1
|
Yélamos AM, Marcos JF, Manzanares P, Garrigues S. Harnessing Filamentous Fungi for Enzyme Cocktail Production Through Rice Bran Bioprocessing. J Fungi (Basel) 2025; 11:106. [PMID: 39997400 PMCID: PMC11856480 DOI: 10.3390/jof11020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Valorization of agri-food residues has garnered significant interest for obtaining value-added compounds such as enzymes or bioactive molecules. Rice milling by-products, such as rice bran, have limited commercial value and may pose environmental challenges. Filamentous fungi are recognized for their ability to grow on residues and for their capacity to produce large amounts of metabolites and enzymes of industrial interest. Here, we used filamentous fungi to produce enzyme cocktails from rice bran, which, due to its polysaccharide composition, serves as an ideal substrate for the growth of fungi producing cellulases and xylanases. To this end, sixteen fungal strains were isolated from rice bran and identified at the species level. The species belonged to the genera Aspergillus, Penicillium, and Mucor. The Aspergillus species displayed the highest efficiency in cellulase and xylanase activities, especially A. niger var. phoenicis and A. amstelodami. A. terreus, A. tritici, and A. montevidensis stood out as xylanolytic isolates, while P. parvofructum exhibited good cellulase activity. A. niger var. phoenicis followed by A. terreus showed the highest specific enzymatic activities of α- and β-D-galactosidase, α-L-arabinofuranosidase, α- and β-D-glucosidase, and β-D-xylosidase. Additionally, proteomic analysis of A. terreus, A. niger var. phoenicis, and P. parvofructum exoproteomes revealed differences in enzyme production for rice bran degradation. A. niger var. phoenicis had the highest levels of xylanases and cellulases, while P. parvofructum excelled in proteases, starch-degrading enzymes, and antifungal proteins. Finally, two Penicillium isolates were notable as producers of up to three different antifungal proteins. Our results demonstrate that filamentous fungi can effectively valorize rice bran by producing enzyme cocktails of industrial interest, along with bioactive peptides, in a cost-efficient manner, aligning with the circular bio-economy framework.
Collapse
Affiliation(s)
| | | | | | - Sandra Garrigues
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980, Valencia, Spain; (A.M.Y.); (J.F.M.); (P.M.)
| |
Collapse
|
2
|
Abramov YA, Sun G, Zeng Q. Emerging Landscape of Computational Modeling in Pharmaceutical Development. J Chem Inf Model 2022; 62:1160-1171. [PMID: 35226809 DOI: 10.1021/acs.jcim.1c01580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Computational chemistry applications have become an integral part of the drug discovery workflow over the past 35 years. However, computational modeling in support of drug development has remained a relatively uncharted territory for a significant part of both academic and industrial communities. This review considers the computational modeling workflows for three key components of drug preclinical and clinical development, namely, process chemistry, analytical research and development, as well as drug product and formulation development. An overview of the computational support for each step of the respective workflows is presented. Additionally, in context of solid form design, special consideration is given to modern physics-based virtual screening methods. This covers rational approaches to polymorph, coformer, counterion, and solvent virtual screening in support of solid form selection and design.
Collapse
Affiliation(s)
- Yuriy A Abramov
- XtalPi, Inc., 245 Main St., Cambridge, Massachusetts 02142, United States.,Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Guangxu Sun
- XtalPi, Inc., Shenzhen Jingtai Technology Co., Ltd., Floor 3, Sf Industrial Plant, No. 2 Hongliu road, Fubao Community, Fubao Street, Futian District, Shenzhen 518100, China
| | - Qun Zeng
- XtalPi, Inc., Shenzhen Jingtai Technology Co., Ltd., Floor 3, Sf Industrial Plant, No. 2 Hongliu road, Fubao Community, Fubao Street, Futian District, Shenzhen 518100, China
| |
Collapse
|
3
|
A Computational Method to Predict Effects of Residue Mutations on the Catalytic Efficiency of Hydrolases. Catalysts 2021. [DOI: 10.3390/catal11020286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
With scientific and technological advances, growing research has focused on engineering enzymes that acquire enhanced efficiency and activity. Thereinto, computer-based enzyme modification makes up for the time-consuming and labor-intensive experimental methods and plays a significant role. In this study, for the first time, we collected and manually curated a data set for hydrolases mutation, including structural information of enzyme-substrate complexes, mutated sites and Kcat/Km obtained from vitro assay. We further constructed a classification model using the random forest algorithm to predict the effects of residue mutations on catalytic efficiency (increase or decrease) of hydrolases. This method has achieved impressive performance on a blind test set with the area under the receiver operating characteristic curve of 0.86 and the Matthews Correlation Coefficient of 0.659. Our results demonstrate that computational mutagenesis has an instructive effect on enzyme modification, which may expedite the design of engineering hydrolases.
Collapse
|
4
|
Ravikumar Y, Ponpandian LN, Zhang G, Yun J, Qi X. Harnessing -arabinose isomerase for biological production of -tagatose: Recent advances and its applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Abstract
Biocatalysts provide a number of advantages such as high selectivity, the ability to operate under mild reaction conditions and availability from renewable resources that are of interest in the development of bioreactors for applications in the pharmaceutical and other sectors. The use of oxidoreductases in biocatalytic reactors is primarily focused on the use of NAD(P)-dependent enzymes, with the recycling of the cofactor occurring via an additional enzymatic system. The use of electrochemically based systems has been limited. This review focuses on the development of electrochemically based biocatalytic reactors. The mechanisms of mediated and direct electron transfer together with methods of immobilising enzymes are briefly reviewed. The use of electrochemically based batch and flow reactors is reviewed in detail with a focus on recent developments in the use of high surface area electrodes, enzyme engineering and enzyme cascades. A future perspective on electrochemically based bioreactors is presented.
