1
|
Wu Z, Yao W, Chen J, Chen Y, Li Z, Ding W, He L, Hu P. Droplet digital PCR-based single aptamer selection. Talanta 2025; 292:127924. [PMID: 40088766 DOI: 10.1016/j.talanta.2025.127924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Aptamers are potent alternatives to antibodies in applications including diagnostics and disease treatment. These synthetic molecules are generated from sequences identified through specific targets within an aptamer pool of random sequences, approximately 10^15 in size, via the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process. Nevertheless, SELEX encompasses repetitive, time/money-consuming and stochastic methodologies. In this study, we introduce a method for the direct acquisition of target aptamers in a single step, rapidly identifying the aptamers of interest. Single molecules of aptamers are first encapsulated into droplets and amplified therein, and the fluorescence in the droplets will be active upon binding between the aptamers with the target with good affinity. Subsequent identification and sorting of these fluorescing droplets enable the immediate acquisition of desired aptamers without the need for synthesizing them based on selected sequences. This digital selection process bypasses traditional sequencing, thereby reducing stochastic events and costs associated with repeated sequencing, as well as mitigating the uncertainties tied to the synthesis of aptamers. Our proof-of-concept findings suggest that this straightforward yet effective strategy can directly yield aptamers, thereby enhancing the exploration of aptamer biology and promoting the development of aptamer-based applications.
Collapse
Affiliation(s)
- Zerui Wu
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, 230027, China
| | - Wanjun Yao
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Jinyu Chen
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, 230027, China
| | - Yonghao Chen
- Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Zida Li
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Weiping Ding
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Liqun He
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, 230027, China.
| | - Peng Hu
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
2
|
Zhang D, Liu Y, Huang H, Fu T, Bing T, Wu X, Tan W. Streamlining RNA Aptamer Selection via Unique Molecular Identifiers and High-Throughput Sequencing. Anal Chem 2024; 96:16686-16694. [PMID: 39385698 DOI: 10.1021/acs.analchem.4c02984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Aptamers are valuable tools for applications such as cell imaging, drug delivery, and therapeutics. RNA aptamers, in particular, exhibit complex structural diversity and flexibility, affording higher affinity and specificity, broader target recognition, and easier chemical modification compared with DNA aptamers. However, traditional selection methods for RNA aptamers are time-consuming and involve numerous rounds of screening, thus limiting their widespread application. To overcome this challenge, we propose an efficient truncated selection approach termed ID-SELEX. This method incorporates a molecular identification marker whereby each template is labeled with a unique molecular identifier, or UMI. Such incorporation helps mitigate biases introduced by multiple polymerase chain reaction (PCR) amplification during high-throughput sequencing, ensuring accurate identification of aptamer candidates. Utilizing ID-SELEX, we successfully identified a panel of high-quality aptamers targeting the human colon cancer cell line HCT-8 in just 2 rounds of selection. Furthermore, we demonstrated the versatility of this strategy by selecting 6 RNA aptamers targeting mouse myoblast cell line C2C12 with only one round of selection. In summary, RNA aptamer selection based on ID-SELEX utilizes high-throughput sequencing and UMI labeling to enable the rapid screening of RNA aptamers across human and murine cell lines. As such, ID-SELEX has the potential to facilitate RNA aptamer discovery, providing a novel molecular tool for biomedical research, clinical applications, and precision medicine.
Collapse
Affiliation(s)
- Dengwei Zhang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yuqing Liu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Huidong Huang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ting Fu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Tao Bing
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiaoqiu Wu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Singh NK, Wang Y, Wen C, Davis B, Wang X, Lee K, Wang Y. High-affinity one-step aptamer selection using a non-fouling porous hydrogel. Nat Biotechnol 2024; 42:1224-1231. [PMID: 37798416 DOI: 10.1038/s41587-023-01973-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023]
Abstract
Aptamers, commonly referred to as chemical antibodies, are used in a wide range of applications including drug delivery and biosensing. However, the process of aptamer selection poses a substantial challenge, as it requires numerous cycles of enrichment and involves issues with nonspecific binding. We present a simple, fast instrument-free method for aptamer enrichment and selection based on a diffusion-binding process in a three-dimensional non-fouling porous hydrogel with immobilized target proteins. Low-affinity aptamer candidates can be rapidly released from the hydrogel, whereas high-affinity candidates are restricted due to their strong binding to the immobilized protein targets. Consequently, a one-step enriched aptamer pool can strongly bind the protein targets. This enrichment is consistent across five proteins with isoelectric points in varying ranges. With thrombin as a representative model, the anti-thrombin aptamer identified from an enriched aptamer pool has been found to have a binding affinity that is comparable to those identified over ten cycles of selection using traditional methods.
Collapse
Affiliation(s)
- Naveen K Singh
- Department of Biomedical Engineering, The Penn State University, University Park, PA, USA
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Delhi, New Delhi, India
| | - Yixun Wang
- Department of Biomedical Engineering, The Penn State University, University Park, PA, USA
| | - Connie Wen
- Department of Biomedical Engineering, The Penn State University, University Park, PA, USA
| | - Brandon Davis
- Department of Biomedical Engineering, The Penn State University, University Park, PA, USA
| | - Xuelin Wang
- Department of Biomedical Engineering, The Penn State University, University Park, PA, USA
| | - Kyungsene Lee
- Department of Biomedical Engineering, The Penn State University, University Park, PA, USA
| | - Yong Wang
- Department of Biomedical Engineering, The Penn State University, University Park, PA, USA.
| |
Collapse
|
4
|
Zhang J, Zhu A, Mei M, Qu J, Huang Y, Shi Y, Xue M, Zhang J, Zhang R, Zhou B, Tan X, Zhao J, Wang Y. Repurposing CRISPR/Cas to Discover SARS-CoV-2 Detecting and Neutralizing Aptamers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300656. [PMID: 37204115 PMCID: PMC10401102 DOI: 10.1002/advs.202300656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/07/2023] [Indexed: 05/20/2023]
Abstract
RNA aptamers provide useful biological probes and therapeutic agents. New methodologies to screen RNA aptamers will be valuable by complementing the traditional Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Meanwhile, repurposing clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated systems (Cas) has expanded their utility far beyond their native nuclease function. Here, CRISmers, a CRISPR/Cas-based novel screening system for RNA aptamers based on binding to a chosen protein of interest in a cellular context, is presented. Using CRISmers, aptamers are identified specifically targeting the receptor binding domain (RBD) of the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Two aptamer leads enable sensitive detection and potent neutralization of SARS-CoV-2 Delta and Omicron variants in vitro. Intranasal administration of one aptamer, further modified with 2'-fluoro pyrimidines (2'-F), 2'-O-methyl purines (2'-O), and conjugation with both cholesterol and polyethylene glycol of 40 kDa (PEG40K), achieves effective prophylactic and therapeutic antiviral activity against live Omicron BA.2 variants in vivo. The study concludes by demonstrating the robustness, consistency, and potential broad utility of CRISmers using two newly identified aptamers but switching CRISPR, selection marker, and host species.
Collapse
Affiliation(s)
- Ju Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100005China
- College of Life Sciences and OceanographyShenzhen UniversityShenzhen518060China
| | - Airu Zhu
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Miao Mei
- Tsinghua‐Peking Center for Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center for Biological StructureMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologySchool of Pharmaceutical SciencesCenter for infectious Disease ResearchSchool of MedicineTsinghua UniversityBeijing100084China
| | - Jing Qu
- Institute of Pathogenic OrganismsShenzhen Center for Disease Control and PreventionShenzhen518055China
| | - Yalan Huang
- Institute of Pathogenic OrganismsShenzhen Center for Disease Control and PreventionShenzhen518055China
| | - Yongshi Shi
- College of Life Sciences and OceanographyShenzhen UniversityShenzhen518060China
| | - Meiying Xue
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100005China
| | - Jingfang Zhang
- College of Life Sciences and OceanographyShenzhen UniversityShenzhen518060China
- School of Life SciencesBeijing University of Chinese MedicineBeijing100105China
| | - Renli Zhang
- Institute of Pathogenic OrganismsShenzhen Center for Disease Control and PreventionShenzhen518055China
| | - Bing Zhou
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100005China
| | - Xu Tan
- Tsinghua‐Peking Center for Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center for Biological StructureMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologySchool of Pharmaceutical SciencesCenter for infectious Disease ResearchSchool of MedicineTsinghua UniversityBeijing100084China
| | - Jincun Zhao
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Yu Wang
- College of Life Sciences and OceanographyShenzhen UniversityShenzhen518060China
| |
Collapse
|
5
|
Synergetic collision and space separation in microfluidic chip for efficient affinity-discriminated molecular selection. Proc Natl Acad Sci U S A 2022; 119:e2211538119. [PMID: 36191233 PMCID: PMC9565315 DOI: 10.1073/pnas.2211538119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efficient molecular selection is a prerequisite for generating molecular tools used in diagnosis, pathology, vaccinology, and therapeutics. Selection efficiency is thermodynamically highly dependent on the dissociation equilibrium that can be reached in a single round. Extreme shifting of equilibrium towards dissociation favors the retention of high-affinity ligands over those with lower affinity, thus improving the selection efficiency. We propose to synergize dual effects by deterministic lateral-displacement microfluidics, including the collision-based force effect and the two-dimensional (2D) separation-based concentration effect, to greatly shift the equilibrium. Compared with previous approaches, this system can remove more low- or moderate-affinity ligands and maintain most high-affinity ligands, thereby improving affinity discrimination in selection. This strategy is demonstrated on phage display in both experiment and simulation, and two peptides against tumor markers ephrin type-A receptor 2 (EphA2) and CD71 were obtained with high affinity and specificity within a single round of selection, which offers a promising direction for discovery of robust binding ligands for a wide range of biomedical applications.
