to the whole body of patients. The treatments in both groups lasted 3 weeks, for 5 days each week, with breaks on weekends. The diurnal melatonin profile was determined the day before exposure and the day after the last treatment, as well as at one-month follow-up. Blood samples were collected eight times a day. In both programs, magnetic stimulation did not reduce the nocturnal peak of melatonin concentration. After exposure, prolonged secretion of melatonin was observed until the morning hours. The impact of the magnetic field was maintained 1 month after the end of the application. The effect of the magnetic field was maintained for 1 month from the end of the application, which confirms the thesis about the occurrence of the phenomenon of biological hysteresis. The parameters of the magnetic fields, the application system, and the time and length of the application may affect the secretion of melatonin.
Collapse
Affiliation(s)
- Marta Woldańska-Okońska
- Department of Internal Medicine, Rehabilitation and Physical Medicine, Medical University, 90-419 Lodz, Poland; (M.W.-O.); (A.K.-G.)
| | - Anna Kubsik-Gidlewska
- Department of Internal Medicine, Rehabilitation and Physical Medicine, Medical University, 90-419 Lodz, Poland; (M.W.-O.); (A.K.-G.)
| | - Kamil Koszela
- Department of Neuroorthopedics and Neurology Clinic and Polyclinic, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| |
Collapse
|
14
|
Cheng L, Li S, He K, Kang Y, Li T, Li C, Zhang Y, Zhang W, Huang Y. Melatonin regulates cancer migration and stemness and enhances the anti-tumour effect of cisplatin. J Cell Mol Med 2023. [PMID: 37307404 PMCID: PMC10399526 DOI: 10.1111/jcmm.17809] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023] Open
Abstract
Melatonin, a lipophilic hormone released from the pineal gland, has oncostatic effects on various types of cancers. However, its cancer treatment potential needs to be improved by deciphering its corresponding mechanisms of action and optimising therapeutic strategy. In the present study, melatonin inhibited gastric cancer cell migration and soft agar colony formation. Magnetic-activated cell sorting was applied to isolate CD133+ cancer stem cells. Gene expression analysis showed that melatonin lowered the upregulation of LC3-II expression in CD133+ cells compared to CD133- cells. Several long non-coding RNAs and many components in the canonical Wnt signalling pathway were altered in melatonin-treated cells. In addition, knockdown of long non-coding RNA H19 enhanced the expression of pro-apoptotic genes, Bax and Bak, induced by melatonin treatment. Combinatorial treatment with melatonin and cisplatin was investigated to improve the applicability of melatonin as an anticancer therapy. Combinatorial treatment increased the apoptosis rate and induced G0/G1 cell cycle arrest. Melatonin can regulate migration and stemness in gastric cancer cells by modifying many signalling pathways. Combinatorial treatment with melatonin and cisplatin has the potential to improve the therapeutic efficacy of both.
Collapse
Affiliation(s)
- Linglin Cheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shubo Li
- Liaoning Center for Animal Disease Control and Prevention, Liaoning Agricultural Development Service Center, Shenyang, China
| | - Kailun He
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ye Kang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianye Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chunting Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yi Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wanlu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
15
|
Boutin JA, Kennaway DJ, Jockers R. Melatonin: Facts, Extrapolations and Clinical Trials. Biomolecules 2023; 13:943. [PMID: 37371523 DOI: 10.3390/biom13060943] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Melatonin is a fascinating molecule that has captured the imagination of many scientists since its discovery in 1958. In recent times, the focus has changed from investigating its natural role as a transducer of biological time for physiological systems to hypothesized roles in virtually all clinical conditions. This goes along with the appearance of extensive literature claiming the (generally) positive benefits of high doses of melatonin in animal models and various clinical situations that would not be receptor-mediated. Based on the assumption that melatonin is safe, high doses have been administered to patients, including the elderly and children, in clinical trials. In this review, we critically review the corresponding literature, including the hypotheses that melatonin acts as a scavenger molecule, in particular in mitochondria, by trying not only to contextualize these interests but also by attempting to separate the wheat from the chaff (or the wishful thinking from the facts). We conclude that most claims remain hypotheses and that the experimental evidence used to promote them is limited and sometimes flawed. Our review will hopefully encourage clinical researchers to reflect on what melatonin can and cannot do and help move the field forward on a solid basis.
