1
|
Li J, Zhao Y, Shen C. Recent progress on glucose dehydrogenase: multifaceted applications in industrial biocatalysis, cofactor regeneration, glucose sensors, and biofuel cells. Int J Biol Macromol 2025; 311:143842. [PMID: 40319965 DOI: 10.1016/j.ijbiomac.2025.143842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Glucose dehydrogenase (GDH) is an enzyme that catalyzes the oxidation of glucose. Through the oxidation process, glucose is converted into gluconic acid, releasing electrons in the process, which plays a crucial role in various biological and industrial applications. GDH is widely applied in molecular biology, medicine, and industry. Currently, glucose dehydrogenase is a core component in glucose test strips, commonly used in blood glucose monitoring. Additionally, due to its catalytic properties, GDH is also employed in industrial biocatalysis, coenzyme regeneration, synthetic biology, and biofuel cells. Despite being studied for many years and having achieved industrial applications in glucose biosensors, advanced research and development on glucose dehydrogenase still continues. In recent years, more attention has been focused on improving the enzyme's performance through molecular engineering or novel immobilization techniques, as well as expanding its application fields. These efforts aim to enhance the enzyme's contribution to global challenges, such as human health diagnostics, industrial biocatalysis upgrades, and the development of bioenergy. This review summarizes the recent advancements in glucose dehydrogenase research, focusing on enzyme molecular engineering and performance enhancement, novel immobilization strategies, and the latest applications in biosensors, biocatalysis, and biofuel cells.
Collapse
Affiliation(s)
- Jiayao Li
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Yawen Zhao
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Chen Shen
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China; State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science & Technology, Shijiazhuang, China.
| |
Collapse
|
2
|
Sayed M, Ismail M, Sivasubramanian A, Kawano R, Li C, Glaser SJ, Hatti-Kaul R. Gluconobacter oxydans DSM 50049 - an efficient biocatalyst for oxidation of 5-formyl-2-furancarboxylic acid (FFCA) to 2,5-furandicarboxylic acid (FDCA). Microb Cell Fact 2025; 24:68. [PMID: 40108655 PMCID: PMC11924602 DOI: 10.1186/s12934-025-02689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND 2,5-Furandicarboxylic acid (FDCA) is a promising building block for biobased recyclable polymers and a platform for other potential biobased chemicals. The common route of its production is by oxidation of sugar-derived 5-hydroxymethylfurfural (HMF). Several reports on biocatalytic oxidation using whole microbial cells or enzymes have been reported, which offers potentially a greener alternative compared to the chemical process. HMF oxidases and aryl alcohol oxidases are the only enzymes able to catalyse the complete oxidation to FDCA, however at low concentrations and are subject to inhibition by the FFCA (5-formylfuran-2-carboxylic acid) intermediate. The present report presents a study on the oxidation of FFCA to FDCA using the obligately aerobic bacterium Gluconobacter oxydans and identification of the enzymes catalyzing the reaction. RESULTS Screening of three different strains showed G. oxydans DSM 50049 to possess the highest FFCA oxidation efficiency. Optimal reaction conditions for obtaining 100% conversion of 10 g/L (71 mM) FFCA to FDCA at 100% reaction yield were at pH 5, 30 °C and using 200 mg wwt /mL cells harvested at mild-exponential phase. In a reaction run at a 1 L scale using a total of 15 g/L (107 mM) FFCA supplied in a fed-batch mode, FDCA was obtained at a yield of 90% in 8.5 h. The product was recovered at 82% overall yield and 99% purity using a simple recovery process. Screening of several oxidoreductase enzymes from the gene sequences identified in the bacterial genome revealed two proteins annotated as membrane-bound aldehyde dehydrogenase (MALDH) and coniferyl aldehyde dehydrogenase (CALDH) to be the enzymes catalyzing the oxidization of FFCA. CONCLUSION The study shows G. oxydans DSM 50049 and its enzymes to be promising biocatalysts for use in the FDCA production process from biomass. The high reaction rate and yield motivate further studies on characterization of the identified enzymes exhibiting the FFCA oxidizing activity, which can be used to construct an enzyme cascade together e.g. with HMF oxidase or aryl alcohol oxidase for one-pot production of FDCA from 5-HMF.