Collapse
|
6
|
Optimization of Gonyautoxin1/4-Binding G-Quadruplex Aptamers by Label-Free Surface-Enhanced Raman Spectroscopy. Toxins (Basel) 2022; 14:toxins14090622. [PMID: 36136560 PMCID: PMC9505997 DOI: 10.3390/toxins14090622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Nucleic acids with G-quadruplex (G4) structures play an important role in physiological function, analysis and detection, clinical diagnosis and treatment, and new drug research and development. Aptamers obtained using systematic evolution of ligands via exponential enrichment (SELEX) screening technology do not always have the best affinity or binding specificity to ligands. Therefore, the establishment of a structure-oriented experimental method is of great significance. To study the potential of surface-enhanced Raman spectroscopy (SERS) in aptamer optimization, marine biotoxin gonyautoxin (GTX)1/4 and its G4 aptamer obtained using SELEX were selected. The binding site and the induced fit of the aptamer to GTX1/4 were confirmed using SERS combined with two-dimensional correlation spectroscopy. The intensity of interaction between GTX1/4 and G4 was also quantified by measuring the relative intensity of SERS bands corresponding to intramolecular hydrogen bonds. Furthermore, the interaction between GTX1/4 and optimized aptamers was analyzed. The order of intensity change in the characteristic bands of G4 aptamers was consistent with the order of affinity calculated using microscale thermophoresis and molecular dynamics simulations. SERS provides a rapid, sensitive, and economical post-SELEX optimization of aptamers. It is also a reference for future research on other nucleic acid sequences containing G4 structures.
Collapse
|
7
|
Polouliakh N, Hase T, Ghosh S, Kitano H. Toxicity Analysis of Pentachlorophenol Data with a Bioinformatics Tool Set. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2486:105-125. [PMID: 35437721 DOI: 10.1007/978-1-0716-2265-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rapid progress in technologies opened the new era of computer-leaded analytics, leaving humans more space for experimental design and decision making. Here we demonstrate the machine learning analysis workflow represented by spectral clustering, elucidation of evolutionary conserved transcription regulation, and network analysis using reverse engineering. Analysis of genes induced by the Pentachlorophenol toxic chemical revealed two subnetworks, one orchestrated by Interferon and another by Nuclear receptor factor 2 (NRF2) gene. Furthermore, network-inference based analysis identified a gene network module composed of genes associated with interferon signaling and their regulatory interaction with downstream genes, especially TRIM family proteins involved in responses of innate immune systems.
Collapse
Affiliation(s)
- Natalia Polouliakh
- Sony Computer Science Laboratories Inc., Tokyo, Japan. .,Department of Ophthalmology and Visual Science, Yokohama City University, Yokohama, Japan. .,Systems Biology Institute, Tokyo, Japan.
| | - Takeshi Hase
- Systems Biology Institute, Tokyo, Japan.,Tokyo Medical and Dental University, Tokyo, Japan.,Faculty of Pharmacy, Keio University, Tokyo, Japan
| | | | - Hiroaki Kitano
- Sony Computer Science Laboratories Inc., Tokyo, Japan.,Systems Biology Institute, Tokyo, Japan.,Faculty of Pharmacy, Keio University, Tokyo, Japan.,Okinawa Institute for Science and Technology Graduate School, Okinawa, Japan
| |
Collapse
|
8
|
Sousa DA, Carneiro M, Ferreira D, Moreira FTC, Sales MGFV, Rodrigues LR. Recent advances in the selection of cancer-specific aptamers for the development of biosensors. Curr Med Chem 2022; 29:5850-5880. [PMID: 35209816 DOI: 10.2174/0929867329666220224155037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
An early diagnosis has the potential to greatly decrease cancer mortality. For that purpose, specific cancer biomarkers have been molecularly targeted by aptamer sequences to enable an accurate and rapid detection. Aptamer-based biosensors for cancer diagnostics are a promising alternative to those using antibodies, due to their high affinity and specificity to the target molecules and advantageous production. Synthetic nucleic acid aptamers are generated by in vitro Systematic Evolution of Ligands by Exponential enrichment (SELEX) methodologies that have been improved over the years to enhance the efficacy and to shorten the selection process. Aptamers have been successfully applied in electrochemical, optical, photoelectrochemical and piezoelectrical-based detection strategies. These aptasensors comprise a sensitive, accurate and inexpensive option for cancer detection being used as point-of-care devices. This review highlights the recent advances in cancer biomarkers, achievements and optimizations made in aptamer selection, as well as the different aptasensors developed for the detection of several cancer biomarkers.
Collapse
Affiliation(s)
- Diana A Sousa
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- MIT-Portugal Program, Lisbon, Portugal
| | - Mariana Carneiro
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, Porto, Portugal
| | - Débora Ferreira
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- MIT-Portugal Program, Lisbon, Portugal
| | - Felismina T C Moreira
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, Porto, Portugal
| | - Maria Goreti F V Sales
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- MIT-Portugal Program, Lisbon, Portugal
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Lígia R Rodrigues
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
9
|
Fang X, Li W, Gao T, Ain Zahra QU, Luo Z, Pei R. Rapid screening of aptamers for fluorescent targets by integrated digital PCR and flow cytometry. Talanta 2022; 242:123302. [PMID: 35180537 DOI: 10.1016/j.talanta.2022.123302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
In this paper, we report the development of a new strategy termed integrated digital PCR-fluorescence activated sorting based SELEX (IFS-SELEX) that enables rapid screening of aptamers against fluorescent targets. Initially, this strategy employs an integrated digital PCR system to amplify each sequence of a preliminarily enriched library, which is obtained by a traditional SELEX method, on the surface of polystyrene beads. Then, the as-prepared beads are incubated with the fluorescent target and then subjected to fluorescence-activated sorting. Since only those sequences with high binding affinity for the target are collected and sequenced, unnecessary analysis of ineligible sequences is avoided by this method, and the aptamer selection process is thereby greatly streamlined. As a proof-of-concept, we applied this strategy for the screening of aptamers against two fluorescent targets, i.e., ciprofloxacin (CFX) and thioflavin T (ThT), and successfully obtained corresponding sequences with low dissociation constants. The binding affinities of aptamers for ThT were well associated with the sorting regions defined in the fluorescence channel of the flow cytometry process. The experimental results demonstrated that the as-designed IFS-SELEX method can serve as a universal platform for rapid, facile, and efficient aptamer selection against various fluorescent targets.
Collapse
Affiliation(s)
- Xiaona Fang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Wenjing Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tian Gao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qurat Ul Ain Zahra
- Biomedical Imaging Center, University of Science and Technology of China, Hefei, Anhui, 230026, China; The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Zhaofeng Luo
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
10
|
Spirov AV, Myasnikova EM. Heuristic algorithms in evolutionary computation and modular organization of biological macromolecules: Applications to in vitro evolution. PLoS One 2022; 17:e0260497. [PMID: 35085255 PMCID: PMC8794168 DOI: 10.1371/journal.pone.0260497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/10/2021] [Indexed: 11/19/2022] Open
Abstract
Evolutionary computing (EC) is an area of computer sciences and applied mathematics covering heuristic optimization algorithms inspired by evolution in Nature. EC extensively study all the variety of methods which were originally based on the principles of selectionism. As a result, many new algorithms and approaches, significantly more efficient than classical selectionist schemes, were found. This is especially true for some families of special problems. There are strong arguments to believe that EC approaches are quite suitable for modeling and numerical analysis of those methods of synthetic biology and biotechnology that are known as in vitro evolution. Therefore, it is natural to expect that the new algorithms and approaches developed in EC can be effectively applied in experiments on the directed evolution of biological macromolecules. According to the John Holland's Schema theorem, the effective evolutionary search in genetic algorithms (GA) is provided by identifying short schemata of high fitness which in the further search recombine into the larger building blocks (BBs) with higher and higher fitness. The multimodularity of functional biological macromolecules and the preservation of already found modules in the evolutionary search have a clear analogy with the BBs in EC. It seems reasonable to try to transfer and introduce the methods of EC, preserving BBs and essentially accelerating the search, into experiments on in vitro evolution. We extend the key instrument of the Holland's theory, the Royal Roads fitness function, to problems of the in vitro evolution (Biological Royal Staircase, BioRS, functions). The specific version of BioRS developed in this publication arises from the realities of experimental evolutionary search for (DNA-) RNA-devices (aptazymes). Our numerical tests showed that for problems with the BioRS functions, simple heuristic algorithms, which turned out to be very effective for preserving BBs in GA, can be very effective in in vitro evolution approaches. We are convinced that such algorithms can be implemented in modern methods of in vitro evolution to achieve significant savings in time and resources and a significant increase in the efficiency of evolutionary search.
Collapse
Affiliation(s)
- Alexander V. Spirov
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, St. Petersburg, Russia
- The Institute of Scientific Information for Social Sciences RAS, Moscow, Russia
| | | |
Collapse
|
11
|
Liu Y, He L, Zhao Y, Cao Y, Yu Z, Lu F. Optimization of Surface-Enhanced Raman Spectroscopy Detection Conditions for Interaction between Gonyautoxin and Its Aptamer. Toxins (Basel) 2022; 14:toxins14010049. [PMID: 35051026 PMCID: PMC8779825 DOI: 10.3390/toxins14010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
This study aimed to optimize the detection conditions for surface-enhanced Raman spectroscopy (SERS) of single-stranded DNA (ssDNA) in four different buffers and explore the interaction between gonyautoxin (GTX1/4) and its aptamer, GO18. The influence of the silver colloid solution and MgSO4 concentration (0.01 M) added under four different buffered conditions on DNA SERS detection was studied to determine the optimum detection conditions. We explored the interaction between GTX1/4 and GO18 under the same conditions as those in the systematic evolution of ligands by exponential enrichment technique, using Tris-HCl as the buffer. The characteristic peaks of GO18 and its G-quadruplex were detected in four different buffer solutions. The change in peak intensity at 1656 cm−1 confirmed that the binding site between GTX1/4 and GO18 was in the G-quadruplex plane. The relative intensity of the peak at 1656 cm−1 was selected for the GTX1/4–GO18 complex (I1656/I1099) to plot the ratio of GTX1/4 in the Tris-HCl buffer condition (including 30 μL of silver colloid solution and 2 μL of MgSO4), and a linear relationship was obtained as follows: Y = 0.1867X + 1.2205 (R2 = 0.9239). This study provides a basis for subsequent application of SERS in the detection of ssDNA, as well as the binding of small toxins and aptamers.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmaceutical Analysis, College of Pharmacy, Naval Medical University, Shanghai 200433, China;
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Naval Medical University, Shanghai 200433, China
| | - Lijuan He
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (L.H.); (Y.Z.)
| | - Yunli Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (L.H.); (Y.Z.)
| | - Yongbing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Correspondence: (Y.C.); (Z.Y.); (F.L.)
| | - Zhiguo Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (L.H.); (Y.Z.)