Collapse
|
6
|
Affiliation(s)
- Ritesh Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini
Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226002, India
| | - Anirban Mukherjee
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini
Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226002, India
| |
Collapse
|
7
|
Insect gut as a bioresource for potential enzymes - an unexploited area for industrial biotechnology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Renom-Carrasco M, Lefort L. Ligand libraries for high throughput screening of homogeneous catalysts. Chem Soc Rev 2018; 47:5038-5060. [DOI: 10.1039/c7cs00844a] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review describes different approaches to construct ligand libraries towards high throughput screening of homogeneous metal catalysts.
Collapse
Affiliation(s)
- Marc Renom-Carrasco
- Institut de Chimie de Lyon
- Laboratory C2P2 UMR 5265-CNRS-Université de Lyon 1-CPE Lyon
- 69616 Villeurbanne
- France
| | | |
Collapse
|
9
|
Shao W, Ma K, Le Y, Wang H, Sha C. Development and Use of a Novel Random Mutagenesis Method: In Situ Error-Prone PCR (is-epPCR). Methods Mol Biol 2017; 1498:497-506. [PMID: 27709598 DOI: 10.1007/978-1-4939-6472-7_34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Directed evolution methods are increasingly needed to improve gene and protein properties. Error-prone PCR is the most efficient method to introduce random mutations by reducing the fidelity of the DNA polymerase. However, a highly efficient process is required for constructing and screening a diverse mutagenesis library since a large pool of transformants is needed to generate a desired mutant. We developed a method called in situ error-prone PCR (is-epPCR) to improve the efficiency of constructing a mutation library for directed evolution. This method offers the following advantages: (1) closed-circular PCR products can be directly transformed into competent E. coli cells and easily selected by using an alternative antibiotic; (2) a mutant library can be created and screened by one-step error-prone amplification of a variable DNA region in an expression plasmid; and (3) accumulation of desired mutations in one sequence can be obtained by multiple rounds of is-epPCR. Is-epPCR offers a novel, convenient, and efficient approach for improving genes and proteins through directed evolution.
Collapse
Affiliation(s)
- Weilan Shao
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Kesen Ma
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yilin Le
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hongcheng Wang
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Chong Sha
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
10
|
Notonier S, Gricman Ł, Pleiss J, Hauer B. Semirational Protein Engineering of CYP153AM.aq. -CPRBM3 for Efficient Terminal Hydroxylation of Short- to Long-Chain Fatty Acids. Chembiochem 2016; 17:1550-7. [PMID: 27251775 DOI: 10.1002/cbic.201600207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Indexed: 11/07/2022]
Abstract
The regioselective terminal hydroxylation of alkanes and fatty acids is of great interest in a variety of industrial applications, such as in cosmetics, in fine chemicals, and in the fragrance industry. The chemically challenging activation and oxidation of non-activated C-H bonds can be achieved with cytochrome P450 enzymes. CYP153AM.aq. -CPRBM3 is an artificial fusion construct consisting of the heme domain from Marinobacter aquaeolei and the reductase domain of CYP102A1 from Bacillus megaterium. It has the ability to hydroxylate medium- and long-chain fatty acids selectively at their terminal positions. However, the activity of this interesting P450 construct needs to be improved for applications in industrial processes. For this purpose, the design of mutant libraries including two consecutive steps of mutagenesis is demonstrated. Targeted positions and residues chosen for substitution were based on semi-rational protein design after creation of a homology model of the heme domain of CYP153AM.aq. , sequence alignments, and docking studies. Site-directed mutagenesis was the preferred method employed to address positions within the binding pocket, whereas diversity was created with the aid of a degenerate codon for amino acids located at the substrate entrance channel. Combining the successful variants led to the identification of a double variant-G307A/S233G-that showed alterations of one position within the binding pocket and one position located in the substrate access channel. This double variant showed twofold increased activity relative to the wild type for the terminal hydroxylation of medium-chain-length fatty acids. This variant furthermore showed improved activity towards short- and long-chain fatty acids and enhanced stability in the presence of higher concentrations of fatty acids.
Collapse
Affiliation(s)
- Sandra Notonier
- Institute of Technical Biochemistry, Universität Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Łukasz Gricman
- Institute of Technical Biochemistry, Universität Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Technical Biochemistry, Universität Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Bernhard Hauer
- Institute of Technical Biochemistry, Universität Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
11
|
|
12
|
Li Y, Hou J, Wang F, Sheng J. High-throughput assays of leloir-glycosyltransferase reactions: The applications of rYND1 in glycotechnology. J Biotechnol 2016; 227:10-18. [PMID: 27059478 DOI: 10.1016/j.jbiotec.2016.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 11/25/2022]
Abstract
Glycosyltransferases (GTs) play a critical role in the enzymatic and chemoenzymatic synthesis of oligosaccharides and glycoconjugates. However, the development of these synthetic approaches has been limited by a lack of sensitive screening methods for the isolation of novel natural GTs or their active variants. Herein, we describe the results of our investigation towards the soluble expression and potential application of the Saccharomyces cerevisiae apyrase YND1. By replacing the hydrophobic transmembrane domain of YND1 with three glycine-serine repeats, this protein was successfully expressed in a soluble form in Escherichia coli. This new protein was then used to develop a two-step nucleoside diphosphate (NDP)-based Leloir-GT high-throughput assay. Purified rYND1 was initially added to a GT reaction to hydrolyze NDP to nucleoside phosphate plus inorganic phosphate, which was determined using a phosphorus molybdenum blue chromogenic reaction. Purified rYND1 was shown to have a positive effect on saccharide synthesis by eliminating the potential by-product inhibition from NDP. Most of the mono-sugar donors used for Leloir-GTs are activated by uridine diphosphate and guanosine diphosphate, which can be catalyzed by rYND1. The rYND1 is amenable to screening methods and could be applied to a wide range of Leloir-GT-catalyzed reactions, therefore representing a remarkable step forward in glycotechnology.