Collapse
Affiliation(s)
- Mahmoud Sayed
- Biotechnology and Applied Microbiology, Department of Process and Life Science Engineering, Kemicentrum, Lund University, Lund, SE-22100, Sweden.
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, 83523, Egypt.
| | - Mohamed Ismail
- Biotechnology and Applied Microbiology, Department of Process and Life Science Engineering, Kemicentrum, Lund University, Lund, SE-22100, Sweden
| | - Anirudh Sivasubramanian
- Biotechnology and Applied Microbiology, Department of Process and Life Science Engineering, Kemicentrum, Lund University, Lund, SE-22100, Sweden
| | - Riko Kawano
- Biotechnology and Applied Microbiology, Department of Process and Life Science Engineering, Kemicentrum, Lund University, Lund, SE-22100, Sweden
| | - Chengsi Li
- Biotechnology and Applied Microbiology, Department of Process and Life Science Engineering, Kemicentrum, Lund University, Lund, SE-22100, Sweden
| | - Sara Jonsdottir Glaser
- Biotechnology and Applied Microbiology, Department of Process and Life Science Engineering, Kemicentrum, Lund University, Lund, SE-22100, Sweden
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark
| | - Rajni Hatti-Kaul
- Biotechnology and Applied Microbiology, Department of Process and Life Science Engineering, Kemicentrum, Lund University, Lund, SE-22100, Sweden.
| |
Collapse
|
3
|
Maeno M, Miki Y, Ito K, Sakuraba H, Ohshima T, Suye SI, Satomura T. Creation of catalytic activity-improved hyperthermophilic PQQ-dependent aldose sugar dehydrogenase and its efficient use for high performance electro-device. J Biotechnol 2025; 398:11-17. [PMID: 39613190 DOI: 10.1016/j.jbiotec.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/04/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
PQQ-dependent aldose sugar dehydrogenase (PQQ-ASD) from the hyperthermophilic archaeon Pyrobaculum aerophilum (PaeASD) has great potential as an element for durable bioelectrodevices owing to its exceptional stability against high temperatures and across a broad pH spectrum. However, its application is constrained by low electric current output of the enzyme-immobilized electrodes, which is attributable to its low catalytic activity. A directed evolutionary approach was performed on PaeASD to improve enzyme activity, resulting in the identification of a PaeASD s24 mutant containing six amino acid substitutions, which exhibited a 16-fold higher specific activity than that of wild type. Although each single amino acid mutant among these substitutions exhibited lower enzyme activity than PaeASD s24, the double mutant R64Q/D350N showed enzyme activity comparable to that of PaeASD s24. These amino acids located in the vicinity of coenzyme PQQ within the PaeASD molecule are also highly conserved with those of PQQ-ASDs reported to date. Thus, these amino acids play crucial roles in the catalytic activity of PQQ-ASD. Furthermore, the Km value for d-glucose of PaeASD s24-immobilized electrode decreased to approximately 1/3 that of the wild-type-immobilized electrode. These results indicate that the PaeASD s24 mutant is an excellent catalyst for potential bioelectrodevice applications.