- Correspondence: (Y.C.); (Z.Y.); (F.L.)
| | - Feng Lu
- Department of Pharmaceutical Analysis, College of Pharmacy, Naval Medical University, Shanghai 200433, China;
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Naval Medical University, Shanghai 200433, China
- Correspondence: (Y.C.); (Z.Y.); (F.L.)
| |
Collapse
|
12
|
Fenati RA, Chen Z, Yamagishi Y, Tsukakoshi K, Ikebukuor K, Manian A, Russo SP, Yamazaki T, Ellis AV. Enhancement of DNAzymatic activity using iterative in silico maturation. J Mater Chem B 2022; 10:8960-8969. [DOI: 10.1039/d2tb01638a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Enhancement of DNZymatic activity using a combined iterative in silico and in vitro method as a cheaper and more stable alternative to antibodies or enzymes.
Collapse
Affiliation(s)
- Renzo A. Fenati
- Flinders Centre for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia, 5042, Australia
- School of Chemical and Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
- ARC Centre of Excellence in Exciton Science, School of Chemistry, Monash University, Clayton, 3800, Australia
| | - Zifei Chen
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, 3010, Australia
| | - Yasuko Yamagishi
- Department of Biotechnology & Life sciences, Tokyo University of Agriculture and Technology, 2-24-21 Naka-Cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology & Life sciences, Tokyo University of Agriculture and Technology, 2-24-21 Naka-Cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazunori Ikebukuor
- Department of Biotechnology & Life sciences, Tokyo University of Agriculture and Technology, 2-24-21 Naka-Cho, Koganei, Tokyo, 184-8588, Japan
| | - Anjay Manian
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, 3000, Australia
| | - Salvy P. Russo
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, 3000, Australia
| | - Tomohiko Yamazaki
- Nanomedicine Group, Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0047, Japan
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0808, Japan
| | - Amanda V. Ellis
- School of Chemical and Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
| |
Collapse
|
13
|
Vandghanooni S, Sanaat Z, Farahzadi R, Eskandani M, Omidian H, Omidi Y. Recent progress in the development of aptasensors for cancer diagnosis: Focusing on aptamers against cancer biomarkers. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Escamilla-Gutiérrez A, Ribas-Aparicio RM, Córdova-Espinoza MG, Castelán-Vega JA. In silico strategies for modeling RNA aptamers and predicting binding sites of their molecular targets. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:798-807. [PMID: 34323642 DOI: 10.1080/15257770.2021.1951754] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA aptamers are single-stranded nucleic acids of 20-100 nucleotides, with high sensitivity and specificity against particular molecular targets. In vitro production and selection of aptamers can be performed using the SELEX method. However, this procedure requires considerable time and cost. In this sense, bioinformatics tools play an important role in reducing the time and cost associated with development and production of aptamers. In this article, we propose bioinformatics strategies for modeling and analysis of the interaction with molecular targets for two RNA aptamers: ATP binding RNA aptamer and iSpinach aptamer. For this purpose, molecular modeling of the tertiary structure of the aptamers was performed with two servers (SimRNA and RNAComposer); and AutoDock Vina and rDock programs were used to dock their respective ligands. The predictions developed with these methods could be used for in silico design of RNA aptamers, through a simple and accessible methodology.Supplemental data for this article is available online at https://doi.org/10.1080/15257770.2021.1951754 .
Collapse
Affiliation(s)
- Alejandro Escamilla-Gutiérrez
- Laboratorio de Producción y Control de Biológicos, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Hospital General "Dr. Gaudencio González Garza," Centro Médico Nacional "La Raza," Unidad Médica de Alta Especialidad, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Rosa María Ribas-Aparicio
- Laboratorio de Producción y Control de Biológicos, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - María Guadalupe Córdova-Espinoza
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Laboratory of Immunology, Escuela Militar de Graduados de Sanidad, Mexico City, Mexico
| | - Juan Arturo Castelán-Vega
- Laboratorio de Producción y Control de Biológicos, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
15
|
Determination of minimal sequence for zearalenone aptamer by computational docking and application on an indirect competitive electrochemical aptasensor. Anal Bioanal Chem 2021; 413:3861-3872. [PMID: 34021369 DOI: 10.1007/s00216-021-03336-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/28/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Aptamers are short single-stranded oligonucleotides (either DNA or RNA) that can fold into well-defined three-dimensional (3D) spatial structures which enable them to capture their specific target by complementary shape interactions. Aptamers are selected from large random libraries through the SELEX process and only a small fraction of the sequence is involved in direct docking with the target. In this paper, we describe the possible truncation variants of zearalenone (ZEA) aptamer which might be an effective binding region for the target. The originally selected zearalenone (ZEA) aptamer was 80-mer in length and shown to bind the target with a high affinity (Kd = 41 ± 5 nM). Herein, computational docking simulation was performed with 15 truncated variants to determine the predicted binding energy and responsible binding site of the aptamer-analyte complex. The results revealed that 5 truncated variants had binding energy lower than - 7.0 kcal/mol. Circular dichroism analysis was performed on the shortlisted aptamer and the conformational change of aptamers was observed with the presence of an analyte. Aptamer Z3IN (29-mer) was chosen as the most enhanced affinity for its target with a dissociation constant of 11.77 ± 1.44 nM. The aptamer was further applied in the electrochemical aptasensor of ZEA based on an indirect competitive format. The results demonstrated that the truncated aptamer leads to an enhancement of the sensitivity of the biosensor.
Collapse
|
16
|
Mahmoudi Gomari M, Saraygord-Afshari N, Farsimadan M, Rostami N, Aghamiri S, Farajollahi MM. Opportunities and challenges of the tag-assisted protein purification techniques: Applications in the pharmaceutical industry. Biotechnol Adv 2020; 45:107653. [PMID: 33157154 DOI: 10.1016/j.biotechadv.2020.107653] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 01/16/2023]
Abstract
Tag-assisted protein purification is a method of choice for both academic researches and large-scale industrial demands. Application of the purification tags in the protein production process can help to save time and cost, but the design and application of tagged fusion proteins are challenging. An appropriate tagging strategy must provide sufficient expression yield and high purity for the final protein products while preserving their native structure and function. Thanks to the recent advances in the bioinformatics and emergence of high-throughput techniques (e.g. SEREX), many new tags are introduced to the market. A variety of interfering and non-interfering tags have currently broadened their application scope beyond the traditional use as a simple purification tool. They can take part in many biochemical and analytical features and act as solubility and protein expression enhancers, probe tracker for online visualization, detectors of post-translational modifications, and carrier-driven tags. Given the variability and growing number of the purification tags, here we reviewed the protein- and peptide-structured purification tags used in the affinity, ion-exchange, reverse phase, and immobilized metal ion affinity chromatographies. We highlighted the demand for purification tags in the pharmaceutical industry and discussed the impact of self-cleavable tags, aggregating tags, and nanotechnology on both the column-based and column-free purification techniques.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Marziye Farsimadan
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran
| | - Shahin Aghamiri
- Student research committee, Department of medical biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Amero P, Khatua S, Rodriguez-Aguayo C, Lopez-Berestein G. Aptamers: Novel Therapeutics and Potential Role in Neuro-Oncology. Cancers (Basel) 2020; 12:cancers12102889. [PMID: 33050158 PMCID: PMC7600320 DOI: 10.3390/cancers12102889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
A relatively new paradigm in cancer therapeutics is the use of cancer cell-specific aptamers, both as therapeutic agents and for targeted delivery of anticancer drugs. After the first therapeutic aptamer was described nearly 25 years ago, and the subsequent first aptamer drug approved, many efforts have been made to translate preclinical research into clinical oncology settings. Studies of aptamer-based technology have unveiled the vast potential of aptamers in therapeutic and diagnostic applications. Among pediatric solid cancers, brain tumors are the leading cause of death. Although a few aptamer-related translational studies have been performed in adult glioblastoma, the use of aptamers in pediatric neuro-oncology remains unexplored. This review will discuss the biology of aptamers, including mechanisms of targeting cell surface proteins, various modifications of aptamer structure to enhance therapeutic efficacy, the current state and challenges of aptamer use in neuro-oncology, and the potential therapeutic role of aptamers in pediatric brain tumors.
Collapse
Affiliation(s)
- Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
| | - Soumen Khatua
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Correspondence: (C.R.-A.); (G.L.-B.); Tel.: +1-713-563-6150 (C.R.-A.); +1-713-792-8140 (G.L.-B.)
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (C.R.-A.); (G.L.-B.); Tel.: +1-713-563-6150 (C.R.-A.); +1-713-792-8140 (G.L.-B.)
| |
Collapse
|
18
|
Van den Broeck L, Gordon M, Inzé D, Williams C, Sozzani R. Gene Regulatory Network Inference: Connecting Plant Biology and Mathematical Modeling. Front Genet 2020; 11:457. [PMID: 32547596 PMCID: PMC7270862 DOI: 10.3389/fgene.2020.00457] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/14/2020] [Indexed: 12/26/2022] Open
Abstract
Plant responses to environmental and intrinsic signals are tightly controlled by multiple transcription factors (TFs). These TFs and their regulatory connections form gene regulatory networks (GRNs), which provide a blueprint of the transcriptional regulations underlying plant development and environmental responses. This review provides examples of experimental methodologies commonly used to identify regulatory interactions and generate GRNs. Additionally, this review describes network inference techniques that leverage gene expression data to predict regulatory interactions. These computational and experimental methodologies yield complex networks that can identify new regulatory interactions, driving novel hypotheses. Biological properties that contribute to the complexity of GRNs are also described in this review. These include network topology, network size, transient binding of TFs to DNA, and competition between multiple upstream regulators. Finally, this review highlights the potential of machine learning approaches to leverage gene expression data to predict phenotypic outputs.