Collapse
Affiliation(s)
- Yijun Li
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Jin Hou
- The State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China; National Glycoengineering Research Center, Shandong University, Jinan 250012, China.
| | - Juzheng Sheng
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China; National Glycoengineering Research Center, Shandong University, Jinan 250012, China.
| |
Collapse
|
13
|
|
14
|
Tian YS, Xu J, Zhao W, Xing XJ, Fu XY, Peng RH, Yao QH. Identification of a phosphinothricin-resistant mutant of rice glutamine synthetase using DNA shuffling. Sci Rep 2015; 5:15495. [PMID: 26492850 PMCID: PMC4616025 DOI: 10.1038/srep15495] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/18/2015] [Indexed: 11/13/2022] Open
Abstract
To date, only bar/pat gene derived from Streptomyces has been used to generate the commercial PPT-resistant crops currently available in the market. The limited source of bar/pat gene is probably what has caused the decrease in PPT-tolerance, which has become the main concern of those involved in field management programs. Although glutamine synthetase (GS) is the target enzyme of PPT, little study has been reported about engineering PPT-resistant plants with GS gene. Then, the plant-optimized GS gene from Oryza sativa (OsGS1S) was chemically synthesized in the present study by PTDS to identify a GS gene for developing PPT-tolerant plants. However, OsGS1S cannot be directly used for developing PPT-tolerant plants because of its poor PPT-resistance. Thus, we performed DNA shuffling on OsGS1S, and one highly PPT-resistant mutant with mutations in four amino acids (A63E, V193A, T293A and R295K) was isolated after three rounds of DNA shuffling and screening. Among the four amino acids substitutions, only R295K was identified as essential in altering PPT resistance. The R295K mutation has also never been previously reported as an important residue for PPT resistance. Furthermore, the mutant gene has been transformed into Saccharomyces cerevisiae and Arabidopsis to confirm its potential in developing PPT-resistant crops.
Collapse
Affiliation(s)
- Yong-Sheng Tian
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Ruifeng Agricultural Science and Technology Co., Ltd, Shanghai, 201106, China
- College of horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Xu
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Wei Zhao
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Xiao-Juan Xing
- College of horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Xiao-Yan Fu
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Ri-He Peng
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Quan-Hong Yao
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| |
Collapse
|
15
|
Islam ZU, Zhisheng Y, Hassan EB, Dongdong C, Hongxun Z. Microbial conversion of pyrolytic products to biofuels: a novel and sustainable approach toward second-generation biofuels. J Ind Microbiol Biotechnol 2015; 42:1557-79. [PMID: 26433384 DOI: 10.1007/s10295-015-1687-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
Abstract
This review highlights the potential of the pyrolysis-based biofuels production, bio-ethanol in particular, and lipid in general as an alternative and sustainable solution for the rising environmental concerns and rapidly depleting natural fuel resources. Levoglucosan (1,6-anhydrous-β-D-glucopyranose) is the major anhydrosugar compound resulting from the degradation of cellulose during the fast pyrolysis process of biomass and thus the most attractive fermentation substrate in the bio-oil. The challenges for pyrolysis-based biorefineries are the inefficient detoxification strategies, and the lack of naturally available efficient and suitable fermentation organisms that could ferment the levoglucosan directly into bio-ethanol. In case of indirect fermentation, acid hydrolysis is used to convert levoglucosan into glucose and subsequently to ethanol and lipids via fermentation biocatalysts, however the presence of fermentation inhibitors poses a big hurdle to successful fermentation relative to pure glucose. Among the detoxification strategies studied so far, over-liming, extraction with solvents like (n-butanol, ethyl acetate), and activated carbon seem very promising, but still further research is required for the optimization of existing detoxification strategies as well as developing new ones. In order to make the pyrolysis-based biofuel production a more efficient as well as cost-effective process, direct fermentation of pyrolysis oil-associated fermentable sugars, especially levoglucosan is highlly desirable. This can be achieved either by expanding the search to identify naturally available direct levoglusoan utilizers or modify the existing fermentation biocatalysts (yeasts and bacteria) with direct levoglucosan pathway coupled with tolerance engineering could significantly improve the overall performance of these microorganisms.
Collapse
Affiliation(s)
- Zia Ul Islam
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Yu Zhisheng
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China.
| | - El Barbary Hassan
- Department of Sustainable Bioproducts, Mississippi State University, Box 9820, Mississippi State, MS, 39762, USA
| | - Chang Dongdong
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Zhang Hongxun
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| |
Collapse
|
16
|
Moore CD, Fahlman A, Crocker DE, Robbins KA, Trumble SJ. The degradation of proteins in pinniped skeletal muscle: viability of post-mortem tissue in physiological research. CONSERVATION PHYSIOLOGY 2015; 3:cov019. [PMID: 27293704 PMCID: PMC4778441 DOI: 10.1093/conphys/cov019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/21/2015] [Accepted: 04/11/2015] [Indexed: 06/06/2023]
Abstract
As marine divers, pinnipeds have a high capacity for exercise at depth while holding their breath. With finite access to oxygen, these species need to be capable of extended aerobic exercise and conservation of energy. Pinnipeds must deal with common physiological hurdles, such as hypoxia, exhaustion and acidosis, that are common to all exercising mammals. The physiological mechanisms in marine mammals used for managing oxygen and carbon dioxide have sparked much research, but access to animals and tissues is difficult and requires permits. Deceased animals that are either bycaught or stranded provide one potential source for tissues, but the validity of biochemical data from post-mortem samples has not been rigorously assessed. Tissues collected from stranded diving mammals may be a crucial source to add to our limited knowledge on the physiology of some of these animals and important to the conservation and management of these species. We aim to determine the reliability of biochemical assays derived from post-mortem tissue and to promote the immediate sampling of stranded animals for the purpose of physiological research. In this study, we mapped the temporal degradation of muscle enzymes from biopsied Northern elephant seals (Mirounga angustirostris) and highlight recommendations for storage protocols for the best preservation of tissue. We also compared the enzymatic activity of different muscle groups (pectoral and latissimus dorsi) in relation to locomotion and measured the effects of four freeze-thaw cycles on muscle tissue enzyme function. Results indicate that enzymatic activity fluctuates greatly, especially with varying storage temperature, storage time, species and muscle group being assayed. In contrast, proteins, such as myoglobin, remain relatively continuous in their increase at 4°C for 48 h. Stranded animals can be a valuable source of biochemical data, but enzyme assays should be used only with great caution in post-mortem tissues.
