1
|
Chen XM, Li H, Wu Y, Wang LL, Bai YJ, Shi YY. Case report: Dynamic antibody monitoring in a case of anti-recombinant human erythropoietin-mediated pure red cell aplasia with prolonged course after kidney transplantation. Front Immunol 2022; 13:1049444. [PMID: 36524109 PMCID: PMC9744924 DOI: 10.3389/fimmu.2022.1049444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Anti-erythropoietin (anti-EPO) antibody-mediated pure red cell aplasia (PRCA) is a rarely seen disease. Anti-EPO antibodies were mostly found in patients with chronic kidney disease who received recombinant human erythropoietin (rHuEPO) injections subcutaneously. The treatment against anti-EPO antibody-mediated PRCA included discontinuation of rHuEPO, immunosuppressive agents, intravenous immunoglobulin, plasmapheresis, or kidney transplantation. We reported a case of kidney transplant recipient with anti-EPO antibody-mediated PRCA, who had no trend of recovery after stopping rHuEPO, receiving regular induction and maintenance immunosuppressive regimens. He was further given 6 consecutive plasmapheresis sessions, cyclophosphamide, and adjusted maintenance immunosuppressive regimen into cyclosporine, sirolimus and prednisone. We monitored his anti-EPO antibody levels with a self-created simple mixing test. At 10 months post kidney transplant, his anti-EPO antibody finally turned negative, and his reticulocyte count dramatically increased. Cyclosporine, sirolimus and prednisone combined with roxadustat eventually alleviated the patient's anti-EPO antibody-mediated PRCA. Our self-created simple mixing test for anti-EPO antibody titer was very helpful in disease monitoring and therapeutic guidance.
Collapse
Affiliation(s)
- Xiao-Mei Chen
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lan-Lan Wang
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang-Juan Bai
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Yun-Ying Shi, ; Yang-Juan Bai,
| | - Yun-Ying Shi
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Yun-Ying Shi, ; Yang-Juan Bai,
| |
Collapse
|
2
|
Harmonization and standardization of immunogenicity assessment of biotherapeutic products. Bioanalysis 2020; 11:1593-1604. [PMID: 31697206 DOI: 10.4155/bio-2019-0202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Understanding of the determinants of immunogenicity, the testing paradigm, the impact of antibody attributes on clinical outcomes and regulatory guidance is leading to harmonized practices for immunogenicity assessment of biotherapeutics. However, generation of robust immunogenicity data for inclusion in product labels to support clinical practice continues to be a challenge. Assays, protocols and antibody positive controls/standards need to be developed in sufficient time to allow assessment of clinical immunogenicity using validated methods and optimized protocols. Standardization and harmonization play a significant role in achieving acceptable results. Harmonization in the postapproval setting is crucial for a valid interpretation of the product's immunogenicity and its clinical effects. Efforts are ongoing to standardize assays where possible for antibody measurement and for measuring product/drug levels by producing reference standards. Provision of such standards will help toward personalized treatment strategies with better patient outcomes.
Collapse
|
3
|
Yogurtcu ON, Sauna ZE, McGill JR, Tegenge MA, Yang H. TCPro: an In Silico Risk Assessment Tool for Biotherapeutic Protein Immunogenicity. AAPS JOURNAL 2019; 21:96. [PMID: 31376048 DOI: 10.1208/s12248-019-0368-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022]
Abstract
Most immune responses to biotherapeutic proteins involve the development of anti-drug antibodies (ADAs). New drugs must undergo immunogenicity assessments to identify potential risks at early stages in the drug development process. This immune response is T cell-dependent. Ex vivo assays that monitor T cell proliferation often are used to assess immunogenicity risk. Such assays can be expensive and time-consuming to carry out. Furthermore, T cell proliferation requires presentation of the immunogenic epitope by major histocompatibility complex class II (MHCII) proteins on antigen-presenting cells. The MHC proteins are the most diverse in the human genome. Thus, obtaining cells from subjects that reflect the distribution of the different MHCII proteins in the human population can be challenging. The allelic frequencies of MHCII proteins differ among subpopulations, and understanding the potential immunogenicity risks would thus require generation of datasets for specific subpopulations involving complex subject recruitment. We developed TCPro, a computational tool that predicts the temporal dynamics of T cell counts in common ex vivo assays for drug immunogenicity. Using TCPro, we can test virtual pools of subjects based on MHCII frequencies and estimate immunogenicity risks for different populations. It also provides rapid and inexpensive initial screens for new biotherapeutics and can be used to determine the potential immunogenicity risk of new sequences introduced while bioengineering proteins. We validated TCPro using an experimental immunogenicity dataset, making predictions on the population-based immunogenicity risk of 15 protein-based biotherapeutics. Immunogenicity rankings generated using TCPro are consistent with the reported clinical experience with these therapeutics.