Collapse
Affiliation(s)
- Miku Maeno
- Advanced Interdisciplinary Science and Technology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Yusuke Miki
- Industrial Innovation Engineering, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Kazuki Ito
- Industrial Innovation Engineering, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Shin-Ichiro Suye
- Division of Engineering, Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Takenori Satomura
- Division of Engineering, Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan.
| |
Collapse
|
4
|
Kassem R, Cousin A, Clesse D, Poignavent V, Trolet A, Ritzenthaler C, Michon T, Chovin A, Demaille C. Nanobody-guided redox and enzymatic functionalization of icosahedral virus particles for enhanced bioelectrocatalysis. Bioelectrochemistry 2024; 155:108570. [PMID: 37769510 DOI: 10.1016/j.bioelechem.2023.108570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
Icosahedral, 30 nm diameter, grapevine fanleaf virus (GFLV) virus particles are adsorbed onto electrodes and used as nanoscaffolds for the assembly of an integrated glucose oxidizing system, comprising the enzyme pyrroloquinoline quinone-glucose dehydrogenase (PQQ-GDH) and ferrocenylated polyethylene glycol chains (Fc-PEG) as a redox co-substrate. Two different GFLV-specific nanobodies, either fused to the enzyme, or chemically conjugated to Fc-PEG, are used for the regio-selective immunodecoration of the viral particles. A comprehensive kinetic characterization of the enzymatic function of the particles, initially decorated with the enzyme alone shows that simple immobilization on the GFLV capsid has no effect on the kinetic scheme of the enzyme, nor on its catalytic activity. However, we find that co-immobilization of the enzyme and the Fc-PEG co-substrate on GFLV does induce enzymatic enhancement, by promoting cooperativity between the two subunits of the homodimeric enzyme, via "synchronization" of their redox state. A decrease in inhibition of the enzyme by its substrate (glucose) is also observed.
Collapse
Affiliation(s)
- Racha Kassem
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire, F-75013 Paris, France
| | - Anne Cousin
- Institut de Biologie Moléculaire des Plantes, UPR2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Daniel Clesse
- Institut de Biologie Moléculaire des Plantes, UPR2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Vianney Poignavent
- Institut de Biologie Moléculaire des Plantes, UPR2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Adrien Trolet
- Institut de Biologie Moléculaire des Plantes, UPR2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Christophe Ritzenthaler
- Institut de Biologie Moléculaire des Plantes, UPR2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France.
| | - Thierry Michon
- Université de Bordeaux, Biologie du Fruit et Pathologie, INRA UMR 1332, F-33140 Villenave d'Ornon, France.
| | - Arnaud Chovin
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire, F-75013 Paris, France.
| | - Christophe Demaille
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire, F-75013 Paris, France.
| |
Collapse
|
5
|
Sun Y, Xue W, Zhao J, Bao Q, Zhang K, Liu Y, Li H. Direct Electrochemistry of Glucose Dehydrogenase-Functionalized Polymers on a Modified Glassy Carbon Electrode and Its Molecular Recognition of Glucose. Int J Mol Sci 2023; 24:ijms24076152. [PMID: 37047124 PMCID: PMC10093998 DOI: 10.3390/ijms24076152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
A glucose biosensor was layer-by-layer assembled on a modified glassy carbon electrode (GCE) from a nanocomposite of NAD(P)+-dependent glucose dehydrogenase, aminated polyethylene glycol (mPEG), carboxylic acid-functionalized multi-wall carbon nanotubes (fMWCNTs), and ionic liquid (IL) composite functional polymers. The electrochemical electrode was denoted as NF/IL/GDH/mPEG-fMWCNTs/GCE. The composite polymer membranes were characterized by cyclic voltammetry, ultraviolet-visible spectrophotometry, electrochemical impedance spectroscopy, scanning electron microscopy, and transmission electron microscopy. The cyclic voltammogram of the modified electrode had a pair of well-defined quasi-reversible redox peaks with a formal potential of -61 mV (vs. Ag/AgCl) at a scan rate of 0.05 V s-1. The heterogeneous electron transfer constant (ks) of GDH on the composite functional polymer-modified GCE was 6.5 s-1. The biosensor could sensitively recognize and detect glucose linearly from 0.8 to 100 µM with a detection limit down to 0.46 μM (S/N = 3) and a sensitivity of 29.1 nA μM-1. The apparent Michaelis-Menten constant (Kmapp) of the modified electrode was 0.21 mM. The constructed electrochemical sensor was compared with the high-performance liquid chromatography method for the determination of glucose in commercially available glucose injections. The results demonstrated that the sensor was highly accurate and could be used for the rapid and quantitative determination of glucose concentration.
Collapse
Affiliation(s)
- Yang Sun
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Weishi Xue
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Jianfeng Zhao
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Qianqian Bao
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Kailiang Zhang
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Yupeng Liu
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Hua Li
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| |
Collapse
|
6
|
Fedina V, Lavrova D, Dyachkova T, Pasko A, Zvonarev A, Panfilov V, Ponamoreva O, Alferov S. Polymer-Based Conductive Nanocomposites for the Development of Bioanodes Using Membrane-Bound Enzyme Systems of Bacteria Gluconobacter oxydans in Biofuel Cells. Polymers (Basel) 2023; 15:1296. [PMID: 36904536 PMCID: PMC10007125 DOI: 10.3390/polym15051296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The development of biofuel cells (BFCs) currently has high potential since these devices can be used as alternative energy sources. This work studies promising materials for biomaterial immobilization in bioelectrochemical devices based on a comparative analysis of the energy characteristics (generated potential, internal resistance, power) of biofuel cells. Bioanodes are formed by the immobilization of membrane-bound enzyme systems of Gluconobacter oxydans VKM V-1280 bacteria containing pyrroloquinolinquinone-dependent dehydrogenases into hydrogels of polymer-based composites with carbon nanotubes. Natural and synthetic polymers are used as matrices, and multi-walled carbon nanotubes oxidized in hydrogen peroxide vapor (MWCNTox) are used as fillers. The intensity ratio of two characteristic peaks associated with the presence of atoms C in the sp3 and sp2 hybridization for the pristine and oxidized materials is 0.933 and 0.766, respectively. This proves a reduced degree of MWCNTox defectiveness compared to the pristine nanotubes. MWCNTox in the bioanode composites significantly improve the energy characteristics of the BFCs. Chitosan hydrogel in composition with MWCNTox is the most promising material for biocatalyst immobilization for the development of bioelectrochemical systems. The maximum power density was 1.39 × 10-5 W/mm2, which is 2 times higher than the power of BFCs based on other polymer nanocomposites.
Collapse
Affiliation(s)
- Veronika Fedina
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia
| | - Daria Lavrova
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia
- Biotechnology Department, Tula State University, Pr. Lenina 92, 300012 Tula, Russia
| | - Tatyana Dyachkova
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106/5, Building 2, Sovetskaya Str., 392000 Tambov, Russia
| | - Anastasia Pasko
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106/5, Building 2, Sovetskaya Str., 392000 Tambov, Russia
| | - Anton Zvonarev
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Centre of Biological Research”, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Victor Panfilov
- Department of Biotechnology, Mendeleev University of Chemical Technology of Russia, Miusskaya Square 9, Moscow 125047, Russia
| | - Olga Ponamoreva
- Biotechnology Department, Tula State University, Pr. Lenina 92, 300012 Tula, Russia
| | - Sergey Alferov
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia
- Biotechnology Department, Tula State University, Pr. Lenina 92, 300012 Tula, Russia
| |
Collapse
|
7
|
Bollella P. Enzyme-based amperometric biosensors: 60 years later … Quo Vadis? Anal Chim Acta 2022; 1234:340517. [DOI: 10.1016/j.aca.2022.340517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/01/2022]
|
8
|
A de novo matrix for macroscopic living materials from bacteria. Nat Commun 2022; 13:5544. [PMID: 36130968 PMCID: PMC9492681 DOI: 10.1038/s41467-022-33191-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
Engineered living materials (ELMs) embed living cells in a biopolymer matrix to create materials with tailored functions. While bottom-up assembly of macroscopic ELMs with a de novo matrix would offer the greatest control over material properties, we lack the ability to genetically encode a protein matrix that leads to collective self-organization. Here we report growth of ELMs from Caulobacter crescentus cells that display and secrete a self-interacting protein. This protein formed a de novo matrix and assembled cells into centimeter-scale ELMs. Discovery of design and assembly principles allowed us to tune the composition, mechanical properties, and catalytic function of these ELMs. This work provides genetic tools, design and assembly rules, and a platform for growing ELMs with control over both matrix and cellular structure and function. Engineered living materials (ELMs) embed living cells in a biopolymer matrix to create novel materials with tailored functions. In this work, the authors engineered bacteria to grow novel macroscopic materials that can be reshaped, functionalized, and used to filter contaminated water while also showing that the stiffness of these materials can be tuned through genetic changes.
Collapse
|
9
|
Becker J, Lielpetere A, Szczesny J, Ruff A, Conzuelo F, Schuhmann W. Assembling a low‐volume biofuel cell on a screen‐printed electrode for glucose sensing. ELECTROANAL 2022. [DOI: 10.1002/elan.202200084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Bollella P, Melman A, Katz E. Operando
Local pH Mapping of Electrochemical and Bioelectrochemical Reactions Occurring at an Electrode Surface: Effect of the Buffer Concentration. ChemElectroChem 2021. [DOI: 10.1002/celc.202101141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
- Department of Chemistry University of Bari A. Moro Via E. Orabona 4 70125 Bari Italy
| | - Artem Melman
- Department of Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| |
Collapse
|
11
|
Quintero-Jaime AF, Conzuelo F, Schuhmann W, Cazorla-Amorós D, Morallón E. Multi‐wall carbon nanotubes electrochemically modified with phosphorus and nitrogen functionalities as a basis for bioelectrodes with improved performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Ghozali AA, Kumano Y, Tatsumi H, Iswantini D, Kusmana C, Nurhidayat N. Sensitive Simultaneous Determinations of 1,2-Dihydroxynaphthalene and Catechol by an Amperometric Biosensor. ANAL SCI 2021; 37:991-995. [PMID: 33281132 DOI: 10.2116/analsci.20p393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An amperometric biosensor for 1,2-dihydroxynaphthalene (DHN) and catechol (Cat) has been developed in order to monitor the biodegradaton of polycyclic aromatic hydrocarbons (PAHs). DHN is a common intermediary metabolite in naphthalene and phenanthrene degradation, while Cat is produced by further degradation. These compounds were detected by a biosensor modified with pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH). The biosensor was based on signal amplification by enzyme-catalyzed redox cycling and was able to detect DHN and Cat at very low concentrations down to 10-9 M. Since the anodic waves of DHN and Cat were well separated, simultaneous determinations of these compounds were possible. Although the current signal for DHN was reduced in repeated measurements due to the oxidative polymerization of DHN, it can be avoided when the concentration of DHN was sufficiently low (<1 μM).
Collapse
Affiliation(s)
- Ali A Ghozali
- Graduate School of Environmental and Natural Resources Management Sciences, IPB University
| | - Yusuke Kumano
- Department of Chemistry, Faculty of Science, Shinshu University
| | | | - Dyah Iswantini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University
| | - Cecep Kusmana
- Department of Silviculture, Faculty of Forestry, IPB University
| | - Novik Nurhidayat
- Central Research Department of Biology, Indonesian Institute of Sciences (LIPI)
| |
Collapse
|
13
|
Hassan MH, Vyas C, Grieve B, Bartolo P. Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:4672. [PMID: 34300412 PMCID: PMC8309655 DOI: 10.3390/s21144672] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022]
Abstract
The detection of glucose is crucial in the management of diabetes and other medical conditions but also crucial in a wide range of industries such as food and beverages. The development of glucose sensors in the past century has allowed diabetic patients to effectively manage their disease and has saved lives. First-generation glucose sensors have considerable limitations in sensitivity and selectivity which has spurred the development of more advanced approaches for both the medical and industrial sectors. The wide range of application areas has resulted in a range of materials and fabrication techniques to produce novel glucose sensors that have higher sensitivity and selectivity, lower cost, and are simpler to use. A major focus has been on the development of enzymatic electrochemical sensors, typically using glucose oxidase. However, non-enzymatic approaches using direct electrochemistry of glucose on noble metals are now a viable approach in glucose biosensor design. This review discusses the mechanisms of electrochemical glucose sensing with a focus on the different generations of enzymatic-based sensors, their recent advances, and provides an overview of the next generation of non-enzymatic sensors. Advancements in manufacturing techniques and materials are key in propelling the field of glucose sensing, however, significant limitations remain which are highlighted in this review and requires addressing to obtain a more stable, sensitive, selective, cost efficient, and real-time glucose sensor.
Collapse
Affiliation(s)
- Mohamed H. Hassan
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| | - Cian Vyas
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| | - Bruce Grieve
- Department of Electrical & Electronic Engineering, University of Manchester, Manchester M13 9PL, UK;
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| |
Collapse
|
14
|
Ciogli L, Zumpano R, Poloznikov AA, Hushpulian DM, Tishkov VI, Andreu R, Gorton L, Mazzei F, Favero G, Bollella P. Highly Sensitive Hydrogen Peroxide Biosensor Based on Tobacco Peroxidase Immobilized on
p
‐Phenylenediamine Diazonium Cation Grafted Carbon Nanotubes: Preventing Fenton‐like Inactivation at Negative Potential. ChemElectroChem 2021. [DOI: 10.1002/celc.202100341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Leonardo Ciogli
- Department of Chemistry and Drug Technologies Sapienza University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | - Rosaceleste Zumpano
- Department of Chemistry and Drug Technologies Sapienza University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | - Andrey A. Poloznikov
- Faculty of Biology and Biotechnology National Research University Higher School of Economics 13/4 Myasnitskaya str. Moscow 117997 Russia
| | - Dmitry M. Hushpulian
- Faculty of Biology and Biotechnology National Research University Higher School of Economics 13/4 Myasnitskaya str. Moscow 117997 Russia
| | - Vladimir I. Tishkov
- Bach Institute of Biochemistry Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Prospect 33, bld. 2 Moscow 119071 Russia
- Department of Chemical Enzymology School of Chemistry M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Rafael Andreu
- Department of Physical Chemistry University of Sevilla Profesor García González 1 41012 Sevilla Spain
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry and Structural Biology Lund University P.O. Box 124 SE-221 00 Lund Sweden
| | - Franco Mazzei
- Department of Chemistry and Drug Technologies Sapienza University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | - Gabriele Favero
- Department of Chemistry and Drug Technologies Sapienza University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | - Paolo Bollella
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 United States
- Department of Chemistry University of Bari A. Moro Via E. Orabona 4 70125 Bari Italy
| |
Collapse
|
15
|
Jeon WY, Kim HH, Choi YB. Development of a Glucose Sensor Based on Glucose Dehydrogenase Using Polydopamine-Functionalized Nanotubes. MEMBRANES 2021; 11:384. [PMID: 34073998 PMCID: PMC8225004 DOI: 10.3390/membranes11060384] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/17/2023]
Abstract
The electrochemical-based detection of glucose is widely used for diagnostic purposes and is mediated by enzyme-mediated signal transduction mechanisms. For such applications, recent attention has focused on utilizing the oxygen-insensitive glucose dehydrogenase (GDH) enzyme in place of the glucose oxidase (GOx) enzyme, which is sensitive to oxygen levels. Currently used Ru-based redox mediators mainly work with GOx, while Ru(dmo-bpy)2Cl2 has been proposed as a promising mediator that works with GDH. However, there remains an outstanding need to improve Ru(dmo-bpy)2Cl2 attachment to electrode surfaces. Herein, we report the use of polydopamine-functionalized multi-walled carbon nanotubes (PDA-MWCNTs) to effectively attach Ru(dmo-bpy)2Cl2 and GDH onto screen-printed carbon electrodes (SPCEs) without requiring a cross-linker. PDA-MWCNTs were characterized by Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, and thermal gravimetric analysis (TGA), while the fabrication and optimization of Ru(dmo-bpy)2Cl2/PDA-MWCNT/SPCEs were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements. The experimental results demonstrate a wide linear range of glucose-concentration-dependent responses and the multi-potential step (MPS) technique facilitated the selective detection of glucose in the presence of physiologically relevant interfering species, as well as in biological fluids (e.g., serum). The ease of device fabrication and high detection performance demonstrate a viable pathway to develop glucose sensors based on the GDH enzyme and Ru(dmo-bpy)2Cl2 redox mediator and the sensing strategy is potentially extendable to other bioanalytes as well.
Collapse
Affiliation(s)
- Won-Yong Jeon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
| | - Hyug-Han Kim
- Department of Chemistry, College of Science & Technology, Dankook University, Dandae-ro, Cheonan-si 31116, Chungnam, Korea;
| | - Young-Bong Choi
- Department of Chemistry, College of Science & Technology, Dankook University, Dandae-ro, Cheonan-si 31116, Chungnam, Korea;
| |
Collapse
|
16
|
Quintero-Jaime AF, Conzuelo F, Cazorla-Amorós D, Morallón E. Pyrroloquinoline quinone-dependent glucose dehydrogenase bioelectrodes based on one-step electrochemical entrapment over single-wall carbon nanotubes. Talanta 2021; 232:122386. [PMID: 34074388 DOI: 10.1016/j.talanta.2021.122386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/25/2022]
Abstract
Development of effective direct electron transfer is considered an interesting platform to obtain high performance bioelectrodes. Therefore, designing of scalable and cost-effective immobilization routes that promotes correct direct electrical contacting between the electrode material and the redox enzyme is still required. As we present here, electrochemical entrapment of pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) on single-wall carbon nanotube (SWCNT)-modified electrodes was carried out in a single step during electrooxidation of para-aminophenyl phosphonic acid (4-APPA) to obtain active bioelectrodes. The adequate interaction between SWCNTs and the enzyme can be achieved by making use of phosphorus groups introduced during the electrochemical co-deposition of films, improving the electrocatalytic activity towards glucose oxidation. Two different procedures were investigated for electrode fabrication, namely the entrapment of reconstituted holoenzyme (PQQ-GDH) and the entrapment of apoenzyme (apo-GDH) followed by subsequent in situ reconstitution with the redox cofactor PQQ. In both cases, PQQ-GDH preserves its electrocatalytic activity towards glucose oxidation. Moreover, in comparison with a conventional drop-casting method, an important enhancement in sensitivity was obtained for glucose oxidation (981.7 ± 3.5 nA mM-1) using substantially lower amounts of enzyme and cofactor (PQQ). The single step electrochemical entrapment in presence of 4-APPA provides a simple method for the fabrication of enzymatic bioelectrodes.
Collapse
Affiliation(s)
- Andrés Felipe Quintero-Jaime
- Departamento de Química Física and Instituto Universitario de Materiales de Alicante (IUMA), University of Alicante, Ap. 99, 03080, Alicante, Spain
| | - Felipe Conzuelo
- Analytical Chemistry - Center for Electrochemical Sciences, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsst. 150, D-44780, Bochum, Germany
| | - Diego Cazorla-Amorós
- Departamento de Química Inorgánica and Instituto Universitario de Materiales de Alicante (IUMA), University of Alicante, Ap. 99, 03080, Alicante, Spain
| | - Emilia Morallón
- Departamento de Química Física and Instituto Universitario de Materiales de Alicante (IUMA), University of Alicante, Ap. 99, 03080, Alicante, Spain.
| |
Collapse
|
17
|
Bollella P, Boeva Z, Latonen RM, Kano K, Gorton L, Bobacka J. Highly sensitive and stable fructose self-powered biosensor based on a self-charging biosupercapacitor. Biosens Bioelectron 2020; 176:112909. [PMID: 33385803 DOI: 10.1016/j.bios.2020.112909] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Herein, we present an alternative approach to obtain a highly sensitive and stable self-powered biosensor that was used to detect D-fructose as proof of concept.In this platform, we perform a two-step process, viz. self-charging the biosupercapacitor for a constant time by using D-fructose as fuel and using the stored charge to realize the detection of D-fructose by performing several polarization curves at different D-fructose concentrations. The proposed BSC shows an instantaneous power density release of 17.6 mW cm-2 and 3.8 mW cm-2 in pulse mode and at constant load, respectively. Moreover, the power density achieved for the self-charging BSC in pulse mode or under constant load allows for an enhancement of the sensitivity of the device up to 10 times (3.82 ± 0.01 mW cm-2 mM-1, charging time = 70 min) compared to the BSC in continuous operation mode and 100 times compared to the normal enzymatic fuel cell. The platform can potentially be employed as a self-powered biosensor in food or biomedical applications.
Collapse
Affiliation(s)
- Paolo Bollella
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FIN-20500, Turku-Åbo, Finland
| | - Zhanna Boeva
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FIN-20500, Turku-Åbo, Finland
| | - Rose-Marie Latonen
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FIN-20500, Turku-Åbo, Finland
| | - Kenji Kano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden.
| | - Johan Bobacka
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FIN-20500, Turku-Åbo, Finland.
| |
Collapse
|
18
|
Bollella P, Edwardraja S, Guo Z, Katz E. Control of Allosteric Protein Electrochemical Switches with Biomolecular and Electronic Signals. J Phys Chem Lett 2020; 11:5549-5554. [PMID: 32602718 DOI: 10.1021/acs.jpclett.0c01223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The construction of allosteric protein switches is a key goal of synthetic biology. Such switches can be compiled into signaling systems mimicking information and energy processing systems of living organisms. Here we demonstrate construction of a biocatalytic electrode functionalized with a recombinant chimeric protein between pyrroloquinoline quinone-dependent glucose dehydrogenase and calmodulin. This electrode could be activated by calmodulin-binding peptide and showed a high bioelectrocatalytic current (ca. 300 μA) due to efficient direct electron transfer. In order to expand the types of inputs that can be used to activate the developed electrode, we constructed a caged version of calmodulin-binding peptide that could be proteolytically uncaged using a protease of choice. Finally, the complexity of the switchable bioelectrochemical system was further increased by the use of almost any kind of molecule/biomolecule or electronic signal, unequivocally proving the orthogonality of the aforementioned system.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Selvakumar Edwardraja
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhong Guo
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, Institute of Health and Biomedical Innovation, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| |
Collapse
|
19
|
Bollella P, Edwardraja S, Guo Z, Alexandrov K, Katz E. Control of allosteric electrochemical protein switch using magnetic signals. Chem Commun (Camb) 2020; 56:9206-9209. [PMID: 32662462 DOI: 10.1039/d0cc04284f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The artificial chimeric enzyme with allosteric features was activated with a magnetic field applied at a distance.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Selvakumar Edwardraja
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Zhong Guo
- CSIRO-QUT Synthetic Biology Alliance
- ARC Centre of Excellence in Synthetic Biology
- Centre for Agriculture and the Bioeconomy
- Institute of Health and Biomedical Innovation
- Institute for Future Environments
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance
- ARC Centre of Excellence in Synthetic Biology
- Centre for Agriculture and the Bioeconomy
- Institute of Health and Biomedical Innovation
- Institute for Future Environments
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| |
Collapse
|