Collapse
Affiliation(s)
- Colby D. Moore
- Department of Biology, Baylor University, One Bear Place, Waco, TX 76706, USA
| | - Andreas Fahlman
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Daniel E. Crocker
- Department of Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA 94928, USA
| | - Kathleen A. Robbins
- Department of Biology, Baylor University, One Bear Place, Waco, TX 76706, USA
| | - Stephen J. Trumble
- Department of Biology, Baylor University, One Bear Place, Waco, TX 76706, USA
| |
Collapse
|
17
|
|
18
|
Sirin S, Kumar R, Martinez C, Karmilowicz MJ, Ghosh P, Abramov YA, Martin V, Sherman W. A computational approach to enzyme design: predicting ω-aminotransferase catalytic activity using docking and MM-GBSA scoring. J Chem Inf Model 2014; 54:2334-46. [PMID: 25005922 DOI: 10.1021/ci5002185] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Enzyme design is an important area of ongoing research with a broad range of applications in protein therapeutics, biocatalysis, bioengineering, and other biomedical areas; however, significant challenges exist in the design of enzymes to catalyze specific reactions of interest. Here, we develop a computational protocol using an approach that combines molecular dynamics, docking, and MM-GBSA scoring to predict the catalytic activity of enzyme variants. Our primary focuses are to understand the molecular basis of substrate recognition and binding in an S-stereoselective ω-aminotransferase (ω-AT), which naturally catalyzes the transamination of pyruvate into alanine, and to predict mutations that enhance the catalytic efficiency of the enzyme. The conversion of (R)-ethyl 5-methyl-3-oxooctanoate to (3S,5R)-ethyl 3-amino-5-methyloctanoate in the context of several ω-AT mutants was evaluated using the computational protocol developed in this work. We correctly identify the mutations that yield the greatest improvements in enzyme activity (20-60-fold improvement over wild type) and confirm that the computationally predicted structure of a highly active mutant reproduces key structural aspects of the variant, including side chain conformational changes, as determined by X-ray crystallography. Overall, the protocol developed here yields encouraging results and suggests that computational approaches can aid in the redesign of enzymes with improved catalytic efficiency.
Collapse
Affiliation(s)
- Sarah Sirin
- Schrödinger, Inc. , 120 West 45th Street, 29th Floor, New York, New York 10036, United States
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Protein design: toward functional metalloenzymes. Chem Rev 2014; 114:3495-578. [PMID: 24661096 PMCID: PMC4300145 DOI: 10.1021/cr400458x] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangting Yu
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | - Alison G. Tebo
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Leela Ruckthong
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hira Qayyum
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
20
|
Fujii R, Kitaoka M, Hayashi K. Random insertional-deletional strand exchange mutagenesis (RAISE): a simple method for generating random insertion and deletion mutations. Methods Mol Biol 2014; 1179:151-158. [PMID: 25055776 DOI: 10.1007/978-1-4939-1053-3_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Although proteins can be artificially improved by random insertion and deletion mutagenesis methods, these procedures are technically difficult. Here we describe a simple method called random insertional-deletional strand exchange mutagenesis (RAISE). This method is based on gene shuffling and can be used to introduce a wide variety of insertions, deletions, and substitutions. RAISE involves three steps: DNA fragmentation, attachment of a random short sequence, and reconstruction. This yields unique mutants and can be a powerful technique for protein engineering.
Collapse
Affiliation(s)
- Ryota Fujii
- Synthetic Chemicals Laboratory, Mitsui Chemicals, Inc., 580-32 Nagaura, Sodegaura, Chiba, 299-0265, Japan
| | | | | |
Collapse
|
21
|
Expression and function of a modified AP2/ERF transcription factor from Brassica napus enhances cold tolerance in transgenic Arabidopsis. Mol Biotechnol 2013; 53:198-206. [PMID: 22351429 DOI: 10.1007/s12033-012-9515-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
One of the most rapid and effective defensive mechanisms plants have for protecting themselves, from a variety of biotic and abiotic stresses, is the regulation of plant signal transcription factors. AP2/ERF factors play an important role in plant development as well as in hormonal regulation and cold response. Directed evolution is a powerful tool to modify proteins, improving their properties, and for studying their structure-function relations. Here, the transgenic Arabidopsis plants over-expressed a mutant gene, BnaERF-B3-hy15-mu3, which encoded for a factor that exhibited more binding activity with the GCC box element than the wild-type gene BnaERF-B3-hy15 encode factor, and exhibited more freezing tolerance than transgenic plants containing the original BnaERF-B3-hy15 gene. Real-time PCR analyses also revealed that the expression levels of several stress-regulated genes were altered in the over-expressed BnaERF-B3-hy15-mu3 transgenic lines. The BnaERF-B3-hy15 responded to exogenous ABA. Using RT-PCR analysis, the expression of BnaERF-B3-hy15 at different stages and stress treatments were also analyzed.