Collapse
Affiliation(s)
- Lisa Van den Broeck
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Max Gordon
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, United States
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Cranos Williams
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, United States
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
19
|
Damer B, Deamer D. The Hot Spring Hypothesis for an Origin of Life. ASTROBIOLOGY 2020; 20:429-452. [PMID: 31841362 PMCID: PMC7133448 DOI: 10.1089/ast.2019.2045] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/23/2019] [Indexed: 05/05/2023]
Abstract
We present a testable hypothesis related to an origin of life on land in which fluctuating volcanic hot spring pools play a central role. The hypothesis is based on experimental evidence that lipid-encapsulated polymers can be synthesized by cycles of hydration and dehydration to form protocells. Drawing on metaphors from the bootstrapping of a simple computer operating system, we show how protocells cycling through wet, dry, and moist phases will subject polymers to combinatorial selection and draw structural and catalytic functions out of initially random sequences, including structural stabilization, pore formation, and primitive metabolic activity. We propose that protocells aggregating into a hydrogel in the intermediate moist phase of wet-dry cycles represent a primitive progenote system. Progenote populations can undergo selection and distribution, construct niches in new environments, and enable a sharing network effect that can collectively evolve them into the first microbial communities. Laboratory and field experiments testing the first steps of the scenario are summarized. The scenario is then placed in a geological setting on the early Earth to suggest a plausible pathway from life's origin in chemically optimal freshwater hot spring pools to the emergence of microbial communities tolerant to more extreme conditions in dilute lakes and salty conditions in marine environments. A continuity is observed for biogenesis beginning with simple protocell aggregates, through the transitional form of the progenote, to robust microbial mats that leave the fossil imprints of stromatolites so representative in the rock record. A roadmap to future testing of the hypothesis is presented. We compare the oceanic vent with land-based pool scenarios for an origin of life and explore their implications for subsequent evolution to multicellular life such as plants. We conclude by utilizing the hypothesis to posit where life might also have emerged in habitats such as Mars or Saturn's icy moon Enceladus. "To postulate one fortuitously catalyzed reaction, perhaps catalyzed by a metal ion, might be reasonable, but to postulate a suite of them is to appeal to magic." -Leslie Orgel.
Collapse
Affiliation(s)
- Bruce Damer
- Department of Biomolecular Engineering, University of California, Santa Cruz, California
| | - David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, California
| |
Collapse
|
20
|
Cataloguing and Selection of mRNAs Localized to Dendrites in Neurons and Regulated by RNA-Binding Proteins in RNA Granules. Biomolecules 2020; 10:biom10020167. [PMID: 31978946 PMCID: PMC7072219 DOI: 10.3390/biom10020167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Spatiotemporal translational regulation plays a key role in determining cell fate and function. Specifically, in neurons, local translation in dendrites is essential for synaptic plasticity and long-term memory formation. To achieve local translation, RNA-binding proteins in RNA granules regulate target mRNA stability, localization, and translation. To date, mRNAs localized to dendrites have been identified by comprehensive analyses. In addition, mRNAs associated with and regulated by RNA-binding proteins have been identified using various methods in many studies. However, the results obtained from these numerous studies have not been compiled together. In this review, we have catalogued mRNAs that are localized to dendrites and are associated with and regulated by the RNA-binding proteins fragile X mental retardation protein (FMRP), RNA granule protein 105 (RNG105, also known as Caprin1), Ras-GAP SH3 domain binding protein (G3BP), cytoplasmic polyadenylation element binding protein 1 (CPEB1), and staufen double-stranded RNA binding proteins 1 and 2 (Stau1 and Stau2) in RNA granules. This review provides comprehensive information on dendritic mRNAs, the neuronal functions of mRNA-encoded proteins, the association of dendritic mRNAs with RNA-binding proteins in RNA granules, and the effects of RNA-binding proteins on mRNA regulation. These findings provide insights into the mechanistic basis of protein-synthesis-dependent synaptic plasticity and memory formation and contribute to future efforts to understand the physiological implications of local regulation of dendritic mRNAs in neurons.
Collapse
|
21
|
Abstract
Background:
Highly sensitive and rapid analysis of food contaminants is of great significance
for food safety control. Aptamer is a new kind of recognition molecules which could be applied
for constructing homogeneous analysis assays, potentially achieving highly sensitive, cheap and rapid
profiling of food contaminants.
Methods:
An overview of the literature concerning the homogeneous analysis of food contaminations
based on aptamers has been reviewed (focused on the most recent literature, 2000-2018).
Results:
Attributed to aptamer’s controllability, designability and feasibility for the adoption of nucleic
acid amplification, rapid, highly sensitive homogeneous assay for various food contaminants could
be constructed. The structure-switching aptamer probe would confer quick, efficient and specific response
to target food contaminants. Besides, the capability of amplification of aptamer sequences or
nucleic acid probes would lead to highly sensitive detection.
Conclusion:
Aptamer-based homogeneous analysis methods have already been applied to detect various
food contaminations ranging from toxins, heavy metal and pesticide to allergen and pathogenic
bacteria. However, it is still a challenge to achieve robust and accurate detection of food contaminants
in complex food samples.
Collapse
Affiliation(s)
- Xuhan Xia
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Qiang He
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Yi Dong
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Jinghong Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Kooshki H, Abbaszadeh R, Heidari R, Akbariqomi M, Mazloumi M, Shafei S, Absalan M, Tavoosidana G. Developing a DNA aptamer-based approach for biosensing cystatin-c in serum: An alternative to antibody-based methods. Anal Biochem 2019; 584:113386. [DOI: 10.1016/j.ab.2019.113386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/22/2019] [Accepted: 08/03/2019] [Indexed: 12/28/2022]
|
23
|
Takakura K, Kawamura A, Torisu Y, Koido S, Yahagi N, Saruta M. The Clinical Potential of Oligonucleotide Therapeutics against Pancreatic Cancer. Int J Mol Sci 2019; 20:ijms20133331. [PMID: 31284594 PMCID: PMC6651255 DOI: 10.3390/ijms20133331] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Although many diagnostic and therapeutic modalities for pancreatic cancer have been proposed, an urgent need for improved therapeutic strategies remains. Oligonucleotide therapeutics, such as those based on antisense RNAs, small interfering RNA (siRNA), microRNA (miRNA), aptamers, and decoys, are promising agents against pancreatic cancer, because they can identify a specific mRNA fragment of a given sequence or protein, and interfere with gene expression as molecular-targeted agents. Within the past 25 years, the diversity and feasibility of these drugs as diagnostic or therapeutic tools have dramatically increased. Several clinical and preclinical studies of oligonucleotides have been conducted for patients with pancreatic cancer. To support the discovery of effective diagnostic or therapeutic options using oligonucleotide-based strategies, in the absence of satisfactory therapies for long-term survival and the increasing trend of diseases, we summarize the current clinical trials of oligonucleotide therapeutics for pancreatic cancer patients, with underlying preclinical and scientific data, and focus on the possibility of oligonucleotides for targeting pancreatic cancer in clinical implications.
Collapse
Affiliation(s)
- Kazuki Takakura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Atsushi Kawamura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yuichi Torisu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Naohisa Yahagi
- Division of Research and Development for Minimally Invasive Treatment, Cancer Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|
24
|
Putri AD, Murti BT, Kanchi S, Sabela MI, Bisetty K, Tiwari A, Inamuddin, Asiri AM. Computational studies on the molecular insights of aptamer induced poly(N-isopropylacrylamide)-graft-graphene oxide for on/off- switchable whole-cell cancer diagnostics. Sci Rep 2019; 9:7873. [PMID: 31133671 PMCID: PMC6536548 DOI: 10.1038/s41598-019-44378-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 05/13/2019] [Indexed: 01/04/2023] Open
Abstract
This work deals with first-principles and in silico studies of graphene oxide-based whole-cell selective aptamers for cancer diagnostics utilising a tunable-surface strategy. Herein, graphene oxide (GO) was constructed as a surface-based model with poly(N-isopropylacrylamide) (PNIPAM) covalently grafted as an "on/off"-switch in triggering interactions with the cancer-cell protein around its lower critical solution temperature. The atomic building blocks of the aptamer and the PNIPAM adsorbed onto the GO was investigated at the density functional theory (DFT) level. The presence of the monomer of PNIPAM stabilised the system's π-π interaction between GO and its nucleobases as confirmed by higher bandgap energy, satisfying the eigenvalues of the single-point energy observed rather than the nucleobase and the GO complex independently. The unaltered geometrical structures of the surface emphasise the physisorption type interaction between the nucleobase and the GO/NIPAM surface. The docking result for the aptamer and the protein, highlighted the behavior of the PNIPAM-graft-GO is exhibiting globular and extended conformations, further supported by molecular dynamics (MD) simulations. These studies enabled a better understanding of the thermal responsive behavior of the polymer-enhanced GO complex for whole-cell protein interactions through computational methods.
Collapse
Affiliation(s)
- Athika Darumas Putri
- Department of Chemistry, Faculty of Applied Science, Durban University of Technology, Durban, 4000, South Africa
- Semarang College of Pharmaceutical Sciences, Jl. Letnand Jendral Sarwo Edi Wibowo, Semarang City, 50192, Indonesia
| | - Bayu Tri Murti
- Department of Chemistry, Faculty of Applied Science, Durban University of Technology, Durban, 4000, South Africa
- Semarang College of Pharmaceutical Sciences, Jl. Letnand Jendral Sarwo Edi Wibowo, Semarang City, 50192, Indonesia
| | - Suvardhan Kanchi
- Department of Chemistry, Faculty of Applied Science, Durban University of Technology, Durban, 4000, South Africa
| | - Myalowenkosi I Sabela
- Department of Chemistry, Faculty of Applied Science, Durban University of Technology, Durban, 4000, South Africa
| | - Krishna Bisetty
- Department of Chemistry, Faculty of Applied Science, Durban University of Technology, Durban, 4000, South Africa.
| | - Ashutosh Tiwari
- Institute of Advanced Materials, UCS, Teknikringen 4A, Mjärdevi Science Park, SE-58330, Linköping, Sweden
- Vinoba Bhave Research Institute, Binda-Dhokri Road, Saidabad, Allahabad, 221508, India
| | - Inamuddin
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Centre of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Centre of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
25
|
Kushwaha A, Takamura Y, Nishigaki K, Biyani M. Competitive non-SELEX for the selective and rapid enrichment of DNA aptamers and its use in electrochemical aptasensor. Sci Rep 2019; 9:6642. [PMID: 31040350 PMCID: PMC6491428 DOI: 10.1038/s41598-019-43187-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
The SELEX (Systematic Evolution of Ligands by EXponential enrichment) method has been used successfully since 1990, but work is still required to obtain highly specific aptamers. Here, we present a novel approach called ‘Competitive non-SELEX’ (and termed as ‘SELCOS’ (Systematic Evolution of Ligands by COmpetitive Selection)) for readily obtaining aptamers that can discriminate between highly similar targets. This approach is based on the theoretical background presented here, in which under the co-presence of two similar targets, a specific binding type can be enriched more than a nonspecifically binding one during repetitive steps of partitioning with no PCR amplification between them. This principle was experimentally confirmed by the selection experiment for influenza virus subtype-specific DNA aptamers. Namely, the selection products (pools of DNA aptamers) obtained by SELCOS were subjected to a DEPSOR-mode electrochemical sensor, enabling the method to select subtype-specific aptamer pools. From the clonal analysis of these pools, only a few rounds of in vitro selection were sufficient to achieve the surprisingly rapid enrichment of a small number of aptamers with high selectivity, which could be attributed to the SELCOS principle and the given selection pressure program. The subtype-specific aptamers obtained in this manner had a high affinity (e.g., KD = 82 pM for H1N1; 88 pM for H3N2) and negligible cross-reactivity. By making the H1N1-specific DNA aptamer a sensor unit of the DEPSOR electrochemical detector, an influenza virus subtype-specific and portable detector was readily constructed, indicating how close it is to the field application goal.