Collapse
Affiliation(s)
- Osman N Yogurtcu
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, US FDA, 10903 New Hampshire Ave, Silver Spring, 20993, Maryland, USA
| | - Zuben E Sauna
- Office of Tissues and Advanced Therapy, Center for Biologics Evaluation and Research, US FDA, 10903 New Hampshire Ave, Silver Spring, 20993, Maryland, USA
| | - Joseph R McGill
- Office of Tissues and Advanced Therapy, Center for Biologics Evaluation and Research, US FDA, 10903 New Hampshire Ave, Silver Spring, 20993, Maryland, USA
| | - Million A Tegenge
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, US FDA, 10903 New Hampshire Ave, Silver Spring, 20993, Maryland, USA
| | - Hong Yang
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, US FDA, 10903 New Hampshire Ave, Silver Spring, 20993, Maryland, USA.
| |
Collapse
|
4
|
Wadhwa M, Mytych DT, Bird C, Barger T, Dougall T, Han H, Rigsby P, Kromminga A, Thorpe R. Establishment of the first WHO Erythropoietin antibody reference panel: Report of an international collaborative study. J Immunol Methods 2016; 435:32-42. [DOI: 10.1016/j.jim.2016.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/25/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
|
5
|
Carbamylated erythropoietin enhances mice ventilatory responses to changes in O2 but not CO2 levels. Respir Physiol Neurobiol 2016; 232:1-12. [PMID: 27317882 DOI: 10.1016/j.resp.2016.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 11/21/2022]
Abstract
Erythropoietin (EPO) has beneficial tissue-protective effects in several diseases but erythrocytosis may cause deleterious effects in EPO-treated patients. Thus carbamylated-EPO (C-EPO) and other derivatives retaining tissue-protective but lacking bone marrow-stimulating actions have been developed. Although EPO modulates ventilatory responses, the effects of C-EPO on ventilation have not been investigated. Here, basal breathing and respiratory chemoreflexes were measured by plethysmography after acute and chronic treatments with recombinant human C-EPO (rhC-EPO; 15,000 IU/kg during 5days) or saline (control group). Hematocrit, plasma and brainstem rhC-EPO levels were also quantified. Chronic rhC-EPO significantly elevated tissue rhC-EPO levels but not hematocrit. None of the drug regimen altered basal ventilation (normoxia). Chronic but not acute rhC-EPO enhanced hyperoxic ventilatory depression, and sustained the hypoxic ventilatory response mainly via a reduction of the roll-off phase. By contrast, rhC-EPO did not blunt the ventilatory response to hypercapnia. Thus, chronic C-EPO may be a promising therapy to improve breathing during hypoxia while minimizing adverse effects on cardiovascular function.
Collapse
|
6
|
Oh JG, Chin YW, Kim SJ, Choi JM, Kim SK, Kang HE, Heo TH. Biphasic Effects of Ingenol 3,20-Dibenzoate on the Erythropoietin Receptor: Synergism at Low Doses and Antagonism at High Doses. Mol Pharmacol 2015; 88:392-400. [PMID: 26048958 DOI: 10.1124/mol.114.097436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 06/05/2015] [Indexed: 11/22/2022] Open
Abstract
Although ingenol 3,20-dibenzoate (IDB) is known as a selective novel protein kinase C (PKC) agonist, its biologic actions and underlying mechanisms remain incompletely understood. In this study, we identified IDB as a proliferative agent for an erythropoietin (EPO)-dependent cell line, UT-7/EPO, through the screening of a natural compound library. To clarify the underlying mechanism of IDB's EPO-like activities, we thoroughly analyzed the mutual relation between EPO and IDB in terms of in vitro and in vivo activities, signaling molecules, and a cellular receptor. IDB substantially induced the proliferation of UT-7/EPO cells, but not as much as EPO. IDB also lessened the anemia induced by 5-fluorouracil in an in vivo mouse model. Interestingly, IDB showed a synergistic effect on EPO at low concentration, but an antagonistic effect at higher concentration. Physical interaction and activation of PKCs by IDB- and EPO-competitive binding of IDB to EPO receptor (EPOR) explain these synergistic and antagonistic activities, respectively. Importantly, we addressed IDB's mechanism of action by demonstrating the direct binding of IDB to PKCs, and by identifying EPOR as a novel molecular target of IDB. Based on these dual targeting properties, IDB holds promise as a new small molecule modulator of EPO-related pathologic conditions.
Collapse
Affiliation(s)
- Jin-Gyo Oh
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, Catholic University of Korea, Bucheon, Republic of Korea (J.-G.O., H.E.K., T.-H.H.); College of Pharmacy, Dongguk University-Seoul, Seoul, Republic of Korea (Y.-W.C.); Department of Biotechnology, Hoseo University, Baebang, Asan, Chungnam, Republic of Korea (S.-J.K.); and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea (J.M.C., S.K.K.)
| | - Young-Won Chin
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, Catholic University of Korea, Bucheon, Republic of Korea (J.-G.O., H.E.K., T.-H.H.); College of Pharmacy, Dongguk University-Seoul, Seoul, Republic of Korea (Y.-W.C.); Department of Biotechnology, Hoseo University, Baebang, Asan, Chungnam, Republic of Korea (S.-J.K.); and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea (J.M.C., S.K.K.)
| | - Sung-Jo Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, Catholic University of Korea, Bucheon, Republic of Korea (J.-G.O., H.E.K., T.-H.H.); College of Pharmacy, Dongguk University-Seoul, Seoul, Republic of Korea (Y.-W.C.); Department of Biotechnology, Hoseo University, Baebang, Asan, Chungnam, Republic of Korea (S.-J.K.); and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea (J.M.C., S.K.K.)
| | - Jong Min Choi
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, Catholic University of Korea, Bucheon, Republic of Korea (J.-G.O., H.E.K., T.-H.H.); College of Pharmacy, Dongguk University-Seoul, Seoul, Republic of Korea (Y.-W.C.); Department of Biotechnology, Hoseo University, Baebang, Asan, Chungnam, Republic of Korea (S.-J.K.); and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea (J.M.C., S.K.K.)
| | - Sang Kyum Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, Catholic University of Korea, Bucheon, Republic of Korea (J.-G.O., H.E.K., T.-H.H.); College of Pharmacy, Dongguk University-Seoul, Seoul, Republic of Korea (Y.-W.C.); Department of Biotechnology, Hoseo University, Baebang, Asan, Chungnam, Republic of Korea (S.-J.K.); and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea (J.M.C., S.K.K.)
| | - Hee Eun Kang
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, Catholic University of Korea, Bucheon, Republic of Korea (J.-G.O., H.E.K., T.-H.H.); College of Pharmacy, Dongguk University-Seoul, Seoul, Republic of Korea (Y.-W.C.); Department of Biotechnology, Hoseo University, Baebang, Asan, Chungnam, Republic of Korea (S.-J.K.); and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea (J.M.C., S.K.K.)
| | - Tae-Hwe Heo
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, Catholic University of Korea, Bucheon, Republic of Korea (J.-G.O., H.E.K., T.-H.H.); College of Pharmacy, Dongguk University-Seoul, Seoul, Republic of Korea (Y.-W.C.); Department of Biotechnology, Hoseo University, Baebang, Asan, Chungnam, Republic of Korea (S.-J.K.); and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea (J.M.C., S.K.K.)
| |
Collapse
|
7
|
Alves MT, Vilaça SS, Carvalho MDG, Fernandes AP, Dusse LMS, Gomes KB. Resistance of dialyzed patients to erythropoietin. Rev Bras Hematol Hemoter 2015; 37:190-7. [PMID: 26041422 PMCID: PMC4459468 DOI: 10.1016/j.bjhh.2015.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/24/2014] [Indexed: 02/07/2023] Open
Abstract
Resistance to recombinant human erythropoietin is a common condition in dialyzed patients with chronic kidney disease and is associated with more hospitalizations, increased mortality and frequent blood transfusions. The main cause of hyporesponsiveness to recombinant human erythropoietin in these patients is iron deficiency. However, a high proportion of patients does not respond to treatment, even to the use of intravenous iron, which indicates the presence of other important causes of resistance. In addition to the iron deficiency, the most common causes of resistance include inflammation, infection, malnutrition, inadequate dialysis, and hyperparathyroidism, although other factors may be associated. In the presence of adequate iron stores, other causes should be investigated and treated appropriately.
Collapse
Affiliation(s)
| | | | | | | | | | - Karina Braga Gomes
- Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
Iron as the key modulator of hepcidin expression in erythroid antibody-mediated hypoplasia. BIOMED RESEARCH INTERNATIONAL 2014; 2014:421304. [PMID: 25580431 PMCID: PMC4281449 DOI: 10.1155/2014/421304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/12/2014] [Indexed: 01/01/2023]
Abstract
Erythroid hypoplasia (EH) is a rare complication associated with recombinant human erythropoietin (rHuEPO) therapies, due to development of anti-rHuEPO antibodies; however, the underlying mechanisms remain poorly clarified. Our aim was to manage a rat model of antibody-mediated EH induced by rHuEPO and study the impact on iron metabolism and erythropoiesis. Wistar rats treated during 9 weeks with a high rHuEPO dose (200 IU) developed EH, as shown by anemia, reduced erythroblasts, reticulocytopenia, and plasmatic anti-rHuEPO antibodies. Serum iron was increased and associated with mRNA overexpression of hepatic hepcidin and other iron regulatory mediators and downregulation of matriptase-2; overexpression of divalent metal transporter 1 and ferroportin was observed in duodenum and liver. Decreased EPO expression was observed in kidney and liver, while EPO receptor was overexpressed in liver. Endogenous EPO levels were normal, suggesting that anti-rHuEPO antibodies blunted EPO function. Our results suggest that anti-rHuEPO antibodies inhibit erythropoiesis causing anemia. This leads to a serum iron increase, which seems to stimulate hepcidin expression despite no evidence of inflammation, thus suggesting iron as the key modulator of hepcidin synthesis. These findings might contribute to improving new therapeutic strategies against rHuEPO resistance and/or development of antibody-mediated EH in patients under rHuEPO therapy.
Collapse
|
9
|
Alves MT, Vilaça SS, Godoi LC, Rezende Júnior L, Carvalho MDG, Silva FDS, Guimarães FL, Fernandes AP, Dusse LMS, Gomes KB. Parvovirus B19 (B19) and cytomegalovirus (CMV) infections and anti-erythropoietin (anti-EPO) antibodies in patients on dialysis hyporesponsive to erythropoietin therapy. Clin Chim Acta 2014; 431:52-7. [PMID: 24513539 DOI: 10.1016/j.cca.2014.01.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Approximately 10% of patients receiving recombinant human erythropoietin (rHuEPO) do not respond to the treatment. We evaluated parvovirus B19 (B19) and cytomegalovirus (CMV) infections and antierythropoietin (anti-EPO) antibodies as potential causes of anemia in dialyzed patients, hyporesponsive to rHuEPO. METHODS Data from 120 dialyzed patients, receiving rHuEPO alfa, were collected: demographic characteristics, rHuEPO dose, duration of rHuEPO treatment and time on dialysis, etiology of chronic kidney disease and transfusion history. Serology and PCR were performed to address B19 and CMV infection status. An ELISA was developed to detect anti-EPO antibodies. RESULTS rHuEPO resistance correlated with high ferritin levels (p = 0.001) and short time on dialysis (p = 0.012). B19 DNA was found in 10 (8.3%) dialyzed patients and CMV DNA was detected in 33 (27.5%). There was no significant correlation between B19 infection and anemia,while a tendency of correlation between active CMV infection and hemoglobin levels or hematocrit value (p= 0.069 and p= 0.070, respectively) has been observed. Anti-EPO antibodies were not detected in any patient. CONCLUSIONS B19 infection is a rare complication in dialyzed patients and should be investigated after exclusion of other common causes, while CMV infection is rather common. The role of CMV infection in the hyporesponsiveness in dialyzed patients should be further evaluated in other studies. Our data suggest that anti-EPO antibodies are not involved in rHuEPO resistance in this population.
Collapse
|
10
|
Kirshner SL. Mechanisms Underlying the Immunogenicity of Therapeutic Proteins: Risk Assessment and Management Strategies. J Interferon Cytokine Res 2014; 34:923-930. [PMID: 25493959 DOI: 10.1089/jir.2013.0011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antibodies to therapeutic proteins have caused serious adverse events and loss of efficacy in patients. Therefore, it is critical to manage the risk of antitherapeutic antibodies (ATA) during drug development and in the postmarketing environment. Risk assessments are an important tool for managing immunogenicity risk because they provide a format for considering the consequences and likelihood of ATA development. Because many factors influence both the severity of the consequences and likelihood of ATA development, successful risk assessments require input from all relevant disciplines, including product quality, manufacturing, nonclinical, pharmacology, and clinical. The results of risk assessments are used to develop appropriate risk reduction strategies, which may include product quality and manufacturing controls and elements of clinical trial design. This article discusses considerations for immunogenicity risk assessments and management.
Collapse
Affiliation(s)
- Susan L Kirshner
- Division of Therapeutic Proteins, U.S. Food and Drug Administration , Bethesda, Maryland
| |
Collapse
|
11
|
Sanchis-Gomar F, Perez-Quilis C, Lippi G. Erythropoietin receptor (EpoR) agonism is used to treat a wide range of disease. Mol Med 2013; 19:62-4. [PMID: 23615965 DOI: 10.2119/molmed.2013.00025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/11/2013] [Indexed: 11/06/2022] Open
Abstract
The erythropoietin receptor (EpoR) was discovered and described in red blood cells (RBCs), stimulating its proliferation and survival. The target in humans for EpoR agonists drugs appears clear-to treat anemia. However, there is evidence of the pleitropic actions of erythropoietin (Epo). For that reason, rhEpo therapy was suggested as a reliable approach for treating a broad range of pathologies, including heart and cardiovascular diseases, neurodegenerative disorders (Parkinson's and Alzheimer's disease), spinal cord injury, stroke, diabetic retinopathy and rare diseases (Friedreich ataxia). Unfortunately, the side effects of rhEpo are also evident. A new generation of nonhematopoietic EpoR agonists drugs (asialoEpo, Cepo and ARA 290) have been investigated and further developed. These EpoR agonists, without the erythropoietic activity of Epo, while preserving its tissue-protective properties, will provide better outcomes in ongoing clinical trials. Nonhematopoietic EpoR agonists represent safer and more effective surrogates for the treatment of several diseases such as brain and peripheral nerve injury, diabetic complications, renal ischemia, rare diseases, myocardial infarction, chronic heart disease and others.
Collapse
Affiliation(s)
- Fabian Sanchis-Gomar
- Department of Physiology, Faculty of Medicine, University of Valencia, Research Foundation of the University Clinic Hospital of Valencia/INCLIVA, Valencia, Spain.
| | | | | |
Collapse
|