Collapse
|
22
|
Stryjewska A, Kiepura K, Librowski T, Lochyński S. Biotechnology and genetic engineering in the new drug development. Part III. Biocatalysis, metabolic engineering and molecular modelling. Pharmacol Rep 2013; 65:1102-11. [DOI: 10.1016/s1734-1140(13)71468-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 05/13/2013] [Indexed: 02/03/2023]
|
23
|
Tian YS, Xu J, Peng RH, Xiong AS, Xu H, Zhao W, Fu XY, Han HJ, Yao QH. Mutation by DNA shuffling of 5-enolpyruvylshikimate-3-phosphate synthase from Malus domestica for improved glyphosate resistance. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:829-38. [PMID: 23759057 DOI: 10.1111/pbi.12074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/27/2013] [Accepted: 03/02/2013] [Indexed: 05/09/2023]
Abstract
A new 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Malus domestica (MdEPSPS) was cloned and characterized by rapid amplification of cDNA ends to identify an EPSPS gene appropriate for the development of transgenic glyphosate-tolerant plants. However, wild-type MdEPSPS is not suitable for the development of transgenic glyphosate-tolerant plants because of its poor glyphosate resistance. Thus, we performed DNA shuffling on MdEPSPS, and one highly glyphosate-resistant mutant with mutations in eight amino acids (N63D, N86S, T101A, A187T, D230G, H317R, Y399R and C413A.) was identified after five rounds of DNA shuffling and screening. Among the eight amino acid substitutions on this mutant, only two residue changes (T101A and A187T) were identified by site-directed mutagenesis as essential and additive in altering glyphosate resistance, which was further confirmed by kinetic analyses. The single-site A187T mutation has also never been previously reported as an important residue for glyphosate resistance. Furthermore, transgenic rice was used to confirm the potential of MdEPSPS mutant in developing glyphosate-resistant crops.
Collapse
Affiliation(s)
- Yong-Sheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Le Y, Chen H, Zagursky R, Wu JHD, Shao W. Thermostable DNA ligase-mediated PCR production of circular plasmid (PPCP) and its application in directed evolution via in situ error-prone PCR. DNA Res 2013; 20:375-82. [PMID: 23633530 PMCID: PMC3738163 DOI: 10.1093/dnares/dst016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polymerase chain reaction (PCR) is a powerful method to produce linear DNA fragments. Here we describe the Tma thermostable DNA ligase-mediated PCR production of circular plasmid (PPCP) and its application in directed evolution via in situ error-prone PCR. In this thermostable DNA ligase-mediated whole-plasmid amplification method, the resultant DNA nick between the 5′ end of the PCR primer and the extended newly synthesized DNA 3′ end of each PCR cycle is ligated by Tma DNA ligase, resulting in circular plasmid DNA product that can be directly transformed. The template plasmid DNA is eliminated by ‘selection marker swapping’ upon transformation. When performed under an error-prone condition with Taq DNA polymerase, PPCP allows one-step construction of mutagenesis libraries based on in situ error-prone PCR so that random mutations are introduced into the target gene without altering the expression vector plasmid. A significant difference between PPCP and previously published methods is that PPCP allows exponential amplification of circular DNA. We used this method to create random mutagenesis libraries of a xylanase gene and two cellulase genes. Screening of these libraries resulted in mutant proteins with desired properties, demonstrating the usefulness of in situ error-prone PPCP for creating random mutagenesis libraries for directed evolution.
Collapse
Affiliation(s)
- Yilin Le
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | | | | | | | | |
Collapse
|
25
|
Construction and analysis of randomized protein-encoding libraries using error-prone PCR. Methods Mol Biol 2013; 996:251-67. [PMID: 23504429 DOI: 10.1007/978-1-62703-354-1_15] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In contrast to site-directed mutagenesis and rational design, directed evolution harnesses Darwinian principles to identify proteins with new or improved properties. The critical first steps in a directed evolution experiment are as follows: (a) to introduce random diversity into the gene of interest and (b) to capture that diversity by cloning the resulting population of molecules into a suitable expression vector, en bloc. Error-prone PCR (epPCR) is a common method for introducing random mutations into a gene. In this chapter, we describe detailed protocols for epPCR and for the construction of large, maximally diverse libraries of cloned variants. We also describe the utility of an online program, PEDEL-AA, for analyzing the compositions of epPCR libraries. The methods described here were used to construct several libraries in our laboratory. A side-by-side comparison of the results is used to show that, ultimately, epPCR is a highly stochastic process.
Collapse
|
26
|
Desalting DNA by Drop Dialysis Increases Library Size upon Transformation. Biosci Biotechnol Biochem 2013; 77:402-4. [DOI: 10.1271/bbb.120767] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
The thiamine-dependent enzyme of the vitamin K biosynthesis catalyzes reductive C-N bond ligation between nitroarenes and α-ketoacids. Sci China Chem 2012. [DOI: 10.1007/s11426-012-4792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Godinho LF, Reis CR, van Merkerk R, Poelarends GJ, Quax WJ. An Esterase with Superior Activity and Enantioselectivity towards 1,2-O-Isopropylideneglycerol Esters Obtained by Protein Design. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201200211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Bordeaux M, Galarneau A, Drone J. Catalytic, Mild, and Selective Oxyfunctionalization of Linear Alkanes: Current Challenges. Angew Chem Int Ed Engl 2012; 51:10712-23. [DOI: 10.1002/anie.201203280] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Indexed: 02/02/2023]
|
30
|
Bordeaux M, Galarneau A, Drone J. Katalytische, milde und selektive Oxyfunktionalisierung von linearen Alkanen: aktuelle Herausforderungen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203280] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
31
|
Kumar A, Singh S. Directed evolution: tailoring biocatalysts for industrial applications. Crit Rev Biotechnol 2012; 33:365-78. [DOI: 10.3109/07388551.2012.716810] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Tan LT, Hiraishi T, Sudesh K, Maeda M. Directed evolution of poly[(R)-3-hydroxybutyrate] depolymerase using cell surface display system: functional importance of asparagine at position 285. Appl Microbiol Biotechnol 2012; 97:4859-71. [DOI: 10.1007/s00253-012-4366-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/10/2012] [Accepted: 08/12/2012] [Indexed: 12/01/2022]
|
33
|
Ranoux A, Karmee SK, Jin J, Bhaduri A, Caiazzo A, Arends IWCE, Hanefeld U. Enhancement of the Substrate Scope of Transketolase. Chembiochem 2012; 13:1921-31. [DOI: 10.1002/cbic.201200240] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Indexed: 11/12/2022]
|
34
|
Ranjan R, Patro S, Pradhan B, Kumar A, Maiti IB, Dey N. Development and functional analysis of novel genetic promoters using DNA shuffling, hybridization and a combination thereof. PLoS One 2012; 7:e31931. [PMID: 22431969 PMCID: PMC3303778 DOI: 10.1371/journal.pone.0031931] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/16/2012] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Development of novel synthetic promoters with enhanced regulatory activity is of great value for a diverse range of plant biotechnology applications. METHODOLOGY Using the Figwort mosaic virus full-length transcript promoter (F) and the sub-genomic transcript promoter (FS) sequences, we generated two single shuffled promoter libraries (LssF and LssFS), two multiple shuffled promoter libraries (LmsFS-F and LmsF-FS), two hybrid promoters (FuasFScp and FSuasFcp) and two hybrid-shuffled promoter libraries (LhsFuasFScp and LhsFSuasFcp). Transient expression activities of approximately 50 shuffled promoter clones from each of these libraries were assayed in tobacco (Nicotiana tabacum cv. Xanthi) protoplasts. It was observed that most of the shuffled promoters showed reduced activity compared to the two parent promoters (F and FS) and the CaMV35S promoter. In silico studies (computer simulated analyses) revealed that the reduced promoter activities of the shuffled promoters could be due to their higher helical stability. On the contrary, the hybrid promoters FuasFScp and FSuasFcp showed enhanced activities compared to F, FS and CaMV 35S in both transient and transgenic Nicotiana tabacum and Arabidopsis plants. Northern-blot and qRT-PCR data revealed a positive correlation between transcription and enzymatic activity in transgenic tobacco plants expressing hybrid promoters. Histochemical/X-gluc staining of whole transgenic seedlings/tissue-sections and fluorescence images of ImaGene Green™ treated roots and stems expressing the GUS reporter gene under the control of the FuasFScp and FSuasFcp promoters also support the above findings. Furthermore, protein extracts made from protoplasts expressing the human defensin (HNP-1) gene driven by hybrid promoters showed enhanced antibacterial activity compared to the CaMV35S promoter. SIGNIFICANCE/CONCLUSION Both shuffled and hybrid promoters developed in the present study can be used as molecular tools to study the regulation of ectopic gene expression in plants.
Collapse
Affiliation(s)
- Rajiv Ranjan
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekherpur, Bhubaneswar, Odisha, India
| | - Sunita Patro
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekherpur, Bhubaneswar, Odisha, India
| | - Bhubaneswar Pradhan
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekherpur, Bhubaneswar, Odisha, India
| | - Alok Kumar
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekherpur, Bhubaneswar, Odisha, India
| | - Indu B. Maiti
- Kentucky Tobacco Research and Development Center (KTRDC), University of Kentucky, Lexington, Kentucky, United States of America
| | - Nrisingha Dey
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekherpur, Bhubaneswar, Odisha, India
| |
Collapse
|
35
|
Ranoux A, Arends IW, Hanefeld U. Development of screening methods for transketolase activity and substrate scope. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2011.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
36
|
Ueno S, Ono A, Tanaka Y, Sato S, Biyani M, Nemoto N, Iciki T. Photoassisted Recovery of DNA Molecules for On-chip Directed Evolution. J PHOTOPOLYM SCI TEC 2012. [DOI: 10.2494/photopolymer.25.67] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Tian YS, Xu J, Xiong AS, Zhao W, Fu XY, Peng RH, Yao QH. Improvement of glyphosate resistance through concurrent mutations in three amino acids of the Ochrobactrum 5-enopyruvylshikimate-3-phosphate synthase. Appl Environ Microbiol 2011; 77:8409-14. [PMID: 21948846 PMCID: PMC3233053 DOI: 10.1128/aem.05271-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 09/19/2011] [Indexed: 11/20/2022] Open
Abstract
A mutant of 5-enopyruvylshikimate-3-phosphate synthase from Ochrobactrum anthropi was identified after four rounds of DNA shuffling and screening. Its ability to restore the growth of the mutant ER2799 cell on an M9 minimal medium containing 300 mM glyphosate led to its identification. The mutant had mutations in seven amino acids: E145G, N163H, N267S, P318R, M377V, M425T, and P438L. Among these mutations, N267S, P318R, and M425T have never been previously reported as important residues for glyphosate resistance. However, in the present study they were found by site-directed mutagenesis to collectively contribute to the improvement of glyphosate tolerance. Kinetic analyses of these three mutants demonstrated that the effectiveness of these three individual amino acid alterations on glyphosate tolerance was in the order P318R > M425T > N267S. The results of the kinetic analyses combined with a three-dimensional structure modeling of the location of P318R and M425T demonstrate that the lower hemisphere's upper surface is possibly another important region for glyphosate resistance. Furthermore, the transgenic Arabidopsis was obtained to confirm the potential of the mutant in developing glyphosate-resistant crops.
Collapse
Affiliation(s)
| | | | - Ai-Sheng Xiong
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, People's Republic of China
| | - Wei Zhao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, People's Republic of China
| | - Xiao-Yan Fu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, People's Republic of China
| | - Ri-He Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, People's Republic of China
| | - Quan-Hong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, People's Republic of China
| |
Collapse
|
38
|
Overview of fungal lipase: a review. Appl Biochem Biotechnol 2011; 166:486-520. [PMID: 22072143 DOI: 10.1007/s12010-011-9444-3] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
Lipases (triacylglycerolacyl hydrolases, EC3.1.1.3) are class of enzymes which catalyze the hydrolysis of long-chain triglycerides. In this review paper, an overview regarding the fungal lipase production, purification, and application is discussed. The review describes various industrial applications of lipase in pulp and paper, food, detergent, and textile industries. Some important lipase-producing fungal genera include Aspergillus, Penicillium, Rhizopus, Candida, etc. Current fermentation process techniques such as batch, fed-batch, and continuous mode of lipase production in submerged and solid-state fermentations are discussed in details. The purification of lipase by hydrophobic interaction chromatography is also discussed. The development of mathematical models applied to lipase production is discussed with special emphasis on lipase engineering.
Collapse
|
39
|
Xiong AS, Peng RH, Zhuang J, Chen JM, Zhang B, Zhang J, Yao QH. A thermostable β-glucuronidase obtained by directed evolution as a reporter gene in transgenic plants. PLoS One 2011; 6:e26773. [PMID: 22096498 PMCID: PMC3212524 DOI: 10.1371/journal.pone.0026773] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/03/2011] [Indexed: 11/18/2022] Open
Abstract
A β-glucuronidase variant, GUS-TR3337, that was obtained by directed evolution exhibited higher thermostability than the wild-type enzyme, GUS-WT. In this study, the utility of GUS-TR337 as an improved reporter was evaluated. The corresponding gus-tr3337 and gus-wt genes were independently cloned in a plant expression vector and introduced into Arabidopsis thaliana. With 4-MUG as a substrate, plants containing the gus-wt gene showed no detectable β-glucuronidase activity after exposure to 60°C for 10 min, while those hosting the gus-tr3337 gene retained 70% or 50% activity after exposure to 80°C for 10 min or 30 min, respectively. Similarly, in vivo β-glucuronidase activity could be demonstrated by using X-GLUC as a substrate in transgenic Arabidopsis plants hosting the gus-tr3337 gene that were exposed to 80°C for up to 30 min. Thus, the thermostability of GUS-TR3337 can be exploited to distinguish between endogenous and transgenic β-glucuronidase activity, which is a welcome improvement in its use as a reporter.
Collapse
Affiliation(s)
- Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- * E-mail: ,cn (A-SX); (JZ); (Q-HY)
| | - Ri-He Peng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jing Zhuang
- Alberta Innovates-Technology Futures, Vegreville, Alberta, Canada
| | - Jian-Min Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Bin Zhang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jian Zhang
- Alberta Innovates-Technology Futures, Vegreville, Alberta, Canada
- * E-mail: ,cn (A-SX); (JZ); (Q-HY)
| | - Quan-Hong Yao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- * E-mail: ,cn (A-SX); (JZ); (Q-HY)
| |
Collapse
|
40
|
Bornscheuer U, Kazlauskas RJ. Survey of protein engineering strategies. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2011; Chapter 26:26.7.1-26.7.14. [PMID: 22045562 DOI: 10.1002/0471140864.ps2607s66] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein engineering is altering the structure of a protein to improve or change its properties. This unit summarizes concepts for protein engineering using rational design, directed evolution, and combinations of them. Different strategies are presented for identifying the best mutagenesis method, how to identify desired variants by screening or selection, and examples for successful applications are given. This should enable researchers to choose the most promising tools to solve their protein engineering challenges.
Collapse
Affiliation(s)
- Uwe Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Greifswald, Germany
| | - Romas J Kazlauskas
- Department of Biochemistry, Molecular Biology and Biophysics and the Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota
| |
Collapse
|
41
|
Xiong AS, Peng RH, Zhuang J, Davies J, Zhang J, Yao QH. Advances in directed molecular evolution of reporter genes. Crit Rev Biotechnol 2011; 32:133-42. [DOI: 10.3109/07388551.2011.593503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Domingo-Espín J, Unzueta U, Saccardo P, Rodríguez-Carmona E, Corchero JL, Vázquez E, Ferrer-Miralles N. Engineered biological entities for drug delivery and gene therapy protein nanoparticles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 104:247-98. [PMID: 22093221 PMCID: PMC7173510 DOI: 10.1016/b978-0-12-416020-0.00006-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of genetic engineering techniques has speeded up the growth of the biotechnological industry, resulting in a significant increase in the number of recombinant protein products on the market. The deep knowledge of protein function, structure, biological interactions, and the possibility to design new polypeptides with desired biological activities have been the main factors involved in the increase of intensive research and preclinical and clinical approaches. Consequently, new biological entities with added value for innovative medicines such as increased stability, improved targeting, and reduced toxicity, among others have been obtained. Proteins are complex nanoparticles with sizes ranging from a few nanometers to a few hundred nanometers when complex supramolecular interactions occur, as for example, in viral capsids. However, even though protein production is a delicate process that imposes the use of sophisticated analytical methods and negative secondary effects have been detected in some cases as immune and inflammatory reactions, the great potential of biodegradable and tunable protein nanoparticles indicates that protein-based biotechnological products are expected to increase in the years to come.
Collapse
Affiliation(s)
- Joan Domingo-Espín
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Ugutz Unzueta
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Paolo Saccardo
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Escarlata Rodríguez-Carmona
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - José Luís Corchero
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Esther Vázquez
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| |
Collapse
|
43
|
van der Sloot AM, Quax WJ. Computational design of TNF ligand-based protein therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:521-34. [PMID: 21153357 DOI: 10.1007/978-1-4419-6612-4_54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Almer M van der Sloot
- EMBL-CRG Systems Biology Program, Design of Biological Systems, Centre de Regulació Genòmica, Dr Aiguader 88, 08003, Barcelona, Spain
| | | |
Collapse
|
44
|
Chang HN, Kim NJ, Kang J, Jeong CM, Choi JDR, Fei Q, Kim BJ, Kwon S, Lee SY, Kim J. Multi-stage high cell continuous fermentation for high productivity and titer. Bioprocess Biosyst Eng 2010; 34:419-31. [DOI: 10.1007/s00449-010-0485-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/03/2010] [Indexed: 11/27/2022]
|
45
|
Directed in vitro evolution of reporter genes based on semi-rational design and high-throughput screening. Methods Mol Biol 2010; 634:239-56. [PMID: 20676989 DOI: 10.1007/978-1-60761-652-8_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Marker genes, such as gusA, lacZ, and gfp, have been applied comprehensively in biological studies. Directed in vitro evolution provides a powerful tool for modifying genes and for studying gene structure, expression, and function. Here, we describe a strategy for directed in vitro evolution of reporter genes based on semi-rational design and high-throughput screening. The protocol involves two processes of DNA shuffling and screening. The first DNA shuffling and screening process involves eight steps: (1) amplifying the target gene by PCR, (2) cutting the product into random fragments with DNase I, (3) purification of 50-100 bp fragments, (4) reassembly of the fragments in a primerless PCR, (5) amplification of the reassembled product by primer PCR, (6) cloning into expression vector, (7) transformation of E. coli by electroporation, and (8) screening the target mutants using a nitrocellulose filter. The second DNA shuffling and screening process also involves the same eight steps, except that degenerate oligonucleotide primers are based on the sequence of the selected mutant.
Collapse
|
46
|
Shuster Ben-Yosef V, Sendovski M, Fishman A. Directed evolution of tyrosinase for enhanced monophenolase/diphenolase activity ratio. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2010.08.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
Engström K, Nyhlén J, Sandström AG, Bäckvall JE. Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of alpha-substituted esters. J Am Chem Soc 2010; 132:7038-42. [PMID: 20450151 DOI: 10.1021/ja100593j] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A variant of Candida antarctica lipase A (CalA) was developed for the hydrolysis of alpha-substituted p-nitrophenyl esters by directed evolution. The E values of this variant for 7 different esters was 45-276, which is a large improvement compared to 2-20 for the wild type. The broad substrate scope of this enzyme variant is of synthetic use, and hydrolysis of the tested substrates proceeded with an enantiomeric excess between 95-99%. A 30-fold increase in activity was also observed for most substrates. The developed enzyme variant shows (R)-selectivity, which is reversed compared to the wild type that is (S)-selective for most substrates.
Collapse
Affiliation(s)
- Karin Engström
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
48
|
Hong SH, Wang X, Wood TK. Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H-NS of Escherichia coli. Microb Biotechnol 2010; 3:344-56. [PMID: 21255333 PMCID: PMC3158429 DOI: 10.1111/j.1751-7915.2010.00164.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/28/2009] [Accepted: 01/07/2010] [Indexed: 11/29/2022] Open
Abstract
The global regulator H-NS of Escherichia coli controls genes related to stress response, biofilm formation and virulence by recognizing curved DNA and by silencing acquired genes. Here, we rewired H-NS to control biofilm formation using protein engineering; H-NS variant K57N was obtained that reduces biofilm formation 10-fold compared with wild-type H-NS (wild-type H-NS increases biofilm formation whereas H-NS K57N reduces it). Whole-transcriptome analysis revealed that H-NS K57N represses biofilm formation through its interaction with the nucleoid-associated proteins Cnu and StpA and in the absence of these proteins, H-NS K57N was unable to reduce biofilm formation. Significantly, H-NS K57N enhanced the excision of defective prophage Rac while wild-type H-NS represses excision, and H-NS controlled only Rac excision among the nine resident E. coli K-12 prophages. Rac prophage excision not only led to the change in biofilm formation but also resulted in cell lysis through the expression of toxin HokD. Hence, the H-NS regulatory system may be evolved through a single-amino-acid change in its N-terminal oligomerization domain to control biofilm formation, prophage excision and apoptosis.
Collapse
Affiliation(s)
| | | | - Thomas K. Wood
- Department of Chemical Engineering, Texas A & M University, College Station, TX 77843‐3122, USA
| |
Collapse
|
49
|
Schmidt M, Böttcher D, Bornscheuer UT. Directed Evolution of Industrial Biocatalysts. Ind Biotechnol (New Rochelle N Y) 2010. [DOI: 10.1002/9783527630233.ch4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
50
|
Wu N, Oakeshott J, Brown S, Easton C, Zhu Y. Microfluidic Droplet Technique for In Vitro Directed Evolution. Aust J Chem 2010. [DOI: 10.1071/ch10116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Increasingly over the past two decades, biotechnologists have been exploiting various molecular technologies for high-throughput screening of genes and their protein products to isolate novel functionalities with a wide range of industrial applications. One particular technology now widely used for these purposes involves directed evolution, an artificial form of evolution in which genes and proteins are evolved towards new or improved functions by imposing intense selection pressures on libraries of mutant genes generated by molecular biology techniques and expressed in heterologous systems such as Escherichia coli. Most recently, the rapid development of droplet-based microfluidics has created the potential to dramatically increase the power of directed evolution by increasing the size of the libraries and the throughput of the screening by several orders of magnitude. Here, we review the methods for generating and controlling droplets in microfluidic systems, and their applications in directed evolution. We focus on the methodologies for cell-based assays, in vitro protein expression and DNA amplification, and the prospects for using such platforms for directed evolution in next-generation biotechnologies.
Collapse
|