Collapse
Affiliation(s)
- J A Boutin
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of Normandy, INSERM U1239, 76000 Rouen, France
| | - D J Kennaway
- Robinson Research Institute and Adelaide School of Medicine, University of Adelaide, Adelaide Health and Medical Science Building, North Terrace, Adelaide, SA 5006, Australia
| | - R Jockers
- Institut Cochin, Université Paris Cité, INSERM, CNRS, 75014 Paris, France
| |
Collapse
|
16
|
Tossetta G, Fantone S, Marzioni D, Mazzucchelli R. Role of Natural and Synthetic Compounds in Modulating NRF2/KEAP1 Signaling Pathway in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15113037. [PMID: 37296999 DOI: 10.3390/cancers15113037] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Prostate cancer is the second most common cancer in men worldwide. Prostate cancer can be treated by surgery or active surveillance when early diagnosed but, when diagnosed at an advanced or metastatic stage, radiation therapy or androgen-deprivation therapy is needed to reduce cancer progression. However, both of these therapies can cause prostate cancer resistance to treatment. Several studies demonstrated that oxidative stress is involved in cancer occurrence, development, progression and treatment resistance. The nuclear factor erythroid 2-related factor 2 (NRF2)/KEAP1 (Kelch-Like ECH-Associated Protein 1) pathway plays an important role in protecting cells against oxidative damage. Reactive oxygen species (ROS) levels and NRF2 activation can determine cell fate. In particular, toxic levels of ROS lead physiological cell death and cell tumor suppression, while lower ROS levels are associated with carcinogenesis and cancer progression. On the contrary, a high level of NRF2 promotes cell survival related to cancer progression activating an adaptive antioxidant response. In this review, we analyzed the current literature regarding the role of natural and synthetic compounds in modulating NRF2/KEAP1 signaling pathway in prostate cancer.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Roberta Mazzucchelli
- Department of Biomedical Sciences and Public Health, Section of Pathological Anatomy, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
17
|
Vašková J, Klepcová Z, Špaková I, Urdzík P, Štofilová J, Bertková I, Kľoc M, Rabajdová M. The Importance of Natural Antioxidants in Female Reproduction. Antioxidants (Basel) 2023; 12:antiox12040907. [PMID: 37107282 PMCID: PMC10135990 DOI: 10.3390/antiox12040907] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Oxidative stress (OS) has an important role in female reproduction, whether it is ovulation, endometrium decidualization, menstruation, oocyte fertilization, or development andimplantation of an embryo in the uterus. The menstrual cycle is regulated by the physiological concentration of reactive forms of oxygen and nitrogen as redox signal molecules, which trigger and regulate the length of individual phases of the menstrual cycle. It has been suggested that the decline in female fertility is modulated by pathological OS. The pathological excess of OS compared to antioxidants triggers many disorders of female reproduction which could lead to gynecological diseases and to infertility. Therefore, antioxidants are crucial for proper female reproductive function. They play a part in the metabolism of oocytes; in endometrium maturation via the activation of antioxidant signaling pathways Nrf2 and NF-κB; and in the hormonal regulation of vascular action. Antioxidants can directly scavenge radicals and act as a cofactor of highly valuable enzymes of cell differentiation and development, or enhance the activity of antioxidant enzymes. Compensation for low levels of antioxidants through their supplementation can improve fertility. This review considers the role of selected vitamins, flavonoids, peptides, and trace elements with antioxidant effects in female reproduction mechanisms.