Collapse
Affiliation(s)
- Ankita Kushwaha
- Department of Bioscience and Biotechnology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa, 923-1292, Japan
| | - Yuzuru Takamura
- Department of Bioscience and Biotechnology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa, 923-1292, Japan
| | - Koichi Nishigaki
- Department of Bioscience and Biotechnology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa, 923-1292, Japan.,BioSeeds Corporation, JAIST venture business laboraotry, 1-1 Asahidai, Nomi City, Ishikawa, 923-1292, Japan
| | - Manish Biyani
- Department of Bioscience and Biotechnology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa, 923-1292, Japan. .,BioSeeds Corporation, JAIST venture business laboraotry, 1-1 Asahidai, Nomi City, Ishikawa, 923-1292, Japan.
| |
Collapse
|
26
|
Polouliakh N, Horton P, Shibanai K, Takata K, Ludwig V, Ghosh S, Kitano H. Sequence homology in eukaryotes (SHOE): interactive visual tool for promoter analysis. BMC Genomics 2018; 19:715. [PMID: 30261835 PMCID: PMC6161448 DOI: 10.1186/s12864-018-5101-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/21/2018] [Indexed: 02/06/2023] Open
Abstract
Background Microarray and DNA-sequencing based technologies continue to produce enormous amounts of data on gene expression. This data has great potential to illuminate our understanding of biology and medicine, but the data alone is of limited value without computational tools to allow human investigators to visualize and interpret it in the context of their problem of interest. Results We created a web server called SHOE that provides an interactive, visual presentation of the available evidence of transcriptional regulation and gene co-expression to facilitate its exploration and interpretation. SHOE predicts the likely transcription factor binding sites in orthologous promoters of humans, mice, and rats using the combined information of 1) transcription factor binding preferences (position-specific scoring matrix (PSSM) libraries such as Transfac32, Jaspar, HOCOMOCO, ChIP-seq, SELEX, PBM, and iPS-reprogramming factor), 2) evolutionary conservation of putative binding sites in orthologous promoters, and 3) co-expression tendencies of gene pairs based on 1,714 normal human cells selected from the Gene Expression Omnibus Database. Conclusion SHOE enables users to explore potential interactions between transcription factors and target genes via multiple data views, discover transcription factor binding motifs on top of gene co-expression, and visualize genes as a network of gene and transcription factors on its native gadget GeneViz, the CellDesigner pathway analyzer, and the Reactome database to search the pathways involved. As we demonstrate here when using the CREB1 and Nf-κB datasets, SHOE can reliably identify experimentally verified interactions and predict plausible novel ones, yielding new biological insights into the gene regulatory mechanisms involved. SHOE comes with a manual describing how to run it on a local PC or via the Garuda platform (www.garuda-alliance.org), where it joins other popular gadgets such as the CellDesigner pathway analyzer and the Reactome database, as part of analysis workflows to meet the growing needs of molecular biologists and medical researchers. SHOE is available from the following URL http://ec2-54-150-223-65.ap-northeast-1.compute.amazonaws.com A video demonstration of SHOE can be found here: https://www.youtube.com/watch?v=qARinNb9NtE Electronic supplementary material The online version of this article (10.1186/s12864-018-5101-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalia Polouliakh
- Sony Computer Science Laboratories Inc., 3-14-13 Higashigotanda, Shinagawa-ku, Tokyo, 141-0022, Japan. .,Department of Ophthalmology and Visual Sciences, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama City, Yokohama, 236-0004, Japan. .,Systems Biology Institute, 5-6-9 Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan.
| | - Paul Horton
- AIST, Artificial Intelligence Research Center, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Kazuhiro Shibanai
- Department of Computer Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Kodai Takata
- Department of Computer Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Vanessa Ludwig
- Department of Biology, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093, Zurich, Switzerland
| | - Samik Ghosh
- Systems Biology Institute, 5-6-9 Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan
| | - Hiroaki Kitano
- Sony Computer Science Laboratories Inc., 3-14-13 Higashigotanda, Shinagawa-ku, Tokyo, 141-0022, Japan.,Systems Biology Institute, 5-6-9 Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan
| |
Collapse
|
27
|
Yu F, Li H, Sun W, Zhao Y, Xu D, He F. Selection of aptamers against Lactoferrin based on silver enhanced and fluorescence-activated cell sorting. Talanta 2018; 193:110-117. [PMID: 30368278 DOI: 10.1016/j.talanta.2018.09.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023]
Abstract
We report a novel method for efficiently screening aptamers from a complex ssDNA library based on silver decahedral nanoparticles (AgNP) and fluorescence activated cell sorting (FACS). In this method, target protein (lactoferrin) and negative proteins (α-lactalbumin, β-lactoglobulin, bovine serum albumin, casein) were respectively immobilized on polystyrene microspheres (PS) to form PSLac, PSα-Lac, PSβ-Lac, PSBSA and PSCas. PSLac was firstly interacted with Cy5 labeled library (Lib), then hybridized with Cy5 modified silver decahedral nanoparticles (AgNPCy5) to form PSLac/Lib/AgNPCy5 conjugates. FACS was used to separate and collect PSLac/Lib/AgNPCy5 conjugates from complicated complex. AgNP was used to increase the fluorescence intensity in the selecting process and choose non-self-hybridization of Lib. Six aptamers (Ylac1, Ylac4, Ylac5, Ylac6, Ylac8 and Ylac9) were obtained after five-round of selection. These aptamers showed good specificity towards lactoferrin in the presence of negative proteins. The equilibrium dissociation constants (Kd) of six aptamers were calculated and all were in the nanomolar range. In a word, AgNP-FACS SELEX (AgFACS-SELEX) is a rapid, sensitive and highly efficient method for screening aptamers.
Collapse
Affiliation(s)
- Fang Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Hui Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210046, China.
| | - Wei Sun
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Yaju Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210046, China.
| | - Fuchu He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210046, China; State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine, Beijing 102206, China.
| |
Collapse
|
28
|
Espiritu CAL, Justo CAC, Rubio MJ, Svobodova M, Bashammakh AS, Alyoubi AO, Rivera WL, Rollon AP, O’Sullivan CK. Aptamer Selection against a Trichomonas vaginalis Adhesion Protein for Diagnostic Applications. ACS Infect Dis 2018; 4:1306-1315. [PMID: 29972299 DOI: 10.1021/acsinfecdis.8b00065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Trichomoniasis, caused by Trichomonas vaginalis, is the leading nonviral sexually transmitted infection worldwide. We report the selection of a DNA aptamer against a T. vaginalis adhesion protein, AP65, using a microtiter plate-based in vitro combinatorial chemistry process termed systematic evolution of ligands by exponential enrichment. The enriched library pool was sequenced by next-generation sequencing, and several aptamer candidates with high affinity and specificity were identified. The aptamer with the highest affinity and specificity had a KD in the low nanomolar range, as confirmed by three different techniques: surface plasmon resonance, enzyme-linked aptamer assay, and biolayer interferometry. The selected aptamer was demonstrated to have a high specificity to the AP65 protein and to T. vaginalis cells with no cross-reactivity to other enteric and urogenital microorganisms. Current work is focused on the development of inexpensive and easy-to-use aptamer-based diagnostic assays for the reliable and rapid detection of T. vaginalis in vaginal swabs.
Collapse
Affiliation(s)
| | | | - Miriam Jauset Rubio
- Interfibio Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans, 26, Tarragona 43007, Spain
| | - Marketa Svobodova
- Interfibio Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans, 26, Tarragona 43007, Spain
| | - Abdulaziz S. Bashammakh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Abdulrahman O. Alyoubi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | | | | | - Ciara K. O’Sullivan
- Interfibio Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans, 26, Tarragona 43007, Spain
- Institució Catalana de Recerca i Estudis Avançats, Passeig Lluis Companys 23, Barcelona 08010, Spain
| |
Collapse
|
29
|
Bayat P, Nosrati R, Alibolandi M, Rafatpanah H, Abnous K, Khedri M, Ramezani M. SELEX methods on the road to protein targeting with nucleic acid aptamers. Biochimie 2018; 154:132-155. [PMID: 30193856 DOI: 10.1016/j.biochi.2018.09.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/02/2018] [Indexed: 12/14/2022]
Abstract
Systematic evolution of ligand by exponential enrichment (SELEX) is an efficient method used to isolate high-affinity single stranded oligonucleotides from a large random sequence pool. These SELEX-derived oligonucleotides named aptamer, can be selected against a broad spectrum of target molecules including proteins, cells, microorganisms and chemical compounds. Like antibodies, aptamers have a great potential in interacting with and binding to their targets through structural recognition and are therefore called "chemical antibodies". However, aptamers offer advantages over antibodies including smaller size, better tissue penetration, higher thermal stability, lower immunogenicity, easier production, lower cost of synthesis and facilitated conjugation or modification with different functional moieties. Thus, aptamers represent an attractive substitution for protein antibodies in the fields of biomarker discovery, diagnosis, imaging and targeted therapy. Enormous interest in aptamer technology triggered the development of SELEX that has underwent numerous modifications since its introduction in 1990. This review will discuss the recent advances in SELEX methods and their advantages and limitations. Aptamer applications are also briefly outlined in this review.
Collapse
Affiliation(s)
- Payam Bayat
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Khedri
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Renders M, Miller E, Lam CH, Perrin DM. Whole cell-SELEX of aptamers with a tyrosine-like side chain against live bacteria. Org Biomol Chem 2018; 15:1980-1989. [PMID: 28009914 DOI: 10.1039/c6ob02451c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In an effort to expand the binding and recognition capabilities of aptamers, a nucleoside triphosphate modified with a phenol that mimics the side chain of tyrosine was used in the selection of DNA aptamers against live bacteria. Of multiple modified aptamers that were isolated against Escherichia coli DH5α cells, one aptamer displays high selectivity and affinity for the target cells and is greatly enriched for phenol-modified dU nucleotides (dUy, 47.5%). When the same sequences are synthesized with TTP, no binding is observed. Taken together, these findings highlight the value of using modified nucleotide triphosphates in aptamer selections and portends success in SELEX against an array of whole cells as targets.
Collapse
Affiliation(s)
- Marleen Renders
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| | - Emily Miller
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| | - Curtis H Lam
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| | - David M Perrin
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
31
|
Yu X, Yu R, Yang X. Pattern recognition of enrichment levels of SELEX-based candidate aptamers for human C-reactive protein. ACTA ACUST UNITED AC 2017; 62:333-338. [PMID: 28157688 DOI: 10.1515/bmt-2015-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/24/2016] [Indexed: 11/15/2022]
Abstract
Selecting aptamers for human C-reactive protein (CRP) would be of critical importance in predicting the risk for cardiovascular disease. The enrichment level of DNA aptamers is an important parameter for selecting candidate aptamers for further affinity and specificity determination. This paper is the first report on pattern recognition used for CRP aptamer enrichment levels in the systematic evolution of ligands by exponential enrichment (SELEX) process, by applying structure-activity relationship models. After generating 10 rounds of graphene oxide (GO)-SELEX and 1670 molecular descriptors, eight molecular descriptors were selected and five latent variables were then obtained with principal component analysis (PCA), to develop a support vector classification (SVC) model. The SVC model (C=8.1728 and γ=0.2333) optimized by the particle swarm optimization (PSO) algorithm possesses an accuracy of 88.15% for the training set. Prediction results of enrichment levels for the sequences with the frequencies of 6 and 5 are reasonable and acceptable, with accuracies of 70.59% and 76.37%, respectively.
Collapse
|
32
|
Jacoby K, Lambert AR, Scharenberg AM. Characterization of homing endonuclease binding and cleavage specificities using yeast surface display SELEX (YSD-SELEX). Nucleic Acids Res 2017; 45:e11. [PMID: 28180328 PMCID: PMC5388424 DOI: 10.1093/nar/gkw864] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/02/2023] Open
Abstract
LAGLIDADG homing endonucleases (LHEs) are a class of rare-cleaving nucleases that possess several unique attributes for genome engineering applications. An important approach for advancing LHE technology is the generation of a library of design ‘starting points’ through the discovery and characterization of natural LHEs with diverse specificities. However, while identification of natural LHE proteins by sequence homology from genomic and metagenomic sequence databases is straightforward, prediction of corresponding target sequences from genomic data remains challenging. Here, we describe a general approach that we developed to circumvent this issue that combines two technologies: yeast surface display (YSD) of LHEs and systematic evolution of ligands via exponential enrichment (SELEX). Using LHEs expressed on the surface of yeast, we show that SELEX can yield binding specificity motifs and identify cleavable LHE targets using a combination of bioinformatics and biochemical cleavage assays. This approach, which we term YSD-SELEX, represents a simple and rapid first principles approach to determining the binding and cleavage specificity of novel LHEs that should also be generally applicable to any type of yeast surface expressible DNA-binding protein. In this marriage, SELEX adds DNA specificity determination to the YSD platform, and YSD brings diagnostics and inexpensive, facile protein-matrix generation to SELEX.
Collapse
Affiliation(s)
- Kyle Jacoby
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.,Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Abigail R Lambert
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Andrew M Scharenberg
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.,Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
33
|
McKeague M. Aptamers for DNA Damage and Repair. Int J Mol Sci 2017; 18:ijms18102212. [PMID: 29065503 PMCID: PMC5666892 DOI: 10.3390/ijms18102212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 12/14/2022] Open
Abstract
DNA is damaged on a daily basis, which can lead to heritable mutations and the activation of proto-oncogenes. Therefore, DNA damage and repair are critical risk factors in cancer, aging and disease, and are the underlying bases of most frontline cancer therapies. Much of our current understanding of the mechanisms that maintain DNA integrity has been obtained using antibody-based assays. The oligonucleotide equivalents of antibodies, known as aptamers, have emerged as potential molecular recognition rivals. Aptamers possess several ideal properties including chemical stability, in vitro selection and lack of batch-to-batch variability. These properties have motivated the incorporation of aptamers into a wide variety of analytical, diagnostic, research and therapeutic applications. However, their use in DNA repair studies and DNA damage therapies is surprisingly un-tapped. This review presents an overview of the progress in selecting and applying aptamers for DNA damage and repair research.
Collapse
Affiliation(s)
- Maureen McKeague
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland.
| |
Collapse
|
34
|
Perret G, Boschetti E. Aptamer affinity ligands in protein chromatography. Biochimie 2017; 145:98-112. [PMID: 29054800 DOI: 10.1016/j.biochi.2017.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023]
Abstract
The present review deals with the place of single chain oligonucleotide ligands (aptamers) in affinity chromatography applied to proteins. Aptamers are not the only affinity ligands available but they represent an emerging and highly promising route that advantageously competes with antibodies in immunopurification processes. A historical background of affinity chromatography from the beginning of the discipline to the most recent outcomes is first presented. Then the focus is centered on aptamers which represent the last step so far to the long quest for affinity ligands associating very high specificity, availability and strong stability against most harsh cleaning agents required in chromatography. Then technologies of ligand selection from large libraries followed by the most appropriate chemical grafting approaches are described and supported by a number of bibliographic references. Experimental results assembled from relevant published paper are reported; they are selected by their practical applicability and potential use at large scale. The review concludes with specific remarks and future developments that are expected in the near future to turn this technology into a large acceptance for preparative applications.
Collapse
|
35
|
Weidle UH, Birzele F, Kollmorgen G, Rüger R. Long Non-coding RNAs and their Role in Metastasis. Cancer Genomics Proteomics 2017; 14:143-160. [PMID: 28446530 PMCID: PMC5420816 DOI: 10.21873/cgp.20027] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 02/08/2023] Open
Abstract
The perception of long non-coding RNAs as chunk RNA and transcriptional noise has been steadily replaced by their role as validated targets for a diverse set of physiological processes in the past few years. However, for the vast majority of lncRNAs their precise mode of action and physiological function remain to be uncovered. A large body of evidence has revealed their essential role in all stages of cancirogenesis and metastasis. In this review we focus on the role of lncRNAs in metastasis. We grouped selected lncRNAs into three categories based on in vitro and in vivo mode of action-related studies and clinical relevance for metastasis. Grouped according to their mode of action, in category I we discuss lncRNAs such as CCAT2, DREH, LET, NKILA, treRNA, HOTAIR, H19, FENDRR, lincROR, MALAT, GClnc1, BCAR4, SCHLAP1 and lncRNA ATP, all lncRNAs with in vitro and in vivo metastasis-related data and clinical significance. In category II we discuss lncRNAs CCAT1, PCAT1, PTENgp1, GPLINC, MEG3, ZEB2-AS, LCT13, ANRIL, NBAT1 and lncTCF7 all characterized by their mode of action in vitro and clinical significance, but pending or preliminary in vivo data. Finally, under category III, we discuss lncRNAs BANCR, FRLnc1, SPRY4-IT1 and LIMT with partially or poorly-resolved mode of action and varying degree of validation in clinical metastasis. Finally we discuss metastasis-related translational aspects of lncRNAs.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Fabian Birzele
- Roche Innovation Center Basel, F. Hofman La Roche, Basel, Switzerland
| | - Gwen Kollmorgen
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Rüdiger Rüger
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
36
|
Smaczniak C, Angenent GC, Kaufmann K. SELEX-Seq: A Method to Determine DNA Binding Specificities of Plant Transcription Factors. Methods Mol Biol 2017. [PMID: 28623580 DOI: 10.1007/978-1-4939-7125-1_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Systematic evolution of ligands by exponential enrichment (SELEX) is a method that allows isolating specific nucleotide sequences that interact with a DNA binding protein of choice. By using a transcription factor (TF) and a randomized pool of double-stranded DNA, this technique can be used to characterize TF DNA binding specificities and affinities. The method is based on protein-DNA complex immunoprecipitation with protein-specific antibodies and subsequent DNA selection and amplification. Application of massively parallel sequencing (-seq) at each cycle of SELEX allows determining the relative affinities to any DNA sequence for any transcription factor or TF complex. The resulting TF DNA binding motifs can be used to predict potential DNA binding sites in genomes and thereby direct target genes of TFs.
Collapse
Affiliation(s)
- Cezary Smaczniak
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands.,Institute for Biology, Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands.,Bioscience, Wageningen Plant Research, Wageningen, The Netherlands
| | - Kerstin Kaufmann
- Institute for Biology, Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
37
|
Gotrik MR, Feagin TA, Csordas AT, Nakamoto MA, Soh HT. Advancements in Aptamer Discovery Technologies. Acc Chem Res 2016; 49:1903-10. [PMID: 27526193 DOI: 10.1021/acs.accounts.6b00283] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Affinity reagents that specifically bind to their target molecules are invaluable tools in nearly every field of modern biomedicine. Nucleic acid-based aptamers offer many advantages in this domain, because they are chemically synthesized, stable, and economical. Despite these compelling features, aptamers are currently not widely used in comparison to antibodies. This is primarily because conventional aptamer-discovery techniques such as SELEX are time-consuming and labor-intensive and often fail to produce aptamers with comparable binding performance to antibodies. This Account describes a body of work from our laboratory in developing advanced methods for consistently producing high-performance aptamers with higher efficiency, fewer resources, and, most importantly, a greater probability of success. We describe our efforts in systematically transforming each major step of the aptamer discovery process: selection, analysis, and characterization. To improve selection, we have developed microfluidic devices (M-SELEX) that enable discovery of high-affinity aptamers after a minimal number of selection rounds by precisely controlling the target concentration and washing stringency. In terms of improving aptamer pool analysis, our group was the first to use high-throughput sequencing (HTS) for the discovery of new aptamers. We showed that tracking the enrichment trajectory of individual aptamer sequences enables the identification of high-performing aptamers without requiring full convergence of the selected aptamer pool. HTS is now widely used for aptamer discovery, and open-source software has become available to facilitate analysis. To improve binding characterization, we used HTS data to design custom aptamer arrays to measure the affinity and specificity of up to ∼10(4) DNA aptamers in parallel as a means to rapidly discover high-quality aptamers. Most recently, our efforts have culminated in the invention of the "particle display" (PD) screening system, which transforms solution-phase aptamers into "aptamer particles" that can be individually screened at high-throughput via fluorescence-activated cell sorting. Using PD, we have shown the feasibility of rapidly generating aptamers with exceptional affinities, even for proteins that have previously proven intractable to aptamer discovery. We are confident that these advanced aptamer-discovery methods will accelerate the discovery of aptamer reagents with excellent affinities and specificities, perhaps even exceeding those of the best monoclonal antibodies. Since aptamers are reproducible, renewable, stable, and can be distributed as sequence information, we anticipate that these affinity reagents will become even more valuable tools for both research and clinical applications.
Collapse
Affiliation(s)
- Michael R. Gotrik
- Materials
Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department
of Electrical Engineering and Radiology, Stanford University, Palo Alto, California 94022, United States
| | - Trevor A. Feagin
- Department
of Electrical Engineering and Radiology, Stanford University, Palo Alto, California 94022, United States
| | - Andrew T. Csordas
- Materials
Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Margaret A. Nakamoto
- Department
of Electrical Engineering and Radiology, Stanford University, Palo Alto, California 94022, United States
| | - H. Tom Soh
- Department
of Electrical Engineering and Radiology, Stanford University, Palo Alto, California 94022, United States
| |
Collapse
|
38
|
Blythe AJ, Yazar-Klosinski B, Webster MW, Chen E, Vandevenne M, Bendak K, Mackay JP, Hartzog GA, Vrielink A. The yeast transcription elongation factor Spt4/5 is a sequence-specific RNA binding protein. Protein Sci 2016; 25:1710-21. [PMID: 27376968 DOI: 10.1002/pro.2976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 12/19/2022]
Abstract
The heterodimeric transcription elongation factor Spt4/Spt5 (Spt4/5) tightly associates with RNAPII to regulate both transcriptional elongation and co-transcriptional pre-mRNA processing; however, the mechanisms by which Spt4/5 acts are poorly understood. Recent studies of the human and Drosophila Spt4/5 complexes indicate that they can bind nucleic acids in vitro. We demonstrate here that yeast Spt4/5 can bind in a sequence-specific manner to single stranded RNA containing AAN repeats. Furthermore, we show that the major protein determinants for RNA-binding are Spt4 together with the NGN domain of Spt5 and that the KOW domains are not required for RNA recognition. These findings attribute a new function to a domain of Spt4/5 that associates directly with RNAPII, making significant steps towards elucidating the mechanism behind transcriptional control by Spt4/5.
Collapse
Affiliation(s)
- Amanda J Blythe
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Berra Yazar-Klosinski
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Michael W Webster
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Eefei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, 95064
| | - Marylène Vandevenne
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Katerina Bendak
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Joel P Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Grant A Hartzog
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Alice Vrielink
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
39
|
Post-SELEX optimization of aptamers. Anal Bioanal Chem 2016; 408:4567-73. [PMID: 27173394 DOI: 10.1007/s00216-016-9556-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 12/14/2022]
Abstract
Aptamers are functional single-stranded DNA or RNA oligonucleotides, selected in vitro by SELEX (Systematic Evolution of Ligands by Exponential Enrichment), which can fold into stable unique three-dimensional structures that bind their target ligands with high affinity and specificity. Although aptamers show a number of favorable advantages such as better stability and easier modification when compared with the properties of antibodies, only a handful of aptamers have entered clinical trials and only one, pegaptanib, has received US Food and Drug Administration approval for clinical use. The main reasons that limit the practical application of aptamers are insufficient nuclease stability, bioavailability, thermal stability, or even affinity. Some aptamers obtained from modified libraries show better properties; however, polymerase amplification of nucleic acids containing non-natural bases is currently a primary drawback of the SELEX process. This review focuses on several post-SELEX optimization strategies of aptamers identified in recent years. We describe four common methods in detail: truncation, chemical modification, bivalent or multivalent aptamer construction, and mutagenesis. We believe that these optimization strategies should improve one or more specific properties of aptamers, and the type of feature(s) selected for improvement will be dependent on the application purpose.
Collapse
|
40
|
Rudchenko MN, Zamyatnin AA. Prospects for using self-assembled nucleic acid structures. BIOCHEMISTRY (MOSCOW) 2016; 80:391-9. [PMID: 25869355 DOI: 10.1134/s000629791504001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
According to the central dogma in molecular biology, nucleic acids are assigned with key functions on storing and executing genetic information in any living cell. However, features of nucleic acids are not limited only with properties providing template-dependent biosynthetic processes. Studies of DNA and RNA unveiled unique features of these polymers able to make various self-assembled three-dimensional structures that, among other things, use the complementarity principle. Here, we review various self-assembled nucleic acid structures as well as application of DNA and RNA to develop nanomaterials, molecular automata, and nanodevices. It can be expected that in the near future results of these developments will allow designing novel next-generation diagnostic systems and medicinal drugs.
Collapse
Affiliation(s)
- M N Rudchenko
- Research Division, Hospital for Special Surgery, New York, NY 10021, USA.
| | | |
Collapse
|
41
|
Badr E, Heath LS. Identifying splicing regulatory elements with de Bruijn graphs. J Comput Biol 2015; 21:880-97. [PMID: 25393830 DOI: 10.1089/cmb.2014.0183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Splicing regulatory elements (SREs) are short, degenerate sequences on pre-mRNA molecules that enhance or inhibit the splicing process via the binding of splicing factors, proteins that regulate the functioning of the spliceosome. Existing methods for identifying SREs in a genome are either experimental or computational. Here, we propose a formalism based on de Bruijn graphs that combines genomic structure, word count enrichment analysis, and experimental evidence to identify SREs found in exons. In our approach, SREs are not restricted to a fixed length (i.e., k-mers, for a fixed k). As a result, we identify 2001 putative exonic enhancers and 3080 putative exonic silencers for human genes, with lengths varying from 6 to 15 nucleotides. Many of the predicted SREs overlap with experimentally verified binding sites. Our model provides a novel method to predict variable length putative regulatory elements computationally for further experimental investigation.
Collapse
Affiliation(s)
- Eman Badr
- Department of Computer Science, Virginia Tech , Blacksburg, Virginia
| | | |
Collapse
|
42
|
Perret G, Santambien P, Boschetti E. The quest for affinity chromatography ligands: are the molecular libraries the right source? J Sep Sci 2015; 38:2559-72. [DOI: 10.1002/jssc.201500285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/26/2015] [Accepted: 05/10/2015] [Indexed: 12/15/2022]
|
43
|
Sensitive ligand-based protein quantification using immuno-PCR: A critical review of single-probe and proximity ligation assays. Biotechniques 2015; 56:217-28. [PMID: 24919231 DOI: 10.2144/000114164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Quantitative PCR (qPCR) of reverse-transcribed mRNA has revolutionized gene expression analyses. qPCR analysis is based on the prevalent assumption that mRNA transcript numbers provide an adequate measure of specific biomarker expression. However, taking the complexity of protein turnover into account, there is a need to correlate qPCR-derived transcriptional patterns with protein translational patterns so as to not leave behind important pathobiological details. One emerging approach in protein analysis is PCR-coupled protein quantification, often denoted as immuno-PCR (iPCR), which targets soluble proteins. Here we review recent trends and applications in iPCR assays that may bridge the gap between classical enzyme-linked immunosorbent assays and mass spectrometry methodologies in terms of sensitivity and multiplexing.
Collapse
|
44
|
Lee SC, Gedi V, Ha NR, Cho JH, Park HC, Yoon MY. Development of receptor-based inhibitory RNA aptamers for anthrax toxin neutralization. Int J Biol Macromol 2015; 77:293-302. [PMID: 25841381 DOI: 10.1016/j.ijbiomac.2015.03.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/27/2015] [Accepted: 03/15/2015] [Indexed: 10/23/2022]
Abstract
Anthrax toxin excreted by Bacillus anthracis is the key causative agent of infectious anthrax disease. In the present study, we targeted the binding of PA to the ATR/TEM8 Von Willebrand factor type A (VWA) domain, which we cloned into Escherichia coli and purified to homogeneity under denaturing conditions. To develop an anthrax toxin inhibitor, we selected and identified short single strand RNA aptamers (approximately 30mer) consisting of different sequences of nucleic acids with a high binding affinity in the 100 nanomolar range against the recombinant ATR/TEM8 VWA domain using systematic evolution of ligands by exponential enrichment (SELEX). Five candidate aptamers were further characterized by several techniques including secondary structural analysis. The inhibitor efficiency (IC50) of one of the aptamers toward anthrax toxin was approximately 5μM in macrophage RAW 264.7 cells, as determined from cytotoxicity analysis by MTT assay. We believe that the candidate aptamers should be useful for blocking the binding of PA to its receptor in order to neutralize anthrax toxin.
Collapse
Affiliation(s)
- Sang-Choon Lee
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Vinayakumar Gedi
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Na-Reum Ha
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Jun-Haeng Cho
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Hae-Chul Park
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency (QIA), Anyang 430-757, Republic of Korea
| | - Moon-Young Yoon
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.
| |
Collapse
|
45
|
Martin JA, Smith JE, Warren M, Chávez JL, Hagen JA, Kelley-Loughnane N. A method for selecting structure-switching aptamers applied to a colorimetric gold nanoparticle assay. J Vis Exp 2015:e52545. [PMID: 25870978 PMCID: PMC4401151 DOI: 10.3791/52545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Small molecules provide rich targets for biosensing applications due to their physiological implications as biomarkers of various aspects of human health and performance. Nucleic acid aptamers have been increasingly applied as recognition elements on biosensor platforms, but selecting aptamers toward small molecule targets requires special design considerations. This work describes modification and critical steps of a method designed to select structure-switching aptamers to small molecule targets. Binding sequences from a DNA library hybridized to complementary DNA capture probes on magnetic beads are separated from nonbinders via a target-induced change in conformation. This method is advantageous because sequences binding the support matrix (beads) will not be further amplified, and it does not require immobilization of the target molecule. However, the melting temperature of the capture probe and library is kept at or slightly above RT, such that sequences that dehybridize based on thermodynamics will also be present in the supernatant solution. This effectively limits the partitioning efficiency (ability to separate target binding sequences from nonbinders), and therefore many selection rounds will be required to remove background sequences. The reported method differs from previous structure-switching aptamer selections due to implementation of negative selection steps, simplified enrichment monitoring, and extension of the length of the capture probe following selection enrichment to provide enhanced stringency. The selected structure-switching aptamers are advantageous in a gold nanoparticle assay platform that reports the presence of a target molecule by the conformational change of the aptamer. The gold nanoparticle assay was applied because it provides a simple, rapid colorimetric readout that is beneficial in a clinical or deployed environment. Design and optimization considerations are presented for the assay as proof-of-principle work in buffer to provide a foundation for further extension of the work toward small molecule biosensing in physiological fluids.
Collapse
Affiliation(s)
- Jennifer A Martin
- 711th Human Performance Wing, Human Effectiveness Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base; The Henry M. Jackson Foundation
| | - Joshua E Smith
- 711th Human Performance Wing, Human Effectiveness Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base; The Henry M. Jackson Foundation
| | - Mercedes Warren
- 711th Human Performance Wing, Human Effectiveness Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base
| | - Jorge L Chávez
- 711th Human Performance Wing, Human Effectiveness Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base; UES, Inc
| | - Joshua A Hagen
- 711th Human Performance Wing, Human Effectiveness Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base
| | - Nancy Kelley-Loughnane
- 711th Human Performance Wing, Human Effectiveness Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base;
| |
Collapse
|
46
|
Soemedi R, Vega H, Belmont JM, Ramachandran S, Fairbrother WG. Genetic variation and RNA binding proteins: tools and techniques to detect functional polymorphisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:227-66. [PMID: 25201108 DOI: 10.1007/978-1-4939-1221-6_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
At its most fundamental level the goal of genetics is to connect genotype to phenotype. This question is asked at a basic level evaluating the role of genes and pathways in genetic model organism. Increasingly, this question is being asked in the clinic. Genomes of individuals and populations are being sequenced and compared. The challenge often comes at the stage of analysis. The variant positions are analyzed with the hope of understanding human disease. However after a genome or exome has been sequenced, the researcher is often deluged with hundreds of potentially relevant variations. Traditionally, amino-acid changing mutations were considered the tractable class of disease-causing mutations; however, mutations that disrupt noncoding elements are the subject of growing interest. These noncoding changes are a major avenue of disease (e.g., one in three hereditary disease alleles are predicted to affect splicing). Here, we review some current practices of medical genetics, the basic theory behind biochemical binding and functional assays, and then explore technical advances in how variations that alter RNA protein recognition events are detected and studied. These advances are advances in scale-high-throughput implementations of traditional biochemical assays that are feasible to perform in any molecular biology laboratory. This chapter utilizes a case study approach to illustrate some methods for analyzing polymorphisms. The first characterizes a functional intronic SNP that deletes a high affinity PTB site using traditional low-throughput biochemical and functional assays. From here we demonstrate the utility of high-throughput splicing and spliceosome assembly assays for screening large sets of SNPs and disease alleles for allelic differences in gene expression. Finally we perform three pilot drug screens with small molecules (G418, tetracycline, and valproic acid) that illustrate how compounds that rescue specific instances of differential pre-mRNA processing can be discovered.
Collapse
Affiliation(s)
- Rachel Soemedi
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | | | | | | | | |
Collapse
|
47
|
Artificial riboswitch selection: A FACS-based approach. Methods Mol Biol 2014; 1111:57-75. [PMID: 24549612 DOI: 10.1007/978-1-62703-755-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Riboswitches have a number of characteristics that make them ideal regulatory elements for a wide range of synthetic biology applications. To maximize their utility, methods are required to create custom riboswitches de novo or to modify existing riboswitches to suit specific experimental needs. This chapter describes such a method, which exploits fluorescence-activated cell sorting (FACS) to quickly and efficiently sort through large libraries of riboswitch-like sequences to identify those with the desired activity. Suggestions for the experimental setup are provided, along with detailed protocols for testing and optimizing FACS conditions FACS selection steps, and follow-up assays to identify and characterize individual riboswitches.
Collapse
|
48
|
Ouellet E, Lagally ET, Cheung KC, Haynes CA. A simple method for eliminating fixed-region interference of aptamer binding during SELEX. Biotechnol Bioeng 2014; 111:2265-79. [PMID: 24895227 DOI: 10.1002/bit.25294] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 05/07/2014] [Accepted: 05/12/2014] [Indexed: 01/20/2023]
Abstract
Standard libraries for systematic evolution of ligands by exponential enrichment (SELEX) typically utilize flanking regions that facilitate amplification of aptamers recovered from each selection round. Here, we show that these flanking sequences can bias the selection process, due in part to their ability to interfere with the fold or function of aptamers localized within the random region of the library sequence. We then address this problem by investigating the use of complementary oligonucleotides as a means to block aptamer interference by each flanking region. Isothermal titration calorimetry (ITC) studies are combined with fold predictions to both define the various interference mechanisms and assess the ability of added complementary oligonucleotides to ameliorate them. The proposed blocking strategy is thereby refined and then applied to standard library forms of benchmark aptamers against human α-thrombin, streptavidin, and vascular endothelial growth factor (VEGF). In each case, ITC data show that the new method effectively removes fixed-region mediated interference effects so that the natural binding affinity of the benchmark aptamer is completely restored. We further show that the binding affinities of properly functioning aptamers within a selection library are not affected by the blocking protocol, and that the method can be applied to various common library formats comprised of different flanking region sequences. Finally, we present a rapid and inexpensive qPCR-based method for determining the mean binding affinity of retained aptamer pools and use it to show that introduction of the pre-blocking method into the standard SELEX protocol results in retention of high-affinity aptamers that would otherwise be lost during the first round of selection. Significant enrichment of the available pool of high-affinity aptamers is thereby achieved in the first few rounds of selection. By eliminating single-strand (aptamer-like) structures within or involving the fixed regions, the technique is therefore shown to isolate aptamer sequence and function within the desired random region of the library members, and thereby provide a new selection method that is complementary to other available SELEX protocols.
Collapse
Affiliation(s)
- Eric Ouellet
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4; Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3; Biomedical Engineering Program, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | | | | | | |
Collapse
|
49
|
Support vector machine classification of streptavidin-binding aptamers. PLoS One 2014; 9:e99964. [PMID: 24927174 PMCID: PMC4057401 DOI: 10.1371/journal.pone.0099964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/21/2014] [Indexed: 11/21/2022] Open
Abstract
Background Synthesizing and characterizing aptamers with high affinity and specificity have been extensively carried out for analytical and biomedical applications. Few publications can be found that describe structure–activity relationships (SARs) of candidate aptamer sequences. Methodology This paper reports pattern recognition with support vector machine (SVM) classification techniques for the identification of streptavidin-binding aptamers as “low” or “high” affinity aptamers. The SVM parameters C and γ were optimized using genetic algorithms. Four descriptors, the topological descriptor PW4 (path/walk 4 - Randic shape index), the connectivity index X3A (average connectivity index chi-3), the topological charge index JGI2 (mean topological charge index of order 2), and the free energy E of the secondary structure, were used to describe the structures of candidate aptamer sequences from SELEX selection (Schütze et al. (2011) PLoS ONE (12):e29604). Conclusions The predicted fractions of winning streptavidin-binding aptamers for ten rounds of SELEX conform to the aptamer evolutionary principles of SELEX-based screening. The feasibility of applying pattern recognition based on SVM and genetic algorithms for streptavidin-binding aptamers has been demonstrated.
Collapse
|
50
|
Martin JA, Chávez JL, Chushak Y, Chapleau RR, Hagen J, Kelley-Loughnane N. Tunable stringency aptamer selection and gold nanoparticle assay for detection of cortisol. Anal Bioanal Chem 2014; 406:4637-47. [PMID: 24880870 DOI: 10.1007/s00216-014-7883-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 01/17/2023]
Abstract
The first-known aptamer for the stress biomarker cortisol was selected using a tunable stringency magnetic bead selection strategy. The capture DNA probe immobilized on the beads was systematically lengthened to increase the number of bases bound to the complementary pool primer regions following selection enrichment. This resulted in a single sequence (15-1) dominating the final round 15 pool, where the same sequence was the second-highest copy number candidate in the enriched pool with the shorter capture DNA probe (round 13). A thorough analysis of the next-generation sequencing results showed that a high copy number may only correlate with enhanced affinity under certain stringency and enrichment conditions, in contrast with prior published reports. Aptamer 15-1 demonstrated enhanced binding to cortisol (K(d) = 6.9 ± 2.8 μM by equilibrium dialysis; 16.1 ± 0.6 μM by microscale thermophoresis) when compared with the top sequence from round 13 and the negative control progesterone. Whereas most aptamer selections terminate at the selection round demonstrating the highest enrichment, this work shows that extending the selection with higher stringency conditions leads to lower amounts eluted by the target but higher copy numbers of a sequence with enhanced binding. The structure-switching aptamer was applied to a gold nanoparticle assay in buffer and was shown to discriminate between cortisol and two other stress biomarkers, norepinephrine and epinephrine, and a structurally analogous biomarker of liver dysfunction, cholic acid. We believe this approach enhances aptamer selection and serves as proof-of-principle work toward development of point-of-care diagnostics for medical, combat, or bioterrorism targets.
Collapse
Affiliation(s)
- Jennifer A Martin
- Air Force Research Laboratory, Human Effectiveness Directorate, 711th Human Performance Wing, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
| | | | | | | | | | | |
Collapse
|