1
|
Dang Y, Lattner J, Lahola-Chomiak AA, Afonso DA, Ulbricht E, Taubenberger A, Rulands S, Tabler JM. Self-propagating wave drives morphogenesis of skull bones in vivo. Nat Commun 2025; 16:4330. [PMID: 40346043 PMCID: PMC12064835 DOI: 10.1038/s41467-025-59164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/13/2025] [Indexed: 05/11/2025] Open
Abstract
Cellular motion is a key feature of tissue morphogenesis and is often driven by migration. However, migration need not explain cell motion in contexts where there is little free space or no obvious substrate, such as those found during organogenesis of mesenchymal organs including the embryonic skull. Through ex vivo imaging, biophysical modeling, and perturbation experiments, we find that mechanical feedback between cell fate and stiffness drives bone expansion and controls bone size in vivo. This mechanical feedback system is sufficient to propagate a wave of differentiation that establishes a collagen gradient which we find sufficient to describe patterns of osteoblast motion. Our work provides a mechanism for coordinated motion that may not rely upon cell migration but on emergent properties of the mesenchymal collective. Identification of such alternative mechanisms of mechanochemical coupling between differentiation and morphogenesis will help in understanding how directed cellular motility arises in complex environments with inhomogeneous material properties.
Collapse
Affiliation(s)
- Yiteng Dang
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology, Dresden, Germany
| | - Johanna Lattner
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Diana Alves Afonso
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | - Steffen Rulands
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology, Dresden, Germany
- Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität München, München, Germany
| | - Jacqueline M Tabler
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
2
|
Slavin BV, Nayak VV, Parra M, Spielman RD, Torquati MS, Iglesias NJ, Coelho PG, Witek L. Comparative Evaluation of Bovine- and Porcine-Deproteinized Grafts for Guided Bone Regeneration: An In Vivo Study. Bioengineering (Basel) 2025; 12:459. [PMID: 40428078 PMCID: PMC12108621 DOI: 10.3390/bioengineering12050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Guided bone regeneration (GBR) procedures have been indicated to enhance bone response, reliably regenerate lost tissue, and create an anatomically pleasing ridge contour for biomechanically favorable and prosthetically driven implant placement. The aim of the current study was to evaluate and compare the bone regenerative performance of deproteinized bovine bone (DBB) and deproteinized porcine bone (DPB) grafts in a beagle mandibular model for the purposes of GBR. Four bilateral defects of 10 mm × 10 mm were induced through the mandibular thickness in each of the 10 adult beagle dogs being studied. Two of the defects were filled with DPB, while the other two were filled with DBB, after which they were covered with collagen-based membranes to allow compartmentalized healing. Animals were euthanized after 6, 12, 24, or 48 weeks postoperatively. Bone regenerative capacity was evaluated by qualitative histological and quantitative microtomographic analyses. Microcomputed tomography data of the bone (%), graft (%), and space (%) were compared using a mixed model analysis. Qualitatively, no histomorphological differences in healing were observed between the DBB and DPB grafts at any time point. By 48 weeks, the xenografts (DBB and DPB) were observed to have osseointegrated with regenerating spongy bone and a close resemblance to native bone morphology. Quantitatively, a higher amount of bone (%) and a corresponding reduction in empty space (space (%)) were observed in defects treated by DBB and DPB grafts over time. However, no statistically significant differences in bone (%)were observed between DBB (71.04 ± 8.41 at 48 weeks) and DPB grafts (68.38 ± 10.30 at 48 weeks) (p > 0.05). GBR with DBB and DPB showed no signs of adverse immune response and led to similar trends in bone regeneration over 48 weeks of permitted healing.
Collapse
Affiliation(s)
- Blaire V. Slavin
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL 33136, USA
| | - Marcelo Parra
- Department of Comprehensive Adult Dentistry, Faculty of Dentistry, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Faculty of Medicine, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
| | - Robert D. Spielman
- Biomaterials and Regenerative Biology Division, NYU College of Dentistry, New York, NY 10010, USA
- CTOR Academy, Hoboken, NJ 07030, USA
| | | | - Nicholas J. Iglesias
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL 33136, USA
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials and Regenerative Biology Division, NYU College of Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Oral and Maxillofacial Surgery, NYU College of Dentistry, New York, NY 10010, USA
| |
Collapse
|
3
|
Bai Y, Li X, Wu K, Heng BC, Zhang X, Deng X. Biophysical stimuli for promoting bone repair and regeneration. MEDICAL REVIEW (2021) 2025; 5:1-22. [PMID: 39974560 PMCID: PMC11834751 DOI: 10.1515/mr-2024-0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/19/2024] [Indexed: 02/21/2025]
Abstract
Bone injuries and diseases are associated with profound changes in the biophysical properties of living bone tissues, particularly their electrical and mechanical properties. The biophysical properties of healthy bone are attributed to the complex network of interactions between its various cell types (i.e., osteocytes, osteoclast, immune cells and vascular endothelial cells) with the surrounding extracellular matrix (ECM) against the backdrop of a myriad of biomechanical and bioelectrical stimuli arising from daily physical activities. Understanding the pathophysiological changes in bone biophysical properties is critical to developing new therapeutic strategies and novel scaffold biomaterials for orthopedic surgery and tissue engineering, as well as provides a basis for the application of various biophysical stimuli as therapeutic agents to restore the physiological microenvironment of injured/diseased bone tissue, to facilitate its repair and regeneration. These include mechanical, electrical, magnetic, thermal and ultrasound stimuli, which will be critically examined in this review. A significant advantage of utilizing such biophysical stimuli to facilitate bone healing is that these may be applied non-invasively with minimal damage to surrounding tissues, unlike conventional orthopedic surgical procedures. Furthermore, the effects of such biophysical stimuli can be localized specifically at the bone defect site, unlike drugs or growth factors that tend to diffuse away after delivery, which may result in detrimental side effects at ectopic sites.
Collapse
Affiliation(s)
- Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ke Wu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Boon C. Heng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
4
|
Knudsen EE, Dreyer CH, Overgaard S, Zhang Y, Ding M. Long-Term Natural Hydroxyapatite and Synthetic Collagen Hydroxyapatite Enhance Bone Regeneration and Implant Fixation Similar to Allograft in a Sheep Model of Implant Integration. Calcif Tissue Int 2025; 116:19. [PMID: 39751831 DOI: 10.1007/s00223-024-01309-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/21/2024] [Indexed: 01/04/2025]
Abstract
There is an increasing demand for a suitable bone substitute to replace current clinical gold standard autografts or allografts. Majority of previous studies have focused on the early effects of substitutes on bone formation, while information on their long-term efficacies remains limited. This study investigated the efficacies of natural hydroxyapatite (nHA) derived from oyster shells and synthetic hydroxyapatite mixed with collagen (COL/HA) or chitosan (CS/HA) on bone regeneration and implant fixation in sheep. Titanium implants were inserted into critical-size defects in distal femur condyles bilaterally, and circumferential gaps around implants were filled with substitute materials or allografts (as control). 14 or 24 weeks post-operatively, the implant-bone blocks were harvested and evaluated using microarchitectural, histomorphometric, and mechanical methods. The nHA and COL/HA groups showed significant bone formation at both 14 and 24 weeks. There was a pronounced increase in bone tissue volume and ingrowth into titanium implant's porous surfaces, significantly enhancing mechanical fixation strength at 24 weeks. CS/HA had a limited ability to induce bone formation and implant fixation. We conclude that nHA and COL/HA revealed long-term effects on enhancing bone formation and implant fixation that were at least as good as allograft after 24 weeks, and both nHA and COL/HA appear to be good alternative materials to bone allograft.
Collapse
Affiliation(s)
- Emma-Emilie Knudsen
- Orthopaedic Research Laboratory, Department of Orthopedic Surgery and Traumatology, Odense University Hospital & Department of Clinical Research, University of Southern Denmark, V18-812B-1, Etage 1, Bygning 45.4, Nyt Sund, SDU Campus 5230, Odense, Denmark
| | - Chris H Dreyer
- Orthopaedic Research Laboratory, Department of Orthopedic Surgery and Traumatology, Odense University Hospital & Department of Clinical Research, University of Southern Denmark, V18-812B-1, Etage 1, Bygning 45.4, Nyt Sund, SDU Campus 5230, Odense, Denmark
- Department of Orthopaedic Surgery and Traumatology, Slagelse Hospital, Region Zealand, Denmark
| | - Søren Overgaard
- Orthopaedic Research Laboratory, Department of Orthopedic Surgery and Traumatology, Odense University Hospital & Department of Clinical Research, University of Southern Denmark, V18-812B-1, Etage 1, Bygning 45.4, Nyt Sund, SDU Campus 5230, Odense, Denmark
- Department of Orthopaedic Surgery & Traumatology, Bispebjerg, Copenhagen University Hospital & Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Yuan Zhang
- Fujian GTR/Bote Biotech Co., LTD, Fuzhou, Fujian, People's Republic of China
| | - Ming Ding
- Orthopaedic Research Laboratory, Department of Orthopedic Surgery and Traumatology, Odense University Hospital & Department of Clinical Research, University of Southern Denmark, V18-812B-1, Etage 1, Bygning 45.4, Nyt Sund, SDU Campus 5230, Odense, Denmark.
| |
Collapse
|
5
|
Chen CH, Dash BS, Ting WC, Chen JP. Bone Tissue Engineering with Adipose-Derived Stem Cells in Polycaprolactone/Graphene Oxide/Dexamethasone 3D-Printed Scaffolds. ACS Biomater Sci Eng 2024; 10:6425-6440. [PMID: 39226111 DOI: 10.1021/acsbiomaterials.4c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
We fabricated three-dimensional (3D)-printed polycaprolactone (PCL) and PCL/graphene oxide (GO) (PGO) scaffolds for bone tissue engineering. An anti-inflammatory and pro-osteogenesis drug dexamethasone (DEX) was adsorbed onto GO and a 3D-printed PGO/DEX (PGOD) scaffold successfully improved drug delivery with a sustained release of DEX from the scaffold up to 1 month. The physicochemical properties of the PCL, PGO, and PGOD scaffolds were characterized by various analytical techniques. The biological response of these scaffolds was studied for adherence, proliferation, and osteogenic differentiation of seeded rabbit adipose-derived stem cells (ASCs) from DNA assays, alkaline phosphatase (ALP) production, calcium quantification, osteogenic gene expression, and immunofluorescence staining of osteogenic marker proteins. The PGOD scaffold was demonstrated to be the best scaffold for maintaining cell viability, cell proliferation, and osteogenic differentiation of ASCs in vitro. In vivo biocompatibility of PGOD was confirmed from subcutaneous implantation in nude mice where ASC-seeded PGOD can form ectopic bones, demonstrated by microcomputed tomography (micro-CT) analysis and immunofluorescence staining. Furthermore, implantation of PGOD/ASCs constructs into critical-sized cranial bone defects in rabbits form tissue-engineered bones at the defect site, observed using micro-CT and histological analysis.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Kwei-San 33302, Taiwan
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University School of Medicine, Taoyuan, Kwei-San 33305, Taiwan
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Kwei-San 33302, Taiwan
| | - Wei-Chun Ting
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Kwei-San 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Kwei-San 33302, Taiwan
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University School of Medicine, Taoyuan, Kwei-San 33305, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Kwei-San 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
6
|
Zhou Z, Liu J, Xiong T, Liu Y, Tuan RS, Li ZA. Engineering Innervated Musculoskeletal Tissues for Regenerative Orthopedics and Disease Modeling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310614. [PMID: 38200684 DOI: 10.1002/smll.202310614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Musculoskeletal (MSK) disorders significantly burden patients and society, resulting in high healthcare costs and productivity loss. These disorders are the leading cause of physical disability, and their prevalence is expected to increase as sedentary lifestyles become common and the global population of the elderly increases. Proper innervation is critical to maintaining MSK function, and nerve damage or dysfunction underlies various MSK disorders, underscoring the potential of restoring nerve function in MSK disorder treatment. However, most MSK tissue engineering strategies have overlooked the significance of innervation. This review first expounds upon innervation in the MSK system and its importance in maintaining MSK homeostasis and functions. This will be followed by strategies for engineering MSK tissues that induce post-implantation in situ innervation or are pre-innervated. Subsequently, research progress in modeling MSK disorders using innervated MSK organoids and organs-on-chips (OoCs) is analyzed. Finally, the future development of engineering innervated MSK tissues to treat MSK disorders and recapitulate disease mechanisms is discussed. This review provides valuable insights into the underlying principles, engineering methods, and applications of innervated MSK tissues, paving the way for the development of targeted, efficacious therapies for various MSK conditions.
Collapse
Affiliation(s)
- Zhilong Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Jun Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Tiandi Xiong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Yuwei Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, P. R. China
| | - Rocky S Tuan
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
7
|
Niu X, Ma C, Fan Y. Mechanical impact on biomineralization: Enhancing the strength of composite materials. MECHANOBIOLOGY IN MEDICINE 2024; 2:100042. [PMID: 40395450 PMCID: PMC12082304 DOI: 10.1016/j.mbm.2024.100042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 05/22/2025]
Abstract
A recent study published in Nature Communications introduces a novel mechanically-mediated reaction involving ZnO nanoparticles that autonomously react, forming Zn/S mineral microrods within an organogel. These microrods selectively reinforce synthetic polymer composites, offering a unique approach to material strengthening. The method provides a distinctive pathway for mechanical mineralization in composite materials.
Collapse
Affiliation(s)
- Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Chunyang Ma
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| |
Collapse
|
8
|
Liang HF, Zou YP, Hu AN, Wang B, Li J, Huang L, Chen WS, Su DH, Xiao L, Xiao Y, Ma YQ, Li XL, Jiang LB, Dong J. Biomimetic Structural Protein Based Magnetic Responsive Scaffold for Enhancing Bone Regeneration by Physical Stimulation on Intracellular Calcium Homeostasis. Adv Healthc Mater 2023; 12:e2301724. [PMID: 37767893 DOI: 10.1002/adhm.202301724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/22/2023] [Indexed: 09/29/2023]
Abstract
The bone matrix has distinct architecture and biochemistry which present a barrier to synthesizing bone-mimetic regenerative scaffolds. To mimic the natural structures and components of bone, biomimetic structural decellularized extracellular matrix (ECM)/regenerated silk fibroin (RSF) scaffolds incorporated with magnetic nanoparticles (MNP) are prepared using a facile synthetic methodology. The ECM/RSF/MNP scaffold is a hierarchically organized and interconnected porous structure with silk fibroin twined on the collagen nanofibers. The scaffold demonstrates saturation magnetization due to the presence of MNP, along with good cytocompatibility. Moreover, the β-sheet crystalline domain of RSF and the chelated MNP could mimic the deposition of hydroxyapatite and enhance compressive modulus of the scaffold by ≈20%. The results indicate that an external static magnetic field (SMF) with a magnetic responsive scaffold effectively promotes cell migration, osteogenic differentiation, neogenesis of endotheliocytes in vitro, and new bone formation in a critical-size femur defect rat model. RNA sequencing reveals that the molecular mechanisms underlying this osteogenic effect involve calsequestrin-2-mediated Ca2+ release from the endoplasmic reticulum to activate Ca2+ /calmodulin/calmodulin-dependent kinase II signaling axis. Collectively, bionic magnetic scaffolds with SMF stimulation provide a potent strategy for bone regeneration through internal structural cues, biochemical composition, and external physical stimulation on intracellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- Hai-Feng Liang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Orthopaedic Surgery, Shanghai Geriatric Medical Center, Shanghai, 201104, China
| | - Yan-Pei Zou
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - An-Nan Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ben Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Juan Li
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Huang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei-Sin Chen
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Di-Han Su
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059, Australia
| | - Yin Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059, Australia
- School of Medicine and Dentistry & Menzies Health Institute Queensland, Griffith University, Gold Coast, 4222, Australia
| | - Yi-Qun Ma
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xi-Lei Li
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li-Bo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Orthopaedic Surgery, Shanghai Geriatric Medical Center, Shanghai, 201104, China
- Department of Orthopaedic Surgery, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, 200940, China
| |
Collapse
|
9
|
Chauhan A, Bhatt AD. A review on design of scaffold for osteoinduction: Toward the unification of independent design variables. Biomech Model Mechanobiol 2023; 22:1-21. [PMID: 36121530 DOI: 10.1007/s10237-022-01635-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
Biophysical stimulus quantifies the osteoinductivity of the scaffold concerning the mechanoregulatory mathematical models of scaffold-assisted cellular differentiation. Consider a set of independent structural variables ($) that comprises bulk porosity levels ([Formula: see text]) and a set of morphological features of the micro-structure ([Formula: see text]) associated with scaffolds, i.e., [Formula: see text]. The literature suggests that biophysical stimulus ([Formula: see text]) is a function of independent structural variables ($). Limited understanding of the functional correlation between biophysical stimulus and structural features results in the lack of the desired osteoinductivity in a scaffold. Consequently, it limits their broad applicability to assist bone tissue regeneration for treating critical-sized bone fractures. The literature indicates the existence of multi-dimensional independent design variable space as a probable reason for the general lack of osteoinductivity in scaffolds. For instance, known morphological features are the size, shape, orientation, continuity, and connectivity of the porous regions in the scaffold. It implies that the number of independent variables ([Formula: see text]) is more than two, i.e., [Formula: see text], which interact and influence the magnitude of [Formula: see text] in a unified manner. The efficiency of standard engineering design procedures to analyze the correlation between dependent variable ([Formula: see text]) and independent variables ($) in 3D mutually orthogonal Cartesian coordinate system diminishes proportionally with the increase in the number of independent variables ([Formula: see text]) (Deb in Optimization for engineering design-algorithms and examples, PHI Learning Private Limited, New Delhi, 2012). Therefore, there is an immediate need to devise a framework that has the potential to quantify the micro-structural's morphological features in a unified manner to increase the prospects of scaffold-assisted bone tissue regeneration.
Collapse
Affiliation(s)
- Atul Chauhan
- Department of Mechanical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India.
| | - Amba D Bhatt
- Department of Mechanical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| |
Collapse
|
10
|
Ma Q, Miri Z, Haugen HJ, Moghanian A, Loca D. Significance of mechanical loading in bone fracture healing, bone regeneration, and vascularization. J Tissue Eng 2023; 14:20417314231172573. [PMID: 37251734 PMCID: PMC10214107 DOI: 10.1177/20417314231172573] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
In 1892, J.L. Wolff proposed that bone could respond to mechanical and biophysical stimuli as a dynamic organ. This theory presents a unique opportunity for investigations on bone and its potential to aid in tissue repair. Routine activities such as exercise or machinery application can exert mechanical loads on bone. Previous research has demonstrated that mechanical loading can affect the differentiation and development of mesenchymal tissue. However, the extent to which mechanical stimulation can help repair or generate bone tissue and the related mechanisms remain unclear. Four key cell types in bone tissue, including osteoblasts, osteoclasts, bone lining cells, and osteocytes, play critical roles in responding to mechanical stimuli, while other cell lineages such as myocytes, platelets, fibroblasts, endothelial cells, and chondrocytes also exhibit mechanosensitivity. Mechanical loading can regulate the biological functions of bone tissue through the mechanosensor of bone cells intraosseously, making it a potential target for fracture healing and bone regeneration. This review aims to clarify these issues and explain bone remodeling, structure dynamics, and mechano-transduction processes in response to mechanical loading. Loading of different magnitudes, frequencies, and types, such as dynamic versus static loads, are analyzed to determine the effects of mechanical stimulation on bone tissue structure and cellular function. Finally, the importance of vascularization in nutrient supply for bone healing and regeneration was further discussed.
Collapse
Affiliation(s)
- Qianli Ma
- Department of Biomaterials, Institute
of Clinical Dentistry, University of Oslo, Norway
- Department of Immunology, School of
Basic Medicine, Fourth Military Medical University, Xi’an, PR China
| | - Zahra Miri
- Department of Materials Engineering,
Isfahan University of Technology, Isfahan, Iran
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute
of Clinical Dentistry, University of Oslo, Norway
| | - Amirhossein Moghanian
- Department of Materials Engineering,
Imam Khomeini International University, Qazvin, Iran
| | - Dagnjia Loca
- Rudolfs Cimdins Riga Biomaterials
Innovations and Development Centre, Institute of General Chemical Engineering,
Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga,
Latvia
- Baltic Biomaterials Centre of
Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
11
|
Ma C, Du T, Niu X, Fan Y. Biomechanics and mechanobiology of the bone matrix. Bone Res 2022; 10:59. [PMID: 36042209 PMCID: PMC9427992 DOI: 10.1038/s41413-022-00223-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/13/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
The bone matrix plays an indispensable role in the human body, and its unique biomechanical and mechanobiological properties have received much attention. The bone matrix has unique mechanical anisotropy and exhibits both strong toughness and high strength. These mechanical properties are closely associated with human life activities and correspond to the function of bone in the human body. None of the mechanical properties exhibited by the bone matrix is independent of its composition and structure. Studies on the biomechanics of the bone matrix can provide a reference for the preparation of more applicable bone substitute implants, bone biomimetic materials and scaffolds for bone tissue repair in humans, as well as for biomimetic applications in other fields. In providing mechanical support to the human body, bone is constantly exposed to mechanical stimuli. Through the study of the mechanobiology of the bone matrix, the response mechanism of the bone matrix to its surrounding mechanical environment can be elucidated and used for the health maintenance of bone tissue and defect regeneration. This paper summarizes the biomechanical properties of the bone matrix and their biological significance, discusses the compositional and structural basis by which the bone matrix is capable of exhibiting these mechanical properties, and studies the effects of mechanical stimuli, especially fluid shear stress, on the components of the bone matrix, cells and their interactions. The problems that occur with regard to the biomechanics and mechanobiology of the bone matrix and the corresponding challenges that may need to be faced in the future are also described.
Collapse
Affiliation(s)
- Chunyang Ma
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Tianming Du
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China. .,Research Institute of Beihang University in Shenzhen, Shenzhen, 518057, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China. .,School of Engineering Medicine, Beihang University, Beijing, 100083, China.
| |
Collapse
|
12
|
Tang S, Liu K, Chen J, Li Y, Liu M, Lu L, Zhou C, Luo B. Dual-Cross-linked Liquid Crystal Hydrogels with Controllable Viscoelasticity for Regulating Cell Behaviors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21966-21977. [PMID: 35503918 DOI: 10.1021/acsami.2c02689] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The liquid crystal properties and viscoelasticity of the natural bone extracellular matrix (ECM) play a decisive role in guiding cell behavior, conducting cell signals, and regulating mineralization. Here, we develop a facile approach for preparing a novel polysaccharide hydrogel with liquid crystal properties and viscoelasticity similar to those of natural bone ECM. First, a series of chitin whisker/chitosan (CHW/CS) hydrogels were prepared by chemical cross-linking with genipin, in which CHW can self-assemble to form cholesteric liquid crystals under ultrasonic treatment and CS chains can enter into the gaps between the helical layers of the CHW cholesteric liquid crystal phase to endow morphological stability and good mechanical properties. Subsequently, the obtained chemically cross-linked liquid crystal hydrogels were immersed into the desired concentration of the NaCl solution to form physical cross-linking. Due to the Hofmeister effect, the as-prepared dual-cross-linked liquid crystal hydrogels showed an enhanced modulus, viscoelasticity similar to that of natural ECM with relatively fast stress relaxation behavior, and fold surface morphology. Compared to both CHW/CS hydrogels without liquid crystal properties and CHW/CS liquid crystal hydrogels without further physical cross-linking, the dual-cross-linked CHW/CS liquid crystal hydrogels are more favorable for the adhesion, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells. This approach could inspire the design of hydrogels mimicking the liquid crystal properties and viscoelasticity of natural bone ECM for bone repair.
Collapse
Affiliation(s)
- Shengyue Tang
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
| | - Kun Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
| | - Jingsheng Chen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
| | - Yizhi Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
| | - Mingxian Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P. R. China
| | - Lu Lu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P. R. China
| | - Changren Zhou
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P. R. China
| | - Binghong Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P. R. China
| |
Collapse
|
13
|
Effect of Ce-doped bioactive glass/collagen/chitosan nanocomposite scaffolds on the cell morphology and proliferation of rabbit’s bone marrow mesenchymal stem cells-derived osteogenic cells. J Genet Eng Biotechnol 2022; 20:33. [PMID: 35192077 PMCID: PMC8864049 DOI: 10.1186/s43141-022-00302-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/15/2022] [Indexed: 12/17/2022]
Abstract
Background Cerium-containing materials have wide applications in the biomedical field, because of the mimetic catalytic activities of cerium. The study aims to deeply estimate the biocompatibility of different scaffolds based on Ce-doped nanobioactive glass, collagen, and chitosan using the first passage of rabbit bone marrow mesenchymal stem cells (BM-MSCs) directed to osteogenic lineage by direct and indirect approach. One percentage of glass filler was used (30 wt. %) in the scaffold, while the percentage of CeO2 in the glass was ranged from 0 to 10 mol. %. Cytotoxicity was evaluated by monitoring of cell morphological changes and reduction in cell proliferation activity of BMMSCs maintained under osteogenic condition using proliferation assays, MTT assay for the direct contact of cells/scaffolds twice in a week, trypan blue and hemocytometer cell counting for indirect contact of cells/scaffolds extracts at day 7. Cell behaviors growth, morphology characteristics were monitored daily under a microscope and cell counting were conducted after 1 week of the incubation of the cells with the extracts of the four composite scaffolds in the osteogenic medium at the end of the week. Results Showed that at 24 h after direct contact with composite scaffold, all scaffolds showed proliferation of cells > 50% and increased in cell density on day 7. The scaffold of the highest percentage of CeO2 in bioactive glass nanoparticles (sample CL/CH/C10) showed the lowest inhibition of cell proliferation (< 25%) at day 7. Moreover, the indirect cell viability test showed that all extracts from the four composite scaffolds did not demonstrate a toxic effect on the cells (inhibition value < 25%). Conclusion The addition of CeO2 to the glass composition improved the biocompatibility of the composite scaffold for the proliferation of rabbit bone marrow mesenchymal stem cells directed to osteogenic lineage. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00302-x.
Collapse
|
14
|
Ciliary Signalling and Mechanotransduction in the Pathophysiology of Craniosynostosis. Genes (Basel) 2021; 12:genes12071073. [PMID: 34356089 PMCID: PMC8306115 DOI: 10.3390/genes12071073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Craniosynostosis (CS) is the second most prevalent inborn craniofacial malformation; it results from the premature fusion of cranial sutures and leads to dimorphisms of variable severity. CS is clinically heterogeneous, as it can be either a sporadic isolated defect, more frequently, or part of a syndromic phenotype with mendelian inheritance. The genetic basis of CS is also extremely heterogeneous, with nearly a hundred genes associated so far, mostly mutated in syndromic forms. Several genes can be categorised within partially overlapping pathways, including those causing defects of the primary cilium. The primary cilium is a cellular antenna serving as a signalling hub implicated in mechanotransduction, housing key molecular signals expressed on the ciliary membrane and in the cilioplasm. This mechanical property mediated by the primary cilium may also represent a cue to understand the pathophysiology of non-syndromic CS. In this review, we aimed to highlight the implication of the primary cilium components and active signalling in CS pathophysiology, dissecting their biological functions in craniofacial development and in suture biomechanics. Through an in-depth revision of the literature and computational annotation of disease-associated genes we categorised 18 ciliary genes involved in CS aetiology. Interestingly, a prevalent implication of midline sutures is observed in CS ciliopathies, possibly explained by the specific neural crest origin of the frontal bone.
Collapse
|
15
|
Glatt V, Samchukov M, Cherkashin A, Iobst C. Reverse Dynamization Accelerates Bone-Healing in a Large-Animal Osteotomy Model. J Bone Joint Surg Am 2021; 103:257-263. [PMID: 33315696 DOI: 10.2106/jbjs.20.00380] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Reverse dynamization is a mechanical manipulation regimen designed to accelerate bone-healing and remodeling. It is based on the hypothesis that a fracture that is initially stabilized less rigidly allows micromotion to encourage initial cartilaginous callus formation. Once substantial callus has formed, the stabilization should then be converted to a rigid configuration to prevent the disruption of neovascularization. The aim of the present study was to investigate whether bone-healing can be accelerated using a regimen of reverse dynamization in a large-animal osteotomy model. METHODS Transverse 2-mm tibial osteotomies were created in 18 goats, stabilized using circular external fixation, and divided into groups of 6 goats each: static fixation (rigid fixation), dynamic fixation (continuous micromotion using dynamizers), and reverse dynamization (initial micromotion using dynamizers followed by rigid fixation at 3 weeks postoperatively). Healing was assessed with the use of radiographs, micro-computed tomography, and mechanical testing. RESULTS Radiographic evaluation showed earlier and more robust callus formation in the dynamic fixation and reverse dynamization groups compared with the static fixation group. After 8 weeks of treatment, the reverse dynamization group had reduced callus size, less bone volume, higher bone mineral density, and no evidence of radiolucent lines compared with the static fixation and dynamic fixation groups. This appearance is characteristic of advanced remodeling, returning closest to the values of intact bone. Moreover, the tibiae in the reverse dynamization group were significantly stronger in torsion compared with those in the static fixation and dynamic fixation groups. CONCLUSIONS These findings confirmed that tibial osteotomies under reverse dynamization healed faster, healed objectively better, and were considerably stronger, all suggesting an accelerated healing and remodeling process. CLINICAL RELEVANCE This study demonstrates that the concept of reverse dynamization challenges the current understanding regarding the optimal fixation stability necessary to maximize the regenerative capacity of bone-healing. When reverse dynamization is employed in the clinical setting, it may be able to improve the treatment of fractures by reducing the time to union and potentially lowering the risk of delayed union and nonunion.
Collapse
Affiliation(s)
- Vaida Glatt
- Department of Orthopedic Surgery, University of Texas Health Science Center, San Antonio, Texas
| | - Mikhail Samchukov
- The Center for Excellence in Limb Lengthening & Reconstruction, Texas Scottish Rite Hospital for Children, Dallas, Texas.,Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alexander Cherkashin
- The Center for Excellence in Limb Lengthening & Reconstruction, Texas Scottish Rite Hospital for Children, Dallas, Texas.,Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Christopher Iobst
- Center for Limb Lengthening and Reconstruction, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
16
|
Sergi R, Bellucci D, Cannillo V. A Review of Bioactive Glass/Natural Polymer Composites: State of the Art. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5560. [PMID: 33291305 PMCID: PMC7730917 DOI: 10.3390/ma13235560] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose are biocompatible and non-cytotoxic, being attractive natural polymers for medical devices for both soft and hard tissues. However, such natural polymers have low bioactivity and poor mechanical properties, which limit their applications. To tackle these drawbacks, collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose can be combined with bioactive glass (BG) nanoparticles and microparticles to produce composites. The incorporation of BGs improves the mechanical properties of the final system as well as its bioactivity and regenerative potential. Indeed, several studies have demonstrated that polymer/BG composites may improve angiogenesis, neo-vascularization, cells adhesion, and proliferation. This review presents the state of the art and future perspectives of collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose matrices combined with BG particles to develop composites such as scaffolds, injectable fillers, membranes, hydrogels, and coatings. Emphasis is devoted to the biological potentialities of these hybrid systems, which look rather promising toward a wide spectrum of applications.
Collapse
Affiliation(s)
| | | | - Valeria Cannillo
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.)
| |
Collapse
|
17
|
Kajave NS, Schmitt T, Nguyen TU, Gaharwar AK, Kishore V. Bioglass incorporated methacrylated collagen bioactive ink for 3D printing of bone tissue. Biomed Mater 2020; 16. [PMID: 33142268 DOI: 10.1088/1748-605x/abc744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022]
Abstract
Bioactive 3D printed scaffolds are promising candidates for bone tissue engineering (BTE) applications. Here, we introduce a bioactive ink composed of Bioglass 45S5 (BG) and methacrylated collagen (CMA) for 3D printing of biomimetic constructs that resemble the organic and inorganic composition of native bone tissue. A uniform dispersion of BG particles within the collagen network improved stability and reduced swelling of collagen hydrogels. Rheological testing showed significant improvement in the yield stress and percent recovery of 3D printed constructs upon BG incorporation. Further, addition of BG improved the bone bioactivity of 3D printed constructs in stimulated body fluid. BG incorporated CMA (BG-CMA) constructs maintained high cell viability and enhanced alkaline phosphatase activity of human mesenchymal stem cells. In addition, cell-mediated calcium deposition was significantly higher on BG-CMA constructs, compared to CMA alone. In conclusion, 3D printed BG-CMA constructs have significant potential for use in BTE applications.
Collapse
Affiliation(s)
- Nilabh S Kajave
- Florida Institute of Technology, Melbourne, Florida, UNITED STATES
| | - Trevor Schmitt
- Florida Institute of Technology, Melbourne, Florida, UNITED STATES
| | - Thuy-Uyen Nguyen
- Chemical Engineering, Florida Institute of Technology, Melbourne, Florida, UNITED STATES
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, UNITED STATES
| | - Vipuil Kishore
- Florida Institute of Technology, Melbourne, Florida, UNITED STATES
| |
Collapse
|
18
|
Kannan S, Ghosh J, Dhara SK. Osteogenic differentiation potential of porcine bone marrow mesenchymal stem cell subpopulations selected in different basal media. Biol Open 2020; 9:bio053280. [PMID: 32973080 PMCID: PMC7595700 DOI: 10.1242/bio.053280] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022] Open
Abstract
Multipotent porcine mesenchymal stem cells (pMSC) are invaluable for research and therapeutic use in regenerative medicine. Media used for derivation and expansion of pMSC may play an important role for the selection of MSC subpopulation at an early stage and thereby, the specific basal medium may also affect differentiation potential of these cells. The present study was undertaken to evaluate the effects of αMEM, aDMEM, M199, αMEM/M199, aDMEM/M199 and αMEM/aDMEM media on (1) porcine bone marrow MSC derivation; (2) expression of number of osteogenic markers (ALP, COL1A1, SPP1 and BGLAP) at 5th and 10th passage in pMSC before differentiation; and (3) differentiation of pMSC (at 5th passage) to osteogenic lineage. Morphological changes and matrix formation in osteogenic cells were evaluated by microscopic examination. Calcium deposits in osteocytes were confirmed by Alizarin Red S staining. Based on expression of different markers, it was evident that selection of bone marrow pMSC subpopulations was independent of basal media used. However, the differentiation of those pMSCs, specifically to osteogenic lineage, was dependent on the medium used for expansion of pMSC at the pre-differentiation stage. We demonstrated here that the pMSC grown in combined αMEM/aDMEM (1:1) medium expressed number of osteogenic markers and these pMSC underwent osteogenic differentiation most efficiently, in comparison to porcine mesenchymal stem cells grown in other media. In conclusion, osteogenic differentiation potential of pMSC maintained in αMEM/aDMEM medium was observed significantly higher compared to cells cultivated in other media and therefore, the combined medium αMEM/aDMEM (1:1) may preferentially be used for expansion of pMSC, if needed for osteogenic differentiation.
Collapse
Affiliation(s)
- Sangeetha Kannan
- Department of Biotechnology, Jain University, Bangalore 560011, Karnataka, India
| | - Jyotirmoy Ghosh
- Molecular Biology Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, Karnataka, India
| | - Sujoy K Dhara
- Stem Cell Laboratory, Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| |
Collapse
|
19
|
Castro N, Ribeiro S, Fernandes MM, Ribeiro C, Cardoso V, Correia V, Minguez R, Lanceros‐Mendez S. Physically Active Bioreactors for Tissue Engineering Applications. ACTA ACUST UNITED AC 2020; 4:e2000125. [DOI: 10.1002/adbi.202000125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/15/2020] [Indexed: 01/09/2023]
Affiliation(s)
- N. Castro
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures University of the Basque Country UPV/EHU Science Park Leioa E‐48940 Spain
| | - S. Ribeiro
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- Centre of Molecular and Environmental Biology (CBMA) University of Minho Campus de Gualtar Braga 4710‐057 Portugal
| | - M. M. Fernandes
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- CEB – Centre of Biological Engineering University of Minho Braga 4710‐057 Portugal
| | - C. Ribeiro
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- CEB – Centre of Biological Engineering University of Minho Braga 4710‐057 Portugal
| | - V. Cardoso
- CMEMS‐UMinho Universidade do Minho Campus de Azurém Guimarães 4800‐058 Portugal
| | - V. Correia
- Algoritmi Research Centre University of Minho Campus de Azurém Guimarães 4800‐058 Portugal
| | - R. Minguez
- Department of Graphic Design and Engineering Projects University of the Basque Country UPV/EHU Bilbao E‐48013 Spain
| | - S. Lanceros‐Mendez
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures University of the Basque Country UPV/EHU Science Park Leioa E‐48940 Spain
- IKERBASQUE Basque Foundation for Science Bilbao E‐48013 Spain
| |
Collapse
|
20
|
Guan S, Zhang K, Li J. Recent Advances in Extracellular Matrix for Engineering Stem Cell Responses. Curr Med Chem 2019; 26:6321-6338. [DOI: 10.2174/0929867326666190704121309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/02/2018] [Accepted: 01/25/2019] [Indexed: 02/06/2023]
Abstract
Stem cell transplantation is an advanced medical technology, which brings hope for the
treatment of some difficult diseases in the clinic. Attributed to its self-renewal and differential
ability, stem cell research has been pushed to the forefront of regenerative medicine and has become
a hot topic in tissue engineering. The surrounding extracellular matrix has physical functions
and important biological significance in regulating the life activities of cells, which may play crucial
roles for in situ inducing specific differentiation of stem cells. In this review, we discuss the
stem cells and their engineering application, and highlight the control of the fate of stem cells, we
offer our perspectives on the various challenges and opportunities facing the use of the components
of extracellular matrix for stem cell attachment, growth, proliferation, migration and differentiation.
Collapse
Affiliation(s)
- Shuaimeng Guan
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
21
|
Gungordu HI, Bao M, van Helvert S, Jansen JA, Leeuwenburgh SCG, Walboomers XF. Effect of mechanical loading and substrate elasticity on the osteogenic and adipogenic differentiation of mesenchymal stem cells. J Tissue Eng Regen Med 2019; 13:2279-2290. [PMID: 31483956 DOI: 10.1002/term.2956] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 11/10/2022]
Abstract
Mesenchymal stem cells (MSCs) are highly sensitive to biomechanics of their extracellular environment. Generally, a higher elasticity of culture substrates can drive cells into the osteogenic lineage, whereas low substrate elasticity results in adipogenesis. Applied mechanical loading by cyclic strain is another major variable influencing cell fate. Yet, little is known about the simultaneous effect of both cues. Therefore, the present study investigated the relative importance of both cues on differentiation. MSCs were cultured in an osteogenic and also an adipogenic environment on soft polyacrylamide (PAAm; E = 23 ± 0.3 kPa), stiff PAAm (111 ± 2 kPa), and polydimethylsiloxane (PDMS; E = 1,5 ± 0.07 MPa) either unstrained or with 8% cyclic strain at 1 Hz. Without strain, the relative expression of the early osteogenic marker alkaline phosphatase (ALP) was significantly higher (78%) on PDMS than on both PAAm. With 8% cyclic strain, ALP expression increased for all groups in comparison with unstrained controls. The highest increase was observed for the soft PAAm by 36%. Moreover, relative oil red O (ORO) expression-indicating adipogenesis-was the highest for unstrained soft PAAm. On the other hand, the percentage of ORO positive cells significantly decreased by 57% and 69% for soft and stiff PAAm when strained. In conclusion, biomaterial elasticity and mechanical loading can act simultaneously on cell differentiation. Substrate elasticity is an important factor, regulating the differentiation, but cyclic strain can drive MSCs towards the osteogenesis even on the softest substrate. As such, the osteogenic effect of mechanical loading can overrule the adipogenic effect of soft substrates, thereby acting as an inhibitor.
Collapse
Affiliation(s)
- Hatice Imran Gungordu
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Min Bao
- Department of Physical Organic Chemistry, Radboud University, Nijmegen, The Netherlands
| | - Sjoerd van Helvert
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - X Frank Walboomers
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Katarivas Levy G, Birch MA, Brooks RA, Neelakantan S, Markaki AE. Stimulation of Human Osteoblast Differentiation in Magneto-Mechanically Actuated Ferromagnetic Fiber Networks. J Clin Med 2019; 8:E1522. [PMID: 31546701 PMCID: PMC6833056 DOI: 10.3390/jcm8101522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022] Open
Abstract
There is currently an interest in "active" implantable biomedical devices that include mechanical stimulation as an integral part of their design. This paper reports the experimental use of a porous scaffold made of interconnected networks of slender ferromagnetic fibers that can be actuated in vivo by an external magnetic field applying strains to in-growing cells. Such scaffolds have been previously characterized in terms of their mechanical and cellular responses. In this study, it is shown that the shape changes induced in the scaffolds can be used to promote osteogenesis in vitro. In particular, immunofluorescence, gene and protein analyses reveal that the actuated networks exhibit higher mineralization and extracellular matrix production, and express higher levels of osteocalcin, alkaline phosphatase, collagen type 1α1, runt-related transcription factor 2 and bone morphogenetic protein 2 than the static controls at the 3-week time point. The results suggest that the cells filling the inter-fiber spaces are able to sense and react to the magneto-mechanically induced strains facilitating osteogenic differentiation and maturation. This work provides evidence in support of using this approach to stimulate bone ingrowth around a device implanted in bone and can pave the way for further applications in bone tissue engineering.
Collapse
Affiliation(s)
- Galit Katarivas Levy
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
| | - Mark A Birch
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK.
| | - Roger A Brooks
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK.
| | - Suresh Neelakantan
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India.
| | - Athina E Markaki
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
| |
Collapse
|
23
|
Shuaib A, Motan D, Bhattacharya P, McNabb A, Skerry TM, Lacroix D. Heterogeneity in The Mechanical Properties of Integrins Determines Mechanotransduction Dynamics in Bone Osteoblasts. Sci Rep 2019; 9:13113. [PMID: 31511609 PMCID: PMC6739315 DOI: 10.1038/s41598-019-47958-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022] Open
Abstract
Bone cells are exposed to dynamic mechanical stimulation that is transduced into cellular responses by mechanotransduction mechanisms. The extracellular matrix (ECM) provides a physical link between loading and bone cells, where mechanoreceptors, such as integrins, initiate mechanosensation. Though this relationship is well studied, the dynamic interplay between mechanosensation, mechanotransduction and cellular responses is unclear. A hybrid-multiscale model combining molecular, cellular and tissue interactions was developed to examine links between integrins’ mechanosensation and effects on mechanotransduction, ECM modulation and cell-ECM interaction. The model shows that altering integrin mechanosensitivity threshold (MT) increases mechanotransduction durations from hours to beyond 4 days, where bone formation starts. This is relevant to bone, where it is known that a brief stimulating period provides persistent influences for over 24 hours. Furthermore, the model forecasts that integrin heterogeneity, with respect to MT, would be able to induce sustained increase in pERK baseline > 15% beyond 4 days. This is analogous to the emergence of molecular mechanical memory signalling dynamics. Therefore, the model can provide a greater understanding of mechanical adaptation to differential mechanical responses at different times. Given reduction of bone sensitivity to mechanical stimulation with age, these findings may lead towards useful therapeutic targets for upregulation of bone mass.
Collapse
Affiliation(s)
- Aban Shuaib
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK. .,Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK.
| | - Daniyal Motan
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Pinaki Bhattacharya
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK.,Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Alex McNabb
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Timothy M Skerry
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Damien Lacroix
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK.,Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
24
|
Elucidating the role of microstructural modification on stress corrosion cracking of biodegradable Mg4Zn alloy in simulated body fluid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110164. [PMID: 31753353 DOI: 10.1016/j.msec.2019.110164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 11/21/2022]
Abstract
This paper investigates the effect of microstructure modification by heat treatment on stress corrosion cracking (SCC) behavior of Mg4Zn alloy in simulated body fluid (SBF). Mg4Zn alloy in as cast, solution heat treated and peak aged conditions was susceptible to SCC in SBF when strained at 3.6 × 10-6 s-1. SCC index based on fracture energy is least for solutionized alloy (0.84), while 0.88 for as cast and peak aged alloys. Fractographic analysis indicates predominantly intergranular SCC for solution treated alloy initiated by anodic dissolution near grain boundaries. As cast and peak aged alloy shows mainly transgranular failure due to hydrogen embrittlement adjacent to secondary phase particles.
Collapse
|
25
|
Inhibiting effect of microRNA-187-3p on osteogenic differentiation of osteoblast precursor cells by suppressing cannabinoid receptor type 2. Differentiation 2019; 109:9-15. [DOI: 10.1016/j.diff.2019.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/25/2022]
|
26
|
Malhotra N. Bioreactors Design, Types, Influencing Factors and Potential Application in Dentistry. A Literature Review. Curr Stem Cell Res Ther 2019; 14:351-366. [DOI: 10.2174/1574888x14666190111105504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/26/2018] [Accepted: 12/27/2018] [Indexed: 11/22/2022]
Abstract
Objectives:A variety of bioreactors and related approaches have been applied to dental tissues as their use has become more essential in the field of regenerative dentistry and dental tissue engineering. The review discusses the various types of bioreactors and their potential application in dentistry.Methods:Review of the literature was conducted using keywords (and MeSH) like Bioreactor, Regenerative Dentistry, Fourth Factor, Stem Cells, etc., from the journals published in English. All the searched abstracts, published in indexed journals were read and reviewed to further refine the list of included articles. Based on the relevance of abstracts pertaining to the manuscript, full-text articles were assessed.Results:Bioreactors provide a prerequisite platform to create, test, and validate the biomaterials and techniques proposed for dental tissue regeneration. Flow perfusion, rotational, spinner-flask, strain and customize-combined bioreactors have been applied for the regeneration of bone, periodontal ligament, gingiva, cementum, oral mucosa, temporomandibular joint and vascular tissues. Customized bioreactors can support cellular/biofilm growth as well as apply cyclic loading. Center of disease control & dip-flow biofilm-reactors and micro-bioreactor have been used to evaluate the biological properties of dental biomaterials, their performance assessment and interaction with biofilms. Few case reports have also applied the concept of in vivo bioreactor for the repair of musculoskeletal defects and used customdesigned bioreactor (Aastrom) to repair the defects of cleft-palate.Conclusions:Bioreactors provide a sterile simulated environment to support cellular differentiation for oro-dental regenerative applications. Also, bioreactors like, customized bioreactors for cyclic loading, biofilm reactors (CDC & drip-flow), and micro-bioreactor, can assess biological responses of dental biomaterials by simultaneously supporting cellular or biofilm growth and application of cyclic stresses.
Collapse
|
27
|
Qiao J, Liu A, Liu J, Guan D, Chen T. Salvianolic acid B (Sal B) alleviates the decreased activity induced by prednisolone acetate on osteoblasts by up-regulation of bone formation and differentiation genes. Food Funct 2019; 10:6184-6192. [PMID: 31501830 DOI: 10.1039/c9fo01246j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sal B could promote bone formation and help protect against bone loss caused by prednisolone acetate treatment.
Collapse
Affiliation(s)
- Jiutao Qiao
- The Second Affiliated Hospital of Harbin Medical University
- Harbin
- China
| | - Aiyun Liu
- The Second Affiliated Hospital of Harbin Medical University
- Harbin
- China
| | - Jianyu Liu
- The Second Affiliated Hospital of Harbin Medical University
- Harbin
- China
| | - Dehong Guan
- The Second Affiliated Hospital of Harbin Medical University
- Harbin
- China
| | - Tianxin Chen
- The Second Affiliated Hospital of Harbin Medical University
- Harbin
- China
| |
Collapse
|
28
|
Sato K, Matsubara O, Hase E, Minamikawa T, Yasui T. Quantitative in situ time-series evaluation of osteoblastic collagen synthesis under cyclic strain using second-harmonic-generation microscopy. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-8. [PMID: 30635995 PMCID: PMC6975189 DOI: 10.1117/1.jbo.24.3.031019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
The aim of this study is to evaluate the osteoblastic collagen synthesis under mechanical stimulation using second-harmonic-generation (SHG) microscopy. We apply SHG microscopy to monitor the collagen fibers synthesized by osteoblast-like cells (MC3T3-E1) without the need for fixation and staining. To quantitatively evaluate the influence of mechanical stimulation on osteoblastic collagen synthesis, we compare SHG images of osteoblast-synthesized collagen fibers with and without a cyclic stretch stimulus applied using a lab-made stretching device. We acquire SHG images every 7 days for 3 weeks at different stimulus conditions (5 min/day and 3 h/day with a strain magnitude of 5% and a frequency of 0.5 Hz). Image analysis of the average SHG intensity indicates that the amount of osteoblastic collagen synthesis is significantly enhanced by the cyclic stretch compared with the nonstretched condition, while there is no significant difference between the two mechanical stimulation conditions. Furthermore, the maturity of the collagen fibers in the early stage of bone formation is not affected by the mechanical stimulation. The results can be used in bone regenerative medicine to apply feedback control of collagen synthesis by artificial stimulation.
Collapse
Affiliation(s)
- Katsuya Sato
- Tokushima University, Graduate School of Technology, Industrial and Social Sciences, Tokushima City, Tokushima, Japan
| | - Oki Matsubara
- Tokushima University, Graduate School of Technology, Industrial and Social Sciences, Tokushima City, Tokushima, Japan
| | - Eiji Hase
- Japan Synchrotron Radiation Research Institute, Research and Utilization Division, Sayo, Hyogo, Japan
| | - Takeo Minamikawa
- Tokushima University, Graduate School of Technology, Industrial and Social Sciences, Tokushima City, Tokushima, Japan
| | - Takeshi Yasui
- Tokushima University, Graduate School of Technology, Industrial and Social Sciences, Tokushima City, Tokushima, Japan
| |
Collapse
|
29
|
Zhang J. Bioinformatics analysis of novel transcription factors and related differentially regulated modules in non-union skeletal fractures. J Back Musculoskelet Rehabil 2018; 31:623-628. [PMID: 29578472 DOI: 10.3233/bmr-169596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE This study aimed to further clarify the underlying pathomechanism of non-union skeletal fractures. METHODS Gene expression profile dataset GSE494 obtained from six non-union skeletal fracture and six normal samples was downloaded from the Gene Expression Omnibus database. Overlapping genes in at least two platforms were analyzed, and differentially expressed genes (DEGs) between normal and disease groups were screened. Transcriptional regulatory relationships and differentially regulated modules of various transcription factors (TFs) were determined. Differentially regulated modules with unknown functions were subjected to functional enrichment analysis. RESULTS Overall, 4,252 overlapping genes in at least two platforms and 77 DEGs, including 31 up and 46 downregulated genes, were obtained. Overall, 64,623 transcriptional regulatory relationships, including 49 TFs and 3,900 target genes, and 9 significant modules for differential regulation were identified. Three modules with unknown functions regulated by TFs, including zinc finger, ZZ-type containing 3 (ZZZ3), nuclear TF Y, alpha (NFYA), and POU class 2 homeobox 2 (POU2F2), were identified. Enriched GO-BP terms of NFYA and POU2F2 modules included cell adhesion and related terms and those of ZZ3 included cell cycle, cell proliferation, and associated terms. CONCLUSION Three TFs, including ZZZ3, POU2F2, and NFYA, and their regulated modules may have important effects on non-union skeletal fractures. Cell proliferation may be related with ZZZ3; cell adhesion and its similar process may be related with POU2F2 and NFYA.
Collapse
|
30
|
Bogdanova M, Kostina A, Zihlavnikova Enayati K, Zabirnyk A, Malashicheva A, Stensløkken KO, Sullivan GJ, Kaljusto ML, Kvitting JP, Kostareva A, Vaage J, Rutkovskiy A. Inflammation and Mechanical Stress Stimulate Osteogenic Differentiation of Human Aortic Valve Interstitial Cells. Front Physiol 2018; 9:1635. [PMID: 30524301 PMCID: PMC6256176 DOI: 10.3389/fphys.2018.01635] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
Background: Aortic valve calcification is an active proliferative process, where interstitial cells of the valve transform into either myofibroblasts or osteoblast-like cells causing valve deformation, thickening of cusps and finally stenosis. This process may be triggered by several factors including inflammation, mechanical stress or interaction of cells with certain components of extracellular matrix. The matrix is different on the two sides of the valve leaflets. We hypothesize that inflammation and mechanical stress stimulate osteogenic differentiation of human aortic valve interstitial cells (VICs) and this may depend on the side of the leaflet. Methods: Interstitial cells isolated from healthy and calcified human aortic valves were cultured on collagen or elastin coated plates with flexible bottoms, simulating the matrix on the aortic and ventricular side of the valve leaflets, respectively. The cells were subjected to 10% stretch at 1 Hz (FlexCell bioreactor) or treated with 0.1 μg/ml lipopolysaccharide, or both during 24 h. Gene expression of myofibroblast- and osteoblast-specific genes was analyzed by qPCR. VICs cultured in presence of osteogenic medium together with lipopolysaccharide, 10% stretch or both for 14 days were stained for calcification using Alizarin Red. Results: Treatment with lipopolysaccharide increased expression of osteogenic gene bone morphogenetic protein 2 (BMP2) (5-fold increase from control; p = 0.02) and decreased expression of mRNA of myofibroblastic markers: α-smooth muscle actin (ACTA2) (50% reduction from control; p = 0.0006) and calponin (CNN1) (80% reduction from control; p = 0.0001) when cells from calcified valves were cultured on collagen, but not on elastin. Mechanical stretch of VICs cultured on collagen augmented the effect of lipopolysaccharide. Expression of periostin (POSTN) was inhibited in cells from calcified donors after treatment with lipopolysaccharide on collagen (70% reduction from control, p = 0.001), but not on elastin. Lipopolysaccharide and stretch both enhanced the pro-calcific effect of osteogenic medium, further increasing the effect when combined for cells cultured on collagen, but not on elastin. Conclusion: Inflammation and mechanical stress trigger expression of osteogenic genes in VICs in a side-specific manner, while inhibiting the myofibroblastic pathway. Stretch and lipopolysaccharide synergistically increase calcification.
Collapse
Affiliation(s)
- Maria Bogdanova
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Aleksandra Kostina
- Almazov National Medical Research Centre, St. Petersburg State University, St. Petersburg, Russia.,ITMO University, Institute of Translational Medicine, St. Petersburg, Russia
| | | | - Arsenii Zabirnyk
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anna Malashicheva
- Almazov National Medical Research Centre, St. Petersburg State University, St. Petersburg, Russia.,ITMO University, Institute of Translational Medicine, St. Petersburg, Russia.,Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Kåre-Olav Stensløkken
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Gareth John Sullivan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Institute of Immunology, Oslo University Hospital, Oslo, Norway.,Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Mari-Liis Kaljusto
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - John-Peder Kvitting
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Anna Kostareva
- Almazov National Medical Research Centre, St. Petersburg State University, St. Petersburg, Russia.,Department of Woman and Children Health, Karolinska Institutet, Stockholm, Sweden
| | - Jarle Vaage
- Department of Emergency Medicine and Intensive Care, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Arkady Rutkovskiy
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Emergency Medicine and Intensive Care, Oslo University Hospital, Oslo, Norway.,Department of Cardiology, Akershus University Hospital, Oslo, Norway
| |
Collapse
|
31
|
Zhang J, Chen H, Leung RKK, Choy KW, Lam TP, Ng BKW, Qiu Y, Feng JQ, Cheng JCY, Lee WYW. Aberrant miR-145-5p/β-catenin signal impairs osteocyte function in adolescent idiopathic scoliosis. FASEB J 2018; 32:fj201800281. [PMID: 29906249 DOI: 10.1096/fj.201800281] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Recently, noncoding RNAs have been thought to play important roles in the sporadic occurrence of spinal deformity of adolescent idiopathic scoliosis (AIS). As a prognostic factor for curve progression, low bone mass has been hypothesized to crosstalk with AIS pathogenesis. Abnormal osteoblasts activities are reported in AIS without a clear mechanism. In this study, bone biopsies from patients with AIS and control subjects and the primary osteoblasts derived from those samples were used to identify the potential microRNA (miRNA) candidates that interfere with osteoblasts and osteocytes function. Microarray analysis identified miRNA-145-5p (miR-145) as a potential upstream regulator. miR-145 and β-catenin mRNA ( CTNNB1) were overexpressed in AIS bone tissues and primary osteoblasts, and their expression correlated positively in AIS. Knockdown of miR-145 restored impaired osteocyte activity through the down-regulation of active β-catenin expression and its transcriptional activity. Significant negative correlations between circulating miR-145 and serum sclerostin, osteopontin, and osteoprotegerin were noted in patients with AIS, which was in line with our cellular findings. This is the first study to demonstrate the effect of aberrant miRNA expression and its effect on osteocyte function in AIS, which may contribute to the low bone mass. Our findings also provide insight into the development of circulating microRNAs as a bone quality biomarker or even a prognostic biomarker for AIS.-Zhang, J., Chen, H., Leung, R. K. K., Choy, K. W., Lam, T. P., Ng, B. K. W., Qiu,Y., Feng, J. Q., Cheng, J. C. Y., Lee, W. Y. W. Aberrant miR-145-5p/β-catenin signal impairs osteocyte function in adolescent idiopathic scoliosis.
Collapse
Affiliation(s)
- Jiajun Zhang
- Department of Orthopaedics and Traumatology, S. H. Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Center, The Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Huanxiong Chen
- Department of Orthopaedics and Traumatology, S. H. Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Center, The Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Orthopaedic Surgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ross K K Leung
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Tsz-Ping Lam
- Department of Orthopaedics and Traumatology, S. H. Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Center, The Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Bobby K W Ng
- Department of Orthopaedics and Traumatology, S. H. Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Center, The Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yong Qiu
- Joint Scoliosis Research Center, The Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Spine Surgery, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, Texas, USA
| | - Jack C Y Cheng
- Department of Orthopaedics and Traumatology, S. H. Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Center, The Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wayne Y W Lee
- Department of Orthopaedics and Traumatology, S. H. Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Center, The Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
32
|
Shuai C, Yang W, Peng S, Gao C, Guo W, Lai Y, Feng P. Physical stimulations and their osteogenesis-inducing mechanisms. Int J Bioprint 2018; 4:138. [PMID: 33102916 PMCID: PMC7581999 DOI: 10.18063/ijb.v4i2.138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/09/2018] [Indexed: 12/27/2022] Open
Abstract
Physical stimulations such as magnetic, electric and mechanical stimulation could enhance cell activity and promote bone formation in bone repair process via activating signal pathways, modulating ion channels, regulating bonerelated gene expressions, etc. In this paper, bioeffects of physical stimulations on cell activity, tissue growth and bone healing were systematically summarized, which especially focused on their osteogenesis-inducing mechanisms. Detailedly, magnetic stimulation could produce Hall effect which improved the permeability of cell membrane and promoted the migration of ions, especially accelerating the extracellular calcium ions to pass through cell membrane. Electric stimulation could induce inverse piezoelectric effect which generated electric signals, accordingly up-regulating intracellular calcium levels and growth factor synthesis. And mechanical stimulation could produce mechanical signals which were converted into corresponding biochemical signals, thus activating various signaling pathways on cell membrane and inducing a series of gene expressions. Besides, bioeffects of physical stimulations combined with bone scaffolds which fabricated using 3D printing technology on bone cells were discussed. The equipments of physical stimulation system were described. The opportunities and challenges of physical stimulations were also presented from the perspective of bone repair.
Collapse
Affiliation(s)
- Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China.,Jiangxi University of Science and Technology, Ganzhou, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Wenjing Yang
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Wang Guo
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Yuxiao Lai
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| |
Collapse
|
33
|
Ribeiro C, Correia DM, Ribeiro S, Fernandes MM, Lanceros-Mendez S. Piezo- and Magnetoelectric Polymers as Biomaterials for Novel Tissue Engineering Strategies. ACTA ACUST UNITED AC 2018. [DOI: 10.1557/adv.2018.223] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Yin J, Qiu S, Shi B, Xu X, Zhao Y, Gao J, Zhao S, Min S. Controlled release of FGF-2 and BMP-2 in tissue engineered periosteum promotes bone repair in rats. ACTA ACUST UNITED AC 2018; 13:025001. [PMID: 29313523 DOI: 10.1088/1748-605x/aa93c0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this study was to prepare chitosan-collagen (CS/COL) scaffolds that could release fibroblast growth factor-2 (FGF-2) and bone morphogenetic protein 2 (BMP-2), and to study the effect of this scaffold on bone repair. By improving the double emulsion/solvent evaporation technique, BMP-2 was encapsulated in poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PELA) microcapsules, to the surface of which FGF-2 was attached. The CS/COL scaffold carrying the microcapsules was prepared by freeze-drying. Periosteum derived cells (PDCs) were extracted and cultured on the scaffolds to study their proliferation and differentiation on the scaffolds. In addition, the effects of the scaffolds were investigated on rats with skull defects by micro-computed tomography and histology. We successfully prepared PELA microcapsules with external adherence to FGF-2 and encapsulated with BMP-2. The CS/COL scaffolds were porous and PDCs adhered, proliferated and underwent osteogenic differentiation on the scaffolds. The sequential release of FGF-2/BMP-2 had better osteogenic efficacy than other groups. Our results suggest that CS/COL scaffolds that bind FGF-2 and BMP-2 in combination with PDCs could be a promising new strategy for tissue engineering periosteum.
Collapse
Affiliation(s)
- Jie Yin
- Department of Orthopaedics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, People's Republic of China. Department of Hand Surgery, Ningbo City Sixth Hospital, Ningbo 315040, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Craniosynostosis is the premature fusion of the calvarial sutures that is associated with a number of physical and intellectual disabilities spanning from pediatric to adult years. Over the past two decades, techniques in molecular genetics and more recently, advances in high-throughput DNA sequencing have been used to examine the underlying pathogenesis of this disease. To date, mutations in 57 genes have been identified as causing craniosynostosis and the number of newly discovered genes is growing rapidly as a result of the advances in genomic technologies. While contributions from both genetic and environmental factors in this disease are increasingly apparent, there remains a gap in knowledge that bridges the clinical characteristics and genetic markers of craniosynostosis with their signaling pathways and mechanotransduction processes. By linking genotype to phenotype, outlining the role of cell mechanics may further uncover the specific mechanotransduction pathways underlying craniosynostosis. Here, we present a brief overview of the recent findings in craniofacial genetics and cell mechanics, discussing how this information together with animal models is advancing our understanding of craniofacial development.
Collapse
Affiliation(s)
- Zeinab Al-Rekabi
- Department of Mechanical Engineering, University of Washington, 3900 E Stevens Way NE, Seattle, WA, 98195, USA
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, 1900 9 Ave, Seattle, WA, 98101, USA
| | - Michael L. Cunningham
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, 1900 9 Ave, Seattle, WA, 98101, USA
- Department of Pediatrics, Division of Craniofacial Medicine and the, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, 3900 E Stevens Way NE, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, 3720 15 Ave NE, Seattle WA, 98105, USA
| |
Collapse
|
36
|
Ramani-Mohan RK, Schwedhelm I, Finne-Wistrand A, Krug M, Schwarz T, Jakob F, Walles H, Hansmann J. Deformation strain is the main physical driver for skeletal precursors to undergo osteogenesis in earlier stages of osteogenic cell maturation. J Tissue Eng Regen Med 2017; 12:e1474-e1479. [PMID: 28872256 DOI: 10.1002/term.2565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 07/20/2017] [Accepted: 08/25/2017] [Indexed: 12/19/2022]
Abstract
Mesenchymal stem cells play a major role during bone remodelling and are thus of high interest for tissue engineering and regenerative medicine applications. Mechanical stimuli, that is, deformation strain and interstitial fluid-flow-induced shear stress, promote osteogenic lineage commitment. However, the predominant physical stimulus that drives early osteogenic cell maturation is not clearly identified. The evaluation of each stimulus is challenging, as deformation and fluid-flow-induced shear stress interdepend. In this study, we developed a bioreactor that was used to culture mesenchymal stem cells harbouring a strain-responsive AP-1 luciferase reporter construct, on porous scaffolds. In addition to the reporter, mineralization and vitality of the cells was investigated by alizarin red staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Quantification of the expression of genes associated to bone regeneration and bone remodelling was used to confirm alizarin red measurements. Controlled perfusion and deformation of the 3-dimensional scaffold facilitated the alteration of the expression of osteogenic markers, luciferase activity, and calcification. To isolate the specific impact of scaffold deformation, a computational model was developed to derive a perfusion flow profile that results in dynamic shear stress conditions present in periodically loaded scaffolds. In comparison to actually deformed scaffolds, a lower expression of all measured readout parameters indicated that deformation strain is the predominant stimulus for skeletal precursors to undergo osteogenesis in earlier stages of osteogenic cell maturation.
Collapse
Affiliation(s)
- Ram-Kumar Ramani-Mohan
- Translational Center Würzburg "Regenerative Therapies for Oncology and Musculosceletal Diseases", Branch of Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Würzburg, Germany
| | - Ivo Schwedhelm
- Department Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
| | - Anna Finne-Wistrand
- Department of Fiber and Polymer Technology, Royal Institute of Technology, Stockholm, Sweden
| | - Melanie Krug
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Thomas Schwarz
- Translational Center Würzburg "Regenerative Therapies for Oncology and Musculosceletal Diseases", Branch of Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Würzburg, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Heike Walles
- Translational Center Würzburg "Regenerative Therapies for Oncology and Musculosceletal Diseases", Branch of Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Würzburg, Germany.,Department Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
| | - Jan Hansmann
- Translational Center Würzburg "Regenerative Therapies for Oncology and Musculosceletal Diseases", Branch of Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Würzburg, Germany.,Department Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
37
|
Gavazzo P, Petecchia L, Facci P, Vassalli M, Viti F. Controlled single-cell cyclic compression and transcription analysis: A pilot study. Biophys Chem 2017; 229:39-45. [DOI: 10.1016/j.bpc.2017.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/04/2017] [Accepted: 07/24/2017] [Indexed: 12/15/2022]
|
38
|
Jin GZ, Kim HW. Effects of Type I Collagen Concentration in Hydrogel on the Growth and Phenotypic Expression of Rat Chondrocytes. Tissue Eng Regen Med 2017; 14:383-391. [PMID: 30603494 PMCID: PMC6171609 DOI: 10.1007/s13770-017-0060-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 11/25/2022] Open
Abstract
It is controversial whether type I collagen itself can maintain and improve chondrogenic phenotype of chondrocytes in a three-dimensional (3D) environment. In this study, we examined the effect of type I collagen concentration in hydrogel (0.5, 1, and 2 mg/ml) on the growth and phenotype expression of rat chondrocytes in vitro. All collagen hydrogels showed substantial contractions during culture, in a concentration-dependent manner, which was due to the cell proliferation. The cell viability was shown to be the highest in 2 mg/ml collagen gel. The mRNA expression of chondrogenic phenotypes, including SOX9, type II collagen, and aggrecan, was significantly up-regulated, particularly in 1 mg/ml collagen gel. Furthermore, the production of type II collagen and glycosaminoglycan (GAG) content was also enhanced. The results suggest that type I collagen hydrogel is not detrimental to, but may be useful for, the chondrocyte culture for cartilage tissue engineering.
Collapse
Affiliation(s)
- Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116 Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116 Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116 Korea
| |
Collapse
|
39
|
Lecocq M, Bernard C, Felix MS, Linares JM, Chaves-Jacob J, Decherchi P, Dousset E. Biocompatibility of Four Common Orthopedic Biomaterials Following a High-Salt Diet: An In Vivo Study. Int J Mol Sci 2017; 18:ijms18071489. [PMID: 28696371 PMCID: PMC5535979 DOI: 10.3390/ijms18071489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/03/2017] [Accepted: 07/08/2017] [Indexed: 01/13/2023] Open
Abstract
Nowadays, salt consumption appears to be drastically above the recommended level in industrialized countries. The health consequences of this overconsumption are heavy since high-salt intake induces cardiovascular disease, kidney dysfunction, and stroke. Moreover, harmful interaction may also occur with orthopaedic devices because overconsumption of salt reinforces the corrosive aspect of biological tissues and favors bone resorption process. In the present study, we aimed to assess the in vivo effect of three weeks of a high-salt diet, associated (or not) with two weeks of the neuro-myoelectrostimulation (NMES) rehabilitation program on the biocompatibility of four biomaterials used in the manufacture of arthroplasty implants. Thus, two non-metallic (PEEK and Al2O3) and two metallic (Ti6Al4V and CrCo) compounds were implanted in the rat tibial crest, and the implant-to-bone adhesion and cell viability of two surrounded muscles, the Flexor Digitorum (FD) and Tibialis Anterior (TA), were assessed at the end of the experiment. Results indicated lower adhesion strength for the PEEK implant compared to other biomaterials. An effect of NMES and a high-salt diet was only identified for Al2O3 and Ti6Al4V implants, respectively. Moreover, compared to a normal diet, a high-salt diet induced a higher number of dead cells on both muscles for all biomaterials, which was further increased for PEEK, Al2O3, and CrCo materials with NMES application. Finally, except for Ti6Al4V, NMES induced a higher number of dead cells in the directly stimulated muscle (FD) compared to the indirectly stimulated one (TA). This in vivo experiment highlights the potential harmful effect of a high-salt diet for people who have undergone arthroplasty, and a rehabilitation program based on NMES.
Collapse
Affiliation(s)
- Mathieu Lecocq
- Aix-Marseille Université, CNRS, Institut des Sciences du Mouvement: Etienne-Jules MAREY (UMR 7287), Equipe Plasticité des Systèmes Nerveux et Musculaire (PSNM), Faculté des Sciences du Sport, CC910, 163, Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| | - Cécile Bernard
- Aix-Marseille Université, CNRS, Institut des Sciences du Mouvement: Etienne-Jules MAREY (UMR 7287), Equipe Plasticité des Systèmes Nerveux et Musculaire (PSNM), Faculté des Sciences du Sport, CC910, 163, Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| | - Marie Solenne Felix
- Aix-Marseille Université, CNRS, Institut des Sciences du Mouvement: Etienne-Jules MAREY (UMR 7287), Equipe Plasticité des Systèmes Nerveux et Musculaire (PSNM), Faculté des Sciences du Sport, CC910, 163, Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| | - Jean-Marc Linares
- Aix-Marseille Université, CNRS, Institut des Sciences du Mouvement: Etienne-Jules MAREY (UMR 7287), Equipe Conception Bio-Inspirée (CBI), IUT d'Aix-en-Provence 413, avenue Gaston Berger, 13625 Aix-en-Provence CEDEX, France.
| | - Julien Chaves-Jacob
- Aix-Marseille Université, CNRS, Institut des Sciences du Mouvement: Etienne-Jules MAREY (UMR 7287), Equipe Conception Bio-Inspirée (CBI), IUT d'Aix-en-Provence 413, avenue Gaston Berger, 13625 Aix-en-Provence CEDEX, France.
| | - Patrick Decherchi
- Aix-Marseille Université, CNRS, Institut des Sciences du Mouvement: Etienne-Jules MAREY (UMR 7287), Equipe Plasticité des Systèmes Nerveux et Musculaire (PSNM), Faculté des Sciences du Sport, CC910, 163, Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| | - Erick Dousset
- Aix-Marseille Université, CNRS, Institut des Sciences du Mouvement: Etienne-Jules MAREY (UMR 7287), Equipe Plasticité des Systèmes Nerveux et Musculaire (PSNM), Faculté des Sciences du Sport, CC910, 163, Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| |
Collapse
|
40
|
Pham MH, Buser Z, Wang JC, Acosta FL. Low-magnitude mechanical signals and the spine: A review of current and future applications. J Clin Neurosci 2017; 40:18-23. [DOI: 10.1016/j.jocn.2016.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/27/2016] [Indexed: 01/17/2023]
|
41
|
Lee JM, Kim MG, Byun JH, Kim GC, Ro JH, Hwang DS, Choi BB, Park GC, Kim UK. The effect of biomechanical stimulation on osteoblast differentiation of human jaw periosteum-derived stem cells. Maxillofac Plast Reconstr Surg 2017; 39:7. [PMID: 28303237 PMCID: PMC5337228 DOI: 10.1186/s40902-017-0104-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 01/25/2017] [Indexed: 12/05/2022] Open
Abstract
Background This study was to investigate the effect of biomechanical stimulation on osteoblast differentiation of human periosteal-derived stem cell using the newly developed bioreactor. Methods Human periosteal-derived stem cells were harvested from the mandible during the extraction of an impacted third molar. Using the new bioreactor, 4% cyclic equibiaxial tension force (0.5 Hz) was applied for 2 and 8 h on the stem cells and cultured for 3, 7, and 14 days on the osteogenic medium. Biochemical changes of the osteoblasts after the biomechanical stimulation were investigated. No treatment group was referred to as control group. Results Alkaline phosphatase (ALP) activity and ALP messenger RNA (mRNA) expression level were higher in the strain group than those in the control group. The osteocalcin and osteonectin mRNA expressions were higher in the strain group compared to those in the control group on days 7 and 14. The vascular endothelial growth factor (VEGF) mRNA expression was higher in the strain group in comparison to that in the control group. Concentration of alizarin red S corresponding to calcium content was higher in the strain group than in the control group. Conclusions The study suggests that cyclic tension force could influence the osteoblast differentiation of periosteal-derived stem cells under optimal stimulation condition and the force could be applicable for tissue engineering.
Collapse
Affiliation(s)
- Ju-Min Lee
- JUM Oral and Maxillofacial Surgery Clinic, Seoul, South Korea.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Min-Gu Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, South Korea
| | - Gyoo-Cheon Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Jung-Hoon Ro
- Department of Biomedical Engineering, School of Medicine, Pusan National Univeristy, Yangsan, South Korea
| | - Dae-Seok Hwang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Byul-Bora Choi
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Geun-Chul Park
- Department of Biomedical Engineering, School of Medicine, Pusan National Univeristy, Yangsan, South Korea
| | - Uk-Kyu Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, South Korea
| |
Collapse
|
42
|
Yao W, Li X, Zhao B, Du G, Feng P, Chen W. Combined effect of TNF-α and cyclic stretching on gene and protein expression associated with mineral metabolism in cementoblasts. Arch Oral Biol 2017; 73:88-93. [DOI: 10.1016/j.archoralbio.2016.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/14/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
|
43
|
Rutkovskiy A, Stensløkken KO, Vaage IJ. Osteoblast Differentiation at a Glance. Med Sci Monit Basic Res 2016; 22:95-106. [PMID: 27667570 PMCID: PMC5040224 DOI: 10.12659/msmbr.901142] [Citation(s) in RCA: 426] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ossification is a tightly regulated process, performed by specialized cells called osteoblasts. Dysregulation of this process may cause inadequate or excessive mineralization of bones or ectopic calcification, all of which have grave consequences for human health. Understanding osteoblast biology may help to treat diseases such as osteogenesis imperfecta, calcific heart valve disease, osteoporosis, and many others. Osteoblasts are bone-building cells of mesenchymal origin; they differentiate from mesenchymal progenitors, either directly or via an osteochondroprogenitor. The direct pathway is typical for intramembranous ossification of the skull and clavicles, while the latter is a hallmark of endochondral ossification of the axial skeleton and limbs. The pathways merge at the level of preosteoblasts, which progress through 3 stages: proliferation, matrix maturation, and mineralization. Osteoblasts can also differentiate into osteocytes, which are stellate cells populating narrow interconnecting passages within the bone matrix. The key molecular switch in the commitment of mesenchymal progenitors to osteoblast lineage is the transcription factor cbfa/runx2, which has multiple upstream regulators and a wide variety of targets. Upstream is the Wnt/Notch system, Sox9, Msx2, and hedgehog signaling. Cofactors of Runx2 include Osx, Atf4, and others. A few paracrine and endocrine factors serve as coactivators, in particular, bone morphogenetic proteins and parathyroid hormone. The process is further fine-tuned by vitamin D and histone deacetylases. Osteoblast differentiation is subject to regulation by physical stimuli to ensure the formation of bone adequate for structural and dynamic support of the body. Here, we provide a brief description of the various stimuli that influence osteogenesis: shear stress, compression, stretch, micro- and macrogravity, and ultrasound. A complex understanding of factors necessary for osteoblast differentiation paves a way to introduction of artificial bone matrices.
Collapse
Affiliation(s)
- Arkady Rutkovskiy
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kåre-Olav Stensløkken
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ingvar Jarle Vaage
- Department of Emergency Medicine and Intensive Care, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
44
|
Jeong MK, Hwang C, Nam H, Cho YS, Kang BY, Cho EC. Effect of the gel elasticity of model skin matrices on the distance/depth-dependent transmission of vibration energy supplied from a cosmetic vibrator. Int J Cosmet Sci 2016; 39:42-48. [PMID: 27264842 DOI: 10.1111/ics.12346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/02/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The purpose of this study was to determine how the energies supplied from a cosmetic vibrator are deeply or far transferred into organs and tissues, and how these depths or distances are influenced by tissue elasticity. METHODS External vibration energy was applied to model skin surfaces through a facial cleansing vibrator, and we measured a distance- and depth-dependent energy that was transferred to model skin matrices. As model skin matrices, we synthesized hard and soft poly(dimethylsiloxane) (PDMS) gels, as well as hydrogels with a modulus of 2.63 MPa, 0.33 MPa and 21 kPa, respectively, mostly representing those of skin and other organs. The transfer of vibration energy was measured either by increasing the separation distances or by increasing the depth from the vibrator. RESULTS The energies were transmitted deeper into the hard PDMS than into the soft PDMS and hydrogel matrices. This finding implies that the vibration forces influence a larger area of the gel matrices when the gels are more elastic (or rigid). There were no appreciable differences between the soft PDMS and hydrogel matrices. However, the absorbed energies were more concentrated in the area closest to the vibrator with decreasing elasticity of the matrix. Softer materials absorbed most of the supplied energy around the point of the vibrator. In contrast, harder materials scattered the external energy over a broad area. CONCLUSIONS The current results are the first report in estimating how the external energy is deeply or distantly transferred into a model skins depending on the elastic moduli of the models skins. In doing so, the results would be potentially useful in predicting the health of cells, tissues and organs exposed to various stimuli.
Collapse
Affiliation(s)
- M K Jeong
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - C Hwang
- Amorepacific Corporation R&D Center, Yonggu-daero, Yongin, 446-729, South Korea
| | - H Nam
- Amorepacific Corporation R&D Center, Yonggu-daero, Yongin, 446-729, South Korea
| | - Y S Cho
- Amorepacific Corporation R&D Center, Yonggu-daero, Yongin, 446-729, South Korea
| | - B Y Kang
- Amorepacific Corporation R&D Center, Yonggu-daero, Yongin, 446-729, South Korea
| | - E C Cho
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
45
|
Trumbull A, Subramanian G, Yildirim-Ayan E. Mechanoresponsive musculoskeletal tissue differentiation of adipose-derived stem cells. Biomed Eng Online 2016; 15:43. [PMID: 27103394 PMCID: PMC4840975 DOI: 10.1186/s12938-016-0150-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/24/2016] [Indexed: 02/06/2023] Open
Abstract
Musculoskeletal tissues are constantly under mechanical strains within their microenvironment. Yet, little is understood about the effect of in vivo mechanical milieu strains on cell development and function. Thus, this review article outlines the in vivo mechanical environment of bone, muscle, cartilage, tendon, and ligaments, and tabulates the mechanical strain and stress in these tissues during physiological condition, vigorous, and moderate activities. This review article further discusses the principles of mechanical loading platforms to create physiologically relevant mechanical milieu in vitro for musculoskeletal tissue regeneration. A special emphasis is placed on adipose-derived stem cells (ADSCs) as an emerging valuable tool for regenerative musculoskeletal tissue engineering, as they are easily isolated, expanded, and able to differentiate into any musculoskeletal tissue. Finally, it highlights the current state-of-the art in ADSCs-guided musculoskeletal tissue regeneration under mechanical loading.
Collapse
Affiliation(s)
- Andrew Trumbull
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, 43606, USA
| | - Gayathri Subramanian
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, 43606, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, 43606, USA. .,Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH, 43614, USA.
| |
Collapse
|
46
|
Das S, Jhingran R, Bains VK, Madan R, Srivastava R, Rizvi I. Socket preservation by beta-tri-calcium phosphate with collagen compared to platelet-rich fibrin: A clinico-radiographic study. Eur J Dent 2016; 10:264-276. [PMID: 27095909 PMCID: PMC4813448 DOI: 10.4103/1305-7456.178298] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives: This study was primarily designed to determine the clinico-radiographic efficacy of platelet-rich fibrin (PRF) and beta-tri-calcium phosphate with collagen (β-TCP-Cl) in preserving extraction sockets. Materials and Methods: For Group I (PRF), residual sockets (n = 15) were filled with autologous PRF obtained from patients' blood; and for Group II (β-TCP-Cl), residual sockets (n = 15) were filled with β-TCP-Cl. For the sockets randomly selected for Group II (β-TCP-Cl), the reshaped Resorbable Tissue Replacement cone was inserted into the socket. Results: Clinically, there was a significantly greater decrease in relative socket depth, but apposition in midcrestal height in Group II (β-TCP-Cl) as compared to Group I (PRF), whereas more decrease in buccolingual width of Group I (PRF) than Group II (β-TCP-Cl) after 6 months. Radiographically, the mean difference in socket height, residual ridge, and width (coronal, middle, and apical third of socket) after 6 months was higher in Group I (PRF) as compared to Group II (β-TCP-Cl). The mean density (in Hounsfield Units) at coronal, middle, and apical third of socket was higher in Group I (PRF) as compared to Group II (β-TCP-Cl). There were statistically significant apposition and resorption for Group I (PRF) whereas nonsignificant resorption and significant apposition for Group II (β-TCP-Cl) in buccal and lingual/palatal cortical plate, respectively, at 6 months on computerized tomography scan. Conclusion: The use of either autologous PRF or β-TCP-Cl was effective in socket preservation. Results obtained from PRF were almost similar to β-TCP-Cl; therefore being autologous, nonimmune, cost-effective, easily procurable regenerative biomaterial, PRF proves to be an insight into the future biofuel for regeneration.
Collapse
Affiliation(s)
- Swati Das
- Department of Periodontology, Saraswati Dental College, Lucknow, Uttar Pradesh, India
| | - Rajesh Jhingran
- Department of Periodontology, Saraswati Dental College, Lucknow, Uttar Pradesh, India
| | - Vivek Kumar Bains
- Department of Periodontology, Saraswati Dental College, Lucknow, Uttar Pradesh, India
| | - Rohit Madan
- Department of Periodontology, Saraswati Dental College, Lucknow, Uttar Pradesh, India
| | - Ruchi Srivastava
- Department of Periodontology, Saraswati Dental College, Lucknow, Uttar Pradesh, India
| | - Iram Rizvi
- Department of Periodontology, Saraswati Dental College, Lucknow, Uttar Pradesh, India
| |
Collapse
|
47
|
Price JC, Roach P, El Haj AJ. Liquid Crystalline Ordered Collagen Substrates for Applications in Tissue Engineering. ACS Biomater Sci Eng 2016; 2:625-633. [DOI: 10.1021/acsbiomaterials.6b00030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Joshua C Price
- ISTM
Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, United Kingdom
| | - Paul Roach
- ISTM
Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, United Kingdom
| | - Alicia J El Haj
- ISTM
Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, United Kingdom
| |
Collapse
|
48
|
Corradetti B, Taraballi F, Minardi S, Van Eps J, Cabrera F, Francis LW, Gazze SA, Ferrari M, Weiner BK, Tasciotti E. Chondroitin Sulfate Immobilized on a Biomimetic Scaffold Modulates Inflammation While Driving Chondrogenesis. Stem Cells Transl Med 2016; 5:670-82. [PMID: 27013739 DOI: 10.5966/sctm.2015-0233] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/04/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Costs associated with degenerative inflammatory conditions of articular cartilage are exponentially increasing in the aging population, and evidence shows a strong clinical need for innovative therapies. Stem cell-based therapies represent a promising strategy for the treatment of innumerable diseases. Their regenerative potential is undeniable, and it has been widely exploited in many tissue-engineering approaches, especially for bone and cartilage repair. Their immune-modulatory capacities in particular make stem cell-based therapeutics an attractive option for treating inflammatory diseases. However, because of their great plasticity, mesenchymal stem cells (MSCs) are susceptible to different external factors. Biomaterials capable of concurrently providing physical support to cells while acting as synthetic extracellular matrix have been established as a valuable strategy in cartilage repair. Here we propose a chondroitin sulfate-based biomimetic scaffold that recapitulates the physicochemical features of the chondrogenic niche and retains MSC immunosuppressive potential in vitro, either in response to a proinflammatory cytokine or in the presence of stimulated peripheral blood mononuclear cells. In both cases, a significant increase in the production of molecules associated with immunosuppression (nitric oxide and prostaglandins), as well as in the expression of their inducible enzymes (iNos, Pges, Cox-2, and Tgf-β). When implanted subcutaneously in rats, our scaffold revealed a reduced infiltration of leukocytes at 24 hours, which correlated with a greater upregulation of genes involved in inflammatory cell apoptotic processes. In support of its effective use in tissue-engineering applications of cartilage repair, the potential of the proposed platform to drive chondrogenic and osteogenic differentiation of MSC was also proven. SIGNIFICANCE Recently, increasing clinical evidence has highlighted the important role of proinflammatory mediators and infiltrating inflammatory cell populations inducing chronic inflammation and diseases in damaged cartilage. This work should be of broad interest because it proposes an implantable biomimetic material, which holds the promise for a variety of medical conditions that necessitate the functional restoration of damaged cartilage tissue (such as trauma, diseases, deformities, or cancer).
Collapse
Affiliation(s)
- Bruna Corradetti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesca Taraballi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Silvia Minardi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza, Italy
| | - Jeffrey Van Eps
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA Department of Surgery, Houston Methodist Hospital, Houston, Texas, USA
| | - Fernando Cabrera
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Lewis W Francis
- Centre for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, United Kingdom
| | - Salvatore A Gazze
- Centre for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, United Kingdom
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Bradley K Weiner
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA Department of Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Ennio Tasciotti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
49
|
Lei Y, Ferdous Z. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering. Biotechnol Prog 2016; 32:543-53. [PMID: 26929197 DOI: 10.1002/btpr.2256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/19/2016] [Indexed: 01/05/2023]
Abstract
With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016.
Collapse
Affiliation(s)
- Ying Lei
- Dept. of Mechanical, Aerospace, and Biomedical Engineering, the University of Tennessee, Knoxville, TN, 37996
| | - Zannatul Ferdous
- Dept. of Mechanical, Aerospace, and Biomedical Engineering, the University of Tennessee, Knoxville, TN, 37996
| |
Collapse
|
50
|
Cook CA, Huri PY, Ginn BP, Gilbert-Honick J, Somers SM, Temple JP, Mao HQ, Grayson WL. Characterization of a novel bioreactor system for 3D cellular mechanobiology studies. Biotechnol Bioeng 2016; 113:1825-37. [PMID: 26825810 DOI: 10.1002/bit.25946] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 11/12/2022]
Abstract
In vitro engineering systems can be powerful tools for studying tissue development in response to biophysical stimuli as well as for evaluating the functionality of engineered tissue grafts. It has been challenging, however, to develop systems that adequately integrate the application of biomimetic mechanical strain to engineered tissue with the ability to assess functional outcomes in real time. The aim of this study was to design a bioreactor system capable of real-time conditioning (dynamic, uniaxial strain, and electrical stimulation) of centimeter-long 3D tissue engineered constructs simultaneously with the capacity to monitor local strains. The system addresses key limitations of uniform sample loading and real-time imaging capabilities. Our system features an electrospun fibrin scaffold, which exhibits physiologically relevant stiffness and uniaxial alignment that facilitates cell adhesion, alignment, and proliferation. We have demonstrated the capacity for directly incorporating human adipose-derived stromal/stem cells into the fibers during the electrospinning process and subsequent culture of the cell-seeded constructs in the bioreactor. The bioreactor facilitates accurate pre-straining of the 3D constructs as well as the application of dynamic and static uniaxial strains while monitoring bulk construct tensions. The incorporation of fluorescent nanoparticles throughout the scaffolds enables in situ monitoring of local strain fields using fluorescent digital image correlation techniques, since the bioreactor is imaging compatible, and allows the assessment of local sample stiffness and stresses when coupled with force sensor measurements. In addition, the system is capable of measuring the electromechanical coupling of skeletal muscle explants by applying an electrical stimulus and simultaneously measuring the force of contraction. The packaging of these technologies, biomaterials, and analytical methods into a single bioreactor system has produced a powerful tool that will enable improved engineering of functional 3D ligaments, tendons, and skeletal muscles. Biotechnol. Bioeng. 2016;113: 1825-1837. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Colin A Cook
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, Maryland, 21287.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pinar Y Huri
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, Maryland, 21287.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
| | - Brian P Ginn
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, Maryland, 21287.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Jordana Gilbert-Honick
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, Maryland, 21287.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sarah M Somers
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, Maryland, 21287.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joshua P Temple
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, Maryland, 21287
| | - Hai-Quan Mao
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, Maryland, 21287.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Warren L Grayson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, Maryland, 21287. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland. .,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|