Collapse
Affiliation(s)
- Janka Vašková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Zuzana Klepcová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
- Medirex, a.s., Holubyho 35, 902 01 Pezinok, Slovakia
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Peter Urdzík
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Jana Štofilová
- Center for Clinical and Preclinical Research MEDIPARK, Department of Experimental Medicine, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Izabela Bertková
- Center for Clinical and Preclinical Research MEDIPARK, Department of Experimental Medicine, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Marek Kľoc
- Medirex, a.s., Holubyho 35, 902 01 Pezinok, Slovakia
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
18
|
Role of Melatonin in Cancer: Effect on Clock Genes. Int J Mol Sci 2023; 24:ijms24031919. [PMID: 36768253 PMCID: PMC9916653 DOI: 10.3390/ijms24031919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The circadian clock is a regulatory system, with a periodicity of approximately 24 h, that generates rhythmic changes in many physiological processes. Increasing evidence links chronodisruption with aberrant functionality in clock gene expression, resulting in multiple diseases, including cancer. In this context, tumor cells have an altered circadian machinery compared to normal cells, which deregulates the cell cycle, repair mechanisms, energy metabolism and other processes. Melatonin is the main hormone produced by the pineal gland, whose production and secretion oscillates in accordance with the light:dark cycle. In addition, melatonin regulates the expression of clock genes, including those in cancer cells, which could play a key role in the numerous oncostatic effects of this hormone. This review aims to describe and clarify the role of clock genes in cancer, as well as the possible mechanisms of the action of melatonin through which it regulates the expression of the tumor's circadian machinery, in order to propose future anti-neoplastic clinical treatments.
Collapse
|
19
|
Amiama-Roig A, Verdugo-Sivianes EM, Carnero A, Blanco JR. Chronotherapy: Circadian Rhythms and Their Influence in Cancer Therapy. Cancers (Basel) 2022; 14:5071. [PMID: 36291855 PMCID: PMC9599830 DOI: 10.3390/cancers14205071] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 08/19/2023] Open
Abstract
Living organisms present rhythmic fluctuations every 24 h in their behavior and metabolism to anticipate changes in the environment. These fluctuations are controlled by a very complex molecular mechanism, the circadian clock, that regulates the expression of multiple genes to ensure the right functioning of the body. An individual's circadian system is altered during aging, and this is related to numerous age-associated pathologies and other alterations that could contribute to the development of cancer. Nowadays, there is an increasing interest in understanding how circadian rhythms could be used in the treatment of cancer. Chronotherapy aims to understand the impact that biological rhythms have on the response to a therapy to optimize its action, maximize health benefits and minimize possible adverse effects. Clinical trials so far have confirmed that optimal timing of treatment with chemo or immunotherapies could decrease drug toxicity and increase efficacy. Instead, chronoradiotherapy seems to minimize treatment-related symptoms rather than tumor progression or patient survival. In addition, potential therapeutic targets within the molecular clock have also been identified. Therefore, results of the application of chronotherapy in cancer therapy until now are challenging, feasible, and could be applied to clinical practice to improve cancer treatment without additional costs. However, different limitations and variables such as age, sex, or chronotypes, among others, should be overcome before chronotherapy can really be put into clinical practice.
Collapse
Grants
- RTI2018-097455-B-I00 Ministerio de Ciencia, Innovación y Universidades (MCIU) Plan Estatal de I+D+I 2018, a la Agencia Estatal de Investigación (AEI) y al Fondo Europeo de Desarrollo Regional (MCIU/AEI/FEDER, UE):
- RED2018-102723-T Ministerio de Ciencia, Innovación y Universidades (MCIU) Plan Estatal de I+D+I 2018, a la Agencia Estatal de Investigación (AEI) y al Fondo Europeo de Desarrollo Regional (MCIU/AEI/FEDER, UE):
- CB16/12/00275 Centro de Investigación Biomédica en Red de Cáncer
- PI-0397-2017 Consejería de Salud y Familias
- P18-RT-2501 Consejería de Transformacion Economica, Industria, Conocimiento, y Universidades of the Junta de Andalucía
- No. CTEICU/PAIDI 2020 Consejería de Transformacion Economica, Industria, Conocimiento, y Universidades of the Junta de Andalucía
Collapse
Affiliation(s)
- Ana Amiama-Roig
- Hospital Universitario San Pedro, 26006 Logroño, Spain
- Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Eva M. Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José-Ramón Blanco
- Hospital Universitario San Pedro, 26006 Logroño, Spain
